Exercise Sheet 5 (Chapter 7)

Chapter 7

Exercise 1. Characterization of conformal maps of \mathbb{R}^n .

Let *V*, *W* be Euclidean vector spaces and $\Omega \subseteq V$ be an open set. Consider an immersion $f: \Omega \to V$.

- (1) Let γ_1 and γ_2 be two regular curves in Ω that intersect at $p \in \Omega$. Denote v_i the tangent vector to γ_i at p. Show that $f \circ \gamma_1$ and $f \circ \gamma_2$ are two regular curves in W that intersect at f(p), and that the tangent vector to γ_i at f(p) is $df(v_i)$.
- (2) Prove Proposition 7.6: Let $f: \Omega \subseteq V \rightarrow W = V$. Then f is conformal if and only if f is differentiable and df_x is a linear similarity for all $x \in \Omega$.
- (3) Prove Proposition 7.7: $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ is conformal if and only if f is holomorphic or antiholomorphic and f' does not vanish. (This question requires basic knowledge of holomorphic functions.)

Exercise 2. Characterization of conformal maps between Riemannian manifolds

Let (M, g) and (N, h) be Riemannian manifolds.

- (1) Let $f: V \to W$ be a linear map between vector spaces. For any bilinear form b on W, we define the bilinear form f^*b on V by $f^*b(u, v) := b(f(u), f(v))$. Show that if b is an inner product, f^*b is an inner product if and only if f is injective.
- (2) Let $f: (V, \langle \cdot, \cdot \rangle_V) \to (W, \langle \cdot, \cdot \rangle_W)$ be a linear map between Euclidean vector spaces. Show that f is angle-preserving if and only if there exists $\lambda \in \mathbb{R}_{>0}$ such that $f^* \langle \cdot, \cdot \rangle_W = \lambda \langle \cdot, \cdot \rangle_V$.
- (3) Let $f: (M,g) \to (N,h)$ be a differentiable map between Riemannian manifolds. How do you define the pullback f^*h ? Show that f is conformal if and only if f^*h is conformal to g.

Exercise 3. Full vs restricted Möbius group

Denote $M\"ob^+(S^n)$ the restricted Möbius group of S^n , consisting of orientation-preserving Möbius transformations.

- (1) Show that $\text{M\"ob}^+(S^n)$ is an index 2 normal subgroup of $\text{M\"ob}(S^n)$.
- (2) Show that $M\"ob^+(S^n)$ is the identity component of $M\"ob(S^n)$.
- (3) Show the same results for $M\"{o}b^+(B^n) < M\"{o}b(B^n)$ and $M\"{o}b^+(\widehat{\mathbb{R}^n}) < M\"{o}b(\widehat{\mathbb{R}^n})$.

Exercise 4. Inversions

(1) Let S = S(a, r) be the sphere of center *a* and radius *r* in \mathbb{R}^n . What is its Cartesian equation? Show that the inversion through *S* has the expression:

$$f(x) = a + \frac{r^2}{\|x - a\|^2} (x - a).$$

(2) Let $P \subseteq \mathbb{R}^n$ be an affine hyperplane. Denote v a nonzero normal vector and $\lambda \in \mathbb{R}$ such that $x_0 = \lambda v$ belongs to P (why is λ well-defined?). Show that the Cartesian equation of P is $\langle x - x_0, v \rangle = 0$. Show that the inversion through P has the expression:

$$f(x) = x - 2\langle x - x_0, v \rangle \frac{v}{\|v\|^2}$$
.

- (3) Show that the results of (2) may be obtained by taking the limit of (1) with $a = x_0 + tv$ and r = t ||v|| when $t \to +\infty$.
- (4) Recover the result that any finite product of inversions may be written

$$f(x) = b + \frac{\alpha A(x-a)}{|x-a|^{\varepsilon}}$$

where $a, b \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, $A \in O(n)$, and $\varepsilon \in \{0, 2\}$.

Exercise 5. More inversions

- (1) Show that any translation $\mathbb{R}^n \to \mathbb{R}^n$ can be written as a product of two reflections. Could you expect such a result?
- (2) Show that any linear similarity $\mathbb{R}^n \to \mathbb{R}^n$ can be written as a product of two inversions. Could you expect such a result?

Exercise 6. Möbius transformations vs Euclidean similarities

Show that the subgroup of $M\ddot{o}b(\widehat{\mathbb{R}^n})$ fixing ∞ is isomorphic to the group of affine similarities of \mathbb{R}^n .

Exercise 7. Stereographic projection

- (1) Recover the expression of the standard stereographic projection $s: S^n \to \widehat{\mathbb{R}^n}$.
- (2) Recover that the stereographic projection is the restriction to S^n of an inversion of \mathbb{R}^{n+1} . Derive that *s* is a conformal equivalence.
- (3) Recover that *s* is conformal by direct computation: compute the pullback Riemannian metric s^*g on $S^n \{N\}$, where *g* is the Euclidean metric on \mathbb{R}^n .

Exercise 8. Poincaré extension

- (1) Find the Poincaré extension of an inversion of $\widehat{\mathbb{R}^n}$.
- (2) Write a new proof of the existence of the Poincaré extension of a Möbius transformation. Can you extend your argument to also prove uniqueness?

Exercise 9. Möbius transformations of $\hat{\mathbb{C}}$

The goal of this exercise is to show Theorem 7.43: A map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is an Möbius transformation if and only if it is fractional linear (orientation-preserving case) or its conjugate is fractional linear (orientation-reserving case).

- (1) Argue that it is enough to show that f is an orientation-preserving Möbius transformation if and only if it is fractional linear.
- (2) (a) Show that the inversion through the sphere S(a, r) can be written $f(z) = a + \frac{r^2}{\bar{z} \bar{a}}$.
 - (b) Show that the inversion through the line with normal vector v going through the point $z_0 = \lambda v$ can be written $f(z) = 2z_0 \frac{v}{v}\bar{z}$.
 - (c) Show that the composition of any two inversions is fractional linear. Conclude that any Möbius transformation of $\hat{\mathbb{C}}$ is fractional linear.
- (3) (a) Show that any fractional linear transformation may be written as a composition of maps of the form: $z \mapsto z + b$ where $b \in \mathbb{C}$, $z \mapsto az$ where $a \in \mathbb{C}^*$, and $z \mapsto \frac{1}{z}$.
 - (b) Show that the three maps of the previous question may be written as a product of inversions.
 - (c) Conclude that any fractional linear transformation is a Möbius transformation of $\hat{\mathbb{C}}$.

Exercise 10. The group PSU(1, 1)

(1) Recall the definition of SU(1, 1) and show that

$$\operatorname{SU}(1,1) = \left\{ \begin{bmatrix} a & b \\ \bar{b} & \bar{a} \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{C}) \mid |a|^2 - |b|^2 = 1 \right\}$$

- (2) Show that $U(1,1) = \{uA \mid |u| = 1, A \in SU(1,1)\}$. Derive that $PU(1,1) \approx PSU(1,1)$.
- (3) Show that the action of any element of U(1, 1) by fractional linear transformation can be written

$$z \mapsto u \frac{z-a}{1-\bar{a}z}$$

where |u| = 1 and $a \in \mathbb{D}$.

- (4) Recover from the previous question that the action of U(1, 1) on $\hat{\mathbb{C}}$ preserves \mathbb{D} .
- (5) Prove that conversely, a fractional linear transformation preserving \mathbb{D} coincides with the action of an element of U(1, 1).
- (6) Recall why $\text{M\"ob}^+(\mathbb{D}) \approx \text{Aut}(\mathbb{D}) \approx \text{PSU}(1,1)$.

Exercise 11. The group $PSL(2, \mathbb{R})$

- (1) Recover by direct proof that the Cayley transform $c(z) = i \frac{z-i}{z+i}$ defines a biholomorphism from \mathbb{H} to \mathbb{D} .
- (2) Recover by direct proof that the fractional linear action of $M \in SL(2, \mathbb{C})$ on \hat{C} preserves \mathbb{H} if and only if *M* has real coefficients.
- (3) Recover by direct proof that $SL(2,\mathbb{R}) = C^{-1}(SU(1,1))C$ where $C = \begin{bmatrix} i & 1 \\ 1 & i \end{bmatrix}$. Recall the connection between this result and the previous question.

(4) Show that there are natural "inclusions"

$$PSL(2,\mathbb{R}) \hookrightarrow PGL(2,\mathbb{R}) \hookrightarrow PGL(2,\mathbb{C})$$
$$PSL(2,\mathbb{R}) \hookrightarrow PSL(2,\mathbb{C}) \xrightarrow{\sim} PGL(2,\mathbb{C})$$

How would you describe the difference between $PSL(2, \mathbb{R})$ and $PGL(2, \mathbb{R})$?

Exercise 12. The one-dimensional case

Throughout the chapter, we discussed conformal maps and Möbius transformations of $\widehat{\mathbb{R}^n}$, S^n , H^n , B^n for $n \ge 2$. What about the case n = 1? Work out as many details as possible about what still works and what breaks.