Exercises for Chapter 3: Review of manifolds

Exercise 1. The manifold S^1

In this exercise we denote $S^1 = \mathbb{R}/\mathbb{Z}$.

- (1) Recall what the topology is on S^1 .
- (2) Show that there is a unique smooth structure on S^1 such that the canonical projection $\pi \colon \mathbb{R} \to \mathbb{Z}$ is smooth.
- (3) Show that $t \mapsto e^{2\pi i t}$ defines a smooth embedding of S^1 in $\mathbb{C} \approx \mathbb{R}^2$.
- (4) Find an explicit identification between the tangent bundle TS^1 and the cylinder $S^1 \times \mathbb{R}$.
- (5) Let $f(z) = z^2$ for $z \in \mathbb{C}$. Show that f induces a smooth map $S^1 \to S^1$. Describe df.

Exercise 2. Classification of all 1-dimensional manifolds (*)

Classify all 1-dimensional manifolds. *Hint: try to show that any connected* 1-*dimensional manifold is homeomorphic to* \mathbb{R} *or* S^1 . *What about if we work in the smooth category?*

Exercise 3. Local coordinates and local frames

Let *M* be a smooth manifold.

- (1) Recall what a system of local coordinates (x^1, \ldots, x^n) is.
- (2) Given a system of local coordinates $(x^1, ..., x^n)$, recall the definition of the coordinate 1-forms $dx^1, ..., dx^n$ and the coordinate vector fields $\frac{\partial}{\partial x^i}$.
- (3) By definition, a *local frame* consists of locally defined vector fields X_1, \ldots, X_n that make up a basis of the tangent space at every point. Is it true that near any point, there exists a local frame of vector fields X_1, \ldots, X_n that commute, meaning that the Lie bracket of any two of them is zero? *Hint: take coordinate vector fields*.
- (4) (*) Assume that *M* is equipped with a Riemannian metric. Is it true that near any point, there exists a local frame of vector fields X_1, \ldots, X_n that is everywhere orthonormal? Does there exist such a local frame consisting of coordinate vector fields?

Exercise 4. Poincaré duality

Let M be a smooth closed connected oriented manifold of dimension n.

- (1) What is the Betti number b_0 equal to?
- (2) Explain why the map

$$\int_M \colon H^n(M,\mathbb{R}) \to \mathbb{R}$$
$$[\alpha] \mapsto \int_M \alpha$$

is well-defined. We will accept without proof that \int_M is a linear isomorphism. Note: it is a consequence of the Poincaré lemma, it is not hard to prove using partitions of unity, feel free to try it.

- (3) What is the Betti number b_n equal to?
- (4) Let $k, l \in \{0, ..., n\}$. Show that the map

$$B: H^{k}(M, \mathbb{R}) \times H^{l}(M, \mathbb{R}) \to H^{k+l}(M, \mathbb{R})$$
$$([\alpha], [\beta]) \mapsto [\alpha \land \beta]$$

is well-defined and bilinear. We accept without proof that *B* is also nondegenerate when k + l = n: if $B([\alpha], [\beta]) = 0$ for all $[\beta]$, then $[\alpha] = 0$. This fact follows from Hodge theory: one can take $\beta = *\alpha$ where * is the Hodge star.

- (5) Derive from the previous questions that for all $k \in \{0, ..., n\}$, $H^k(M, \mathbb{R})$ is canonically isomorphic to $H^{n-k}(M, \mathbb{R})$. What can you say about the Betti numbers b_k and b_{n-k} ?
- (6) Show that if M is an odd-dimensional smooth closed connected oriented manifold, then $\chi(M) = 0$.

Exercise 5. Cartan's magic formula (*)

Let *M* be a smooth manifold. Cartan's formula says that, for any vector field *X* and for any differential form ω :

$$\mathcal{L}_X(\omega) = i_X(\mathrm{d}\omega) + \mathrm{d}(i_X\omega)$$
.

- (1) Make sure that you understand the formula. If necessary, lookup *Lie derivative* and *interior product*. Check that both sides of the Cartan formula are the same type of object.
- (2) Let us now prove the formula. First show that it is true if ω is a 0-form and if ω is an exact 1-form.
- (3) Consider the algebra of differential forms $\Omega(M, \mathbb{R})$ (for the wedge product). Check that for a fixed vector field *X*, both sides of Cartan's formula are derivations on $\Omega(M, \mathbb{R})$. Conclude.