Manifolds - Lecture 2/13 . R^m topo manifold of dim m Examples $\mathcal{U} \subseteq \mathbb{R}^m$ · More generally, M topological manifold of dimension m then any open subset of M is a In particular, the connected components of any manifold are manifolds of the same dim e "surface" = <u>connected</u> 2-dimensional topological manifold. f: ICR - R be a continuous function Let $f(x,y) \in \mathbb{R}^2$ $| y = f(x) f \subseteq \mathbb{R}^2$ graph y,= f(x) φι q is a topological manifold of dimension 1. Proof: We only use one chart: (u, φ) 1 1 $\begin{array}{c} \downarrow \\ \P: \Gamma \longrightarrow \mathbb{R} \end{array}$ (x,y) +> x

Wed to show: If is a horner. Clearly, I is injectic and continuous
Continuous inverse
$$\Xi \longrightarrow P_{n-1}$$
 P_{n-2} $P_{$

. Connected sums $M = M_{1} \sqcup M_{2}$ M_A and M₂ * gluing " connected sum M2= M1 = I remare bull remove a ball £_____ ij s manifolds with boundary **,** · Quotient manifolds by group actions Definition: let G be a group acting on a topological space X. . The action is called faithful : $\forall g \in G \ (\forall x \ g \cdot x = x) => g = e$ The action is called free: $\forall g \neq e \in G \quad \forall x \in X \quad g \cdot x \neq x$. The action is called an action by homeos if $\forall g \in G$ (X -> X) is a homeo . The action is called properly discontinuous : VKGX, g.KAK= \$ for all but finitely many gEG. K g. K

Remark: Here X is assumed Hausdorff and locally compact. (e.g. X is a topo. manifold) Theorem let G be a group aching on a topo manifold M. If the action is free and properly discontinuous, then M/G is a manifold and $\pi: M \longrightarrow M/G$ is a local homeo. (Z acts freely and properly discontinuously on R) example: R/Z = S' $\mathbb{Z}^m \subseteq \mathbb{R}^m$ Z^m acts freely and properly discontinuously on R^m R^m/Z^m ≈ T^m , R² R²/Z² ≈ T² (overing maps (algebraic topology). Proof of theorem above : 1. Show that if $G \subseteq X$ is a free and wandering action by homeos then $\pi: X \longrightarrow X/G$ is a local homeo. $\forall x \in X \exists U \exists x \{g \in G \ g U \cap U \neq \emptyset\}$ is finite 2. Show that if G c, X is a properly discontinuous action by homeons, then X/G is Hausdorff. 3. Conclude.

. is called <u>6-compact</u> if it is a countable union of compact sets. · admits an exhaustion by compact sets if there exists (Kn)nEN requerce of compact sets Kn = int (Kn+1) example R^m = UKn $K_n = B(o, n)$ lemma: Any second - countable, locally compact Hausdonff space admits an exhaustion by compact sets. Definition A topo space X is called paracompact if any open cover of X admits a locally finite refinement. • Open cover: X = U Ui ieI • Refinement : $X = \bigcup V_i$: $\forall j \exists i \quad V_j \subseteq U_i$ ie J · locally finite: Vx EX JUDa such that U meets finitely open many U; 's. Theorem: A second - countable, locally, Hausdorff topo space X is always paracompact. Compact is always paracompact. example: Topological manifolds (with or without boundary).