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Exercise Sheet 2 (Chapters 3 and 4)

Chapter 3

Exercise 1. Characterization of orthogonal decompositions

Let (V, ¢) be a finite-dimensional vector space equipped with a symmetric bilinear form. Let W C V
be a subspace.

(1) IsdimW + dim W+ > dim V always true? Is W + W+ = V always true?

(2) Recall the proof that V = W & W+ if and only if ¢|w is nondegenerate.

Exercise 2. Orthogonal subspace to a timelike vector

Prove Proposition 3.8 (copied below) directly, without using the results of § 3.1.

Proposition. Let V be a Minkowski space. If v € V is timelike, then v* is a spacelike hyperplane,
andV =Ry @ v,

Exercise 3. Time orientation-preserving criterion

Let M be a matrix in O(n,1). Show that f is time orientation-preserving if and only if the
bottom-right coefficient of M is positive.

Exercise 4. Lorentz boosts and structure of the Lorentz group

(1) Show that any element of SO*(1,1) can uniquely be written:
y quely

cosht sinht
sinht cosht

with r € R. Show that SO*(1, 1) is connected.

(2) Anelement f € SO*(n,1) is called a Lorentz boost if the set of fixed points of f contains a
spacelike subspace of codimension 2. Show that in a suitable basis, a Lorentz boost looks

like:
] o
0

coshzsinh ¢
sinh zcosh ¢

Argue that any Lorentz boost is in the connected component of the identity in O(n, 1).

(3) Show that for any two unit timelike vectors u# and v, there exists a unique Lorentz boost f
such that f(u) = v.



(4) Show that any matrix M € O*(n,1) can uniquely be written as M = QB, where B is the
matrix of a Lorentz boost and Q is a matrix of the form

)

0 1

with Q0 € O(n).
(5) Recall why SO(n) is connected (optional) and conclude that SO™(n, 1) is connected.

Exercise 5. Connected components of the Lorentz group and projective Lorentz group
We recall that the subgroup SO*(n, 1) € O(n, 1) is connected (see Exercise 4).

(1) Show that SO*(n, 1) is the identity component of O(n, 1). Show that it is a normal subgroup.
Show that the quotient O(n, 1)/SO*(n, 1) is isomorphic to the Klein four-group.

(2) Show that the the center of O(n, 1) is equal to the subgroup of homotheties (scalar multiples
of the identity) in O(n, 1), that is, Z(O(n, 1)) = {141}

(3) Let PO(n,1) := O(n,1)/Z(0(n, 1)) = O(n,1)/{+1,+1} denote the projective Lorentz group.
Can you identify it to a subgroup of O(n, 1)?

Chapter 4

Exercise 1. Isometries of the hyperboloid

The goal of this exercise is to dermine the group of isometries of hyperbolic space in the hyperboloid
model, in particular to provide a careful proof of Theorem 4.7.

Let M = R™! be Minkowski space, denote H the hyperboloid of two sheets H = {v € M : (v,v) =
—1}, and H™* the upper sheet (with x;,.; > 0.)

(1) The goal of this question is to show that O*(n, 1) acts by isometries on H™*.
(a) Show that the action of O(n, 1) on M leaves H invariant.
(b) Show that O(n, 1) acts on H by Riemannian isometries.
(c) Show that f € O(n, 1) preserves H* if and only if f € O*(n,1). Conclude that
O"(n,1) C Isom(H™).
(d) Optional: Show that f € O*(n,1) is orientation-preserving on H™* if and only if
f € SO*(n,1). Conclude that SO*(n,1) C Isom*(H™).

(2) The goal of this question is to show that, conversely, any isometry of H™ is induced by some
element of O*(n, 1) acting on M.

(a) Show that the action of O*(n, 1) on H* is transitive. Hint: use Exercise 4 (3).

(b) Derive from the previous question that it is enough to show that any isometry of H™*
fixing some point is induced by some element of O(n, 1) acting on M fixing that point.

(c) Identify the subgroup K of O(n,1) fixing the point vy = (0,...,0,1). Show that the
induced action of K in T\, H™ is transitive on the set of orthonormal bases of T,,, H™.

(d) Let f be an isometry of H™ fixing vo. Show that f is completely determined by its
derivative at v.

(e) Conclude that Isom(H™*) = O*(n, 1) and Isom*(H*) = SO*(n, 1).



Exercise 2. Distance between geodesics on the hyperboloid

We denote as usual H* C R™! the upper sheet of the hyperboloid in Minkowski space. Let p € H™*
and let v,w € T, H* be an orthonormal pair of tangent vectors. It is a general fact of Riemannian
geometry that the distance between the geodesics ,,(¢) and 7, (¢) satisfies

d OOyl =27 = 3K 1+ 06)

ast — 0, where K denotes the sectional curvature of the plane spanned by v and w. (See § 2.3.3
for more information.)

(1) Show that d (y,(2), ¥, (t)) = arcosh (cosh2 t).

(2) Find the Taylor expansion of arcosh(cosh? x) to order 3 as x — 0.
(3) Conclude that K = —1.
(4) Show likewise that H ;g has constant sectional curvature —%.
Exercise 3. Jacobi fields on the hyperboloid
We denote as usual H{* C R"! the upper sheet of the hyperboloid in Minkowski space.
(1) Letv,w € T, H" be an orthonormal pair. Let us define y: R xR — H™" by

v(s,t) = cosh(t)p + sinh(z) [cos(s)v + sin(s)w] .

Show that:
(i) 7y(s,-) is a unit geodesic for all s € R,

(i) ¥(0,) = yy.
Such a family v is called a variation of geodesics.

(2) Let J(r) = %|s:07(s, t). Check that J(0) = 0 and J’(0) = w. This is a normal Jacobi field.

(3) We admit the following fact: if J(¢) is a normal Jacobi field along a unit geodesic and satisfies
J(t) + k(t)J(r) = 0, then the sectional curvature of the plane spanned by y’(¢) and J(¢) is
equal to k(¢) for all > 0!. Show that the plane spanned by v and w has curvature —1.

(4) Conclude that " has constant sectional curvature —1.
(5) Show similarly that the hyperboloid of radius R has constant sectional curvature —%.
Exercise 4. Horocycles on the hyperboloid

Let P be an affine plane in Minkowski space R>! whose underlying vector space Pisthe orthogonal
of an isotropic vector n. The curve H™* N P is called a horocycle.

(1) Show that P = {p € R>!: (p,n) = ¢} where c is a constant.
(2) Optional: Show that any two horocycles are congruent.
(3) Show that any horocycle is a parabola in R>!.

(4) (*) Show that all the geodesics in H™ perpendicular to a given horocycle are asymptotic.

IStudents who know Riemannian geometry should recall why this is true. It follows from the Jacobi equation
J"(6) + RU @),y )y (1) = 0.



Exercise 5. Comparing hyperboloids

We denote (H},gr) the upper sheet of the hyperboloid of radius R in R™! equipped with its
Riemannian metric,

(1) Find a natural map f: H — H;.
(2) Compare gr and f*g;. Recover the results of § 4.7.

Exercise 6. Euclid’s fifth postulate for the hyperboloid

Does Euclid’s fifth postulate hold for the hyperboloid model? Compute the angle of parallelism as
a function of the distance a (see Figure 1.3).



