
Brice Loustau
TU Darmstadt

Riemann Surfaces Winter 2018-2019

Exercises for Chapter 9: Line bundles and divisors

Exercise 1. Tensor product of line bundles

(1) Let us call (complex) line a 1-dimensional complex vector space. Show that for any com-
plex lines L and L′:

L∗ is a line

L ⊗ L′ is a line

L ⊗ L′ ≈ L′ ⊗ L

L ⊗ C ≈ C ⊗ L ≈ L

L ⊗ L∗ ≈ L∗ ⊗ L ≈ C

All the isomorphisms above must be canonical: they do not depend on the choice of a
basis. You may use the following definition for the tensor product of finite-dimensional
vector spaces: V ⊗W = Hom(V ∗,W ).

(2) Let X be a Riemann surface. Show that the set of holomorphic line bundles over X is
a group for the tensor product. (Show that the group structure descends to the set of
isomorphism classes of line bundles).

Exercise 2. Line bundles vs sheaves

Let X be a Riemann surface. Write a complete and detailed proof for the bijective correspon-
dence

{isomorphism classes of line bundles on X } ↔ Ȟ1(X,O∗X ) .

Show moreover that it is a group isomorphism for the appropriate group structure on both sides.

Exercise 3. Néron-Severi group of a Riemann surface

Let X be a compact Riemann surface. Show that

Pic(X )
/
Pic0(X ) ≈ Div(X )

/
Div0(X ) ≈ Z .



Exercise 4. Principal divisors vs degree zero divisors, part 1

Let X be a compact Riemann surface. The goal of this exercise is to show that any principal
divisor has zero degree.

(1) Explain why the goal of the exercise amounts to showing that any meromorphic function f
on a compact Riemann surface has as many zeros as it has poles, counted with multiplicity.

(2) Prove the following Argument principle for open sets of C. Let f be a meromorphic
function on a simply connected open set U ⊆ C and let γ be a positively oriented simple
closed curve in U not going through any zero or pole of f . Denote K the compact set
bounded by γ. Then

1
2iπ

∫
K

f ′(z)
f (z)

dz = ZK ( f ) − PK ( f )

where ZK ( f ) (resp. PK ( f )) is the number of zeros (resp. poles) of f in K , counted with
multiplicity. Hint: use the residue theorem.

(3) Show that the residue at a pole of a meromorphic 1-form on a Riemann surface is well-
defined. On the contrary, illustrate with an example that the residue at a pole of a mero-
morphic function is not well-defined. Note that this is not so surprising: on a Riemann
surface, taking the integral of a function along a curve does not make sense, whereas it
does for a 1-form. So the residue theorem is really about 1-forms, not functions.

(4) You may admit or prove the following Residue theorem for compact Riemann surfaces.
Let ω be a meromorphic 1-form on X (we can also allow isolated essential singularities,
the proof stays the same). Then ∑

p∈X

Resp (ω) = 0 .

Hint: Follow the proof sketched here: https://bit.ly/2SyVyfF.

(5) Conclude by considering the meromorphic 1-form ω =
d f
f .

Exercise 5. Principal divisors vs degree zero divisors, part 2: the case of CP1

The goal of this exercise is to show that the converse of Exercise 4 is true when X = CP1.

(1) Consider a divisor D =
∑

ck [ak : bk ] (we use homogeneous coordinates on CP1). As-
suming D has degree zero, show that the function

f ([z : w]) =
∏
k

(bk z − akw)ck

is a well-defined meromorphic function on X with ( f ) = D. Conclude.

(2) Show that Pic(CP1) ≈ Z.
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Exercise 6. Picard group of CP1

In this exercise, we classify the line bundles over X = CP1.

(1) Using Exercise 5, show that deg: Div(X ) → Z induces a group isomorphism (still abu-
sively denoted deg)

deg: Pic(CP1)
∼
→ Z .

(2) Let us denote by L the tautological line bundle on CP1. We recall that by definition, this
line bundle is given by the projection C2 → C2/ ∼ with C2/ ∼= CP1. In particular, the
line Lp above a point p ∈ CP1 is p itself, seen as a line in C2. Prove carefully that L is
indeed a holomorphic line bundle.

(3) Find a meromorphic section of L. What is the degree of L?

(4) Let us denote O(1) the dual line bundle of L. Show that deg(O(1)) = 1.

(5) Let us denote O(k) the line bundle obtained by taking k tensor products of O(1). For the
negative values of k ∈ Z, we define O(k) as the dual line bundle of O(−k). For k = 0, we
define O(k) as the trivial line bundle. What is the degree of O(k)?

(6) Show that k 7→ O(k) defines an isomorphism from Z to Pic(CP1) and that it is the inverse
of deg: Pic(CP1)

∼
→ Z.

(7) Find a meromorphic 1-form on CP1 and derive the degree of the canonical line bundle K .
Show that K ≈ O(−2).

Exercise 7. Principal divisors vs degree zero divisors, part 3

Let X be a compact Riemann surface. The goal of this exercise is to show that the converse of
Exercise 4 is false unless X = CP1 (cf Exercise 5 for the case X = CP1).

(1) First we need to know that any nonconstant holomorphic map between compact Riemann
surfaces f : X → Y is a branched covering. (You may admit the answers to following
questions if you want to quickly finish the exercise.)

(a) Show that for every p ∈ X , one can find a local coordinate z at p and a local coordi-
nate w at Y such that the function f is written w = zk . The integer k ∈ N is called
the order of f at p. and denoted ordp ( f ).

(b) Show that the map

Y → N

q 7→
∑

p∈ f −1 (y)

ordp ( f )

is locally constant. Where did you use the assumption that X is compact? You
really need it, and not just to say that the sum is finite. Hence, it is constant (Y is
connected). Its value is called the degree of f .
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(c) Show that if f has degree 1 then it is a covering map. You may admit the following
topological lemma: any local homeomorphism between compact, Hausdorff, con-
nected topological spaces is a covering map.

(2) Consider the divisor D = (p) − (p′) on a compact Riemann surface X . Assume that there
exists a meromorphic function f such that D = ( f ). Show that f is a holomorphic map
from X to the Riemann sphere Y = Ĉ of degree 1. Conclude.

Exercise 8. Bounds on dim H0(X,D) in terms of deg D.

Let X be a compact Riemann surface.

(1) Show that if deg D < 0, then dim H0(X,D) = 0.

(2) Show that for any p ∈ X , dim H0(X,D + p) 6 dim H0(X,D). Hint: Call m ∈ Z the order
of D at p. Let f ∈ H0(X,D + p). Write the Laurent expansion of f in a local chart at
p: f (z) = a−m−1z−m−1 + a−m z−m + . . . . Argue that f 7→ a−m−1 is a linear map from
H0(X,D + p) to C with kernel H0(X,D) and conclude.

(3) Show that for any divisor D of nonnegative degree, dim H0(X,D) 6 deg(D). Hint: Write
a proof by induction.

(4) Using the Riemann-Roch theorem, show that

deg(D) + 1 − g 6 dim H0(X,D) 6 deg(D)

The first inequality is called Riemann’s inequality.

Exercise 9. Dimension of H0(X,K2)

Let X be a compact Riemann surface of genus g. Denote by K its canonical bundle; we recall
that deg(K ) = 2g − 2. Denote by K2 the line bundle K ⊗ K (note that as a divisor, one should
write 2K rather than K2). Sections of K2 are called holomorphic quadratic differentials, they
look like ϕ(z) dz2 (where ϕ is a holomorphic function) in a local complex coordinate z. The
goal of this exercise is to compute dim H0(X,K2).

(1) Write the Riemann-Roch theorem for the divisor 2K .

(2) Conclude that dim H0(X,K2) = 3g − 3 when g > 1.

(3) Show that if g = 1, then dim H0(X,−K ) = 1. Conclude that dim H0(X,K2) = 1.

(4) Show that any holomorphic vector field on the Riemann sphere is of the form P(z) ∂
∂z

where P is a polynomial of degree 6 2. Derive that if g = 0, then dim H0(X,−K ) = 3.
Conclude that dim H0(X,K2) = 0.

(5) One can show that the tangent space at X to the moduli space of Riemann surfaces of genus
g is TXMg = H0(X,K2). In particular, the complex dimension ofMg is dim H0(X,K2).
Are the results you found in the two previous questions consistent with what you know
aboutMg for g = 0 and g = 1?
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