Exercise Sheet 2 (Chapters 3 and 4)

Chapter 3

Exercise 1. Characterization of orthogonal decompositions

Let (V, φ) be a finite-dimensional vector space equipped with a symmetric bilinear form. Let $W \subseteq V$ be a subspace.

- (1) Is dim $W + \dim W^{\perp} \ge \dim V$ always true? Is $W + W^{\perp} = V$ always true?
- (2) Recall the proof that $V = W \oplus W^{\perp}$ if and only if $\varphi_{|W}$ is nondegenerate.

Exercise 2. Orthogonal subspace to a timelike vector

Prove Proposition 3.8 (copied below) directly, without using the results of § 3.1.

Proposition. Let V be a Minkowski space. If $v \in V$ is timelike, then v^{\perp} is a spacelike hyperplane, and $V = \mathbb{R}v \oplus v^{\perp}$.

Exercise 3. Time orientation-preserving criterion

Let *M* be a matrix in O(n, 1). Show that *f* is time orientation-preserving if and only if the bottom-right coefficient of *M* is positive.

Exercise 4. Lorentz boosts and structure of the Lorentz group

(1) Show that any element of $SO^+(1, 1)$ can uniquely be written:

$$\left(\begin{array}{c} \cosh t & \sinh t \\ \sinh t & \cosh t \end{array}\right)$$

with $t \in \mathbb{R}$. Show that SO⁺(1, 1) is connected.

(2) An element $f \in SO^+(n, 1)$ is called a *Lorentz boost* if the set of fixed points of f contains a spacelike subspace of codimension 2. Show that in a suitable basis, a Lorentz boost looks like:

$$\begin{array}{c|c}
I_{n-1} & 0 \\
\hline 0 & \cosh t \sinh t \\ \sinh t \cosh t \\
\end{array}$$

Argue that any Lorentz boost is in the connected component of the identity in O(n, 1).

(3) Show that for any two unit timelike vectors u and v, there exists a unique Lorentz boost f such that f(u) = v.

(4) Show that any matrix $M \in O^+(n, 1)$ can uniquely be written as M = QB, where B is the matrix of a Lorentz boost and Q is a matrix of the form

with $Q_1 \in O(n)$.

(5) Recall why SO(*n*) is connected (optional) and conclude that SO⁺(*n*, 1) is connected.

Exercise 5. Connected components of the Lorentz group and projective Lorentz group

We recall that the subgroup $SO^+(n, 1) \subseteq O(n, 1)$ is connected (see Exercise 4).

- (1) Show that $SO^+(n, 1)$ is the identity component of O(n, 1). Show that it is a normal subgroup. Show that the quotient $O(n, 1)/SO^+(n, 1)$ is isomorphic to the Klein four-group.
- (2) Show that the center of O(n, 1) is equal to the subgroup of homotheties (scalar multiples of the identity) in O(n, 1), that is, $Z(O(n, 1)) = \{\pm I_{n+1}\}$.
- (3) Let $PO(n, 1) := O(n, 1)/Z(O(n, 1)) = O(n, 1)/\{\pm I_{n+1}\}$ denote the projective Lorentz group. Can you identify it to a subgroup of O(n, 1)?

Chapter 4

Exercise 1. Isometries of the hyperboloid

The goal of this exercise is to dermine the group of isometries of hyperbolic space in the hyperboloid model, in particular to provide a careful proof of Theorem 4.7.

Let $M = \mathbb{R}^{n,1}$ be Minkowski space, denote \mathcal{H} the hyperboloid of two sheets $\mathcal{H} = \{v \in M : \langle v, v \rangle = -1\}$, and \mathcal{H}^+ the upper sheet (with $x_{n+1} > 0$.)

- (1) The goal of this question is to show that $O^+(n, 1)$ acts by isometries on \mathcal{H}^+ .
 - (a) Show that the action of O(n, 1) on *M* leaves \mathcal{H} invariant.
 - (b) Show that O(n, 1) acts on \mathcal{H} by Riemannian isometries.
 - (c) Show that $f \in O(n, 1)$ preserves \mathcal{H}^+ if and only if $f \in O^+(n, 1)$. Conclude that $O^+(n, 1) \subseteq \text{Isom}(\mathcal{H}^+)$.
 - (d) Optional: Show that $f \in O^+(n, 1)$ is orientation-preserving on \mathcal{H}^+ if and only if $f \in SO^+(n, 1)$. Conclude that $SO^+(n, 1) \subseteq Isom^+(\mathcal{H}^+)$.
- (2) The goal of this question is to show that, conversely, any isometry of \mathcal{H}^+ is induced by some element of $O^+(n, 1)$ acting on M.
 - (a) Show that the action of $O^+(n, 1)$ on \mathcal{H}^+ is transitive. *Hint: use Exercise 4 (3)*.
 - (b) Derive from the previous question that it is enough to show that any isometry of \mathcal{H}^+ fixing some point is induced by some element of O(n, 1) acting on *M* fixing that point.
 - (c) Identify the subgroup K of O(n, 1) fixing the point $v_0 = (0, ..., 0, 1)$. Show that the induced action of K in $T_{v_0} \mathcal{H}^+$ is transitive on the set of orthonormal bases of $T_{v_0} \mathcal{H}^+$.
 - (d) Let f be an isometry of \mathcal{H}^+ fixing v_0 . Show that f is completely determined by its derivative at v_0 .
 - (e) Conclude that $\text{Isom}(\mathcal{H}^+) = O^+(n, 1)$ and $\text{Isom}^+(\mathcal{H}^+) = SO^+(n, 1)$.

Exercise 2. Distance between geodesics on the hyperboloid

We denote as usual $\mathcal{H}^+ \subseteq \mathbb{R}^{n,1}$ the upper sheet of the hyperboloid in Minkowski space. Let $p \in \mathcal{H}^+$ and let $v, w \in T_p \mathcal{H}^+$ be an orthonormal pair of tangent vectors. It is a general fact of Riemannian geometry that the distance between the geodesics $\gamma_v(t)$ and $\gamma_w(t)$ satisfies

$$d(\gamma_{v}(t), \gamma_{w}(t))^{2} = 2t^{2} - \frac{1}{3}K t^{4} + O(t^{5})$$

as $t \to 0$, where *K* denotes the sectional curvature of the plane spanned by *v* and *w*. (See § 2.3.3 for more information.)

- (1) Show that $d(\gamma_v(t), \gamma_w(t)) = \operatorname{arcosh}\left(\cosh^2 t\right)$.
- (2) Find the Taylor expansion of $\operatorname{arcosh}(\cosh^2 x)$ to order 3 as $x \to 0$.
- (3) Conclude that K = -1.
- (4) Show likewise that \mathcal{H}_R^+ has constant sectional curvature $-\frac{1}{R^2}$.

Exercise 3. Jacobi fields on the hyperboloid

We denote as usual $\mathcal{H}^+ \subseteq \mathbb{R}^{n,1}$ the upper sheet of the hyperboloid in Minkowski space.

(1) Let $v, w \in T_p \mathcal{H}^+$ be an orthonormal pair. Let us define $\gamma \colon \mathbb{R} \times \mathbb{R} \to \mathcal{H}^+$ by

 $\gamma(s,t) = \cosh(t)p + \sinh(t) \left[\cos(s)v + \sin(s)w\right].$

Show that:

- (i) $\gamma(s, \cdot)$ is a unit geodesic for all $s \in \mathbb{R}$,
- (ii) $\gamma(0, \cdot) = \gamma_v$.

Such a family γ is called a *variation of geodesics*.

- (2) Let $J(t) = \frac{\partial}{\partial s}|_{s=0} \gamma(s,t)$. Check that J(0) = 0 and J'(0) = w. This is a normal Jacobi field.
- (3) We admit the following fact: if J(t) is a normal Jacobi field along a unit geodesic and satisfies J''(t) + k(t)J(t) = 0, then the sectional curvature of the plane spanned by $\gamma'(t)$ and J(t) is equal to k(t) for all $t > 0^1$. Show that the plane spanned by v and w has curvature -1.
- (4) Conclude that \mathcal{H}^+ has constant sectional curvature -1.
- (5) Show similarly that the hyperboloid of radius *R* has constant sectional curvature $-\frac{1}{R^2}$.

Exercise 4. Horocycles on the hyperboloid

Let *P* be an affine plane in Minkowski space $\mathbb{R}^{2,1}$ whose underlying vector space \vec{P} is the orthogonal of an isotropic vector *n*. The curve $\mathcal{H}^+ \cap P$ is called a *horocycle*.

- (1) Show that $P = \{p \in \mathbb{R}^{2,1} : \langle p, n \rangle = c\}$ where *c* is a constant.
- (2) Optional: Show that any two horocycles are congruent.
- (3) Show that any horocycle is a parabola in $\mathbb{R}^{2,1}$.
- (4) (*) Show that all the geodesics in \mathcal{H}^+ perpendicular to a given horocycle are asymptotic.

¹Students who know Riemannian geometry should recall why this is true. It follows from the Jacobi equation $J''(t) + R(J(t), \gamma'(t))\gamma'(t) = 0.$

Exercise 5. Comparing hyperboloids

We denote (\mathcal{H}_R^+, g_R) the upper sheet of the hyperboloid of radius R in $\mathbb{R}^{n,1}$ equipped with its Riemannian metric,

- (1) Find a natural map $f: \mathcal{H}_R^+ \to \mathcal{H}_1^+$.
- (2) Compare g_R and f^*g_1 . Recover the results of § 4.7.

Exercise 6. Euclid's fifth postulate for the hyperboloid

Does Euclid's fifth postulate hold for the hyperboloid model? Compute the angle of parallelism as a function of the distance a (see Figure 1.3).