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Exercise 1. Full Einstein-Hilbert functional
Let M be a compact orientable smooth manifold.

(1) Recall that in the vacuum and with no cosmological constant, the Einstein-Hilbert functional is:

1
S(g) = TKLSng

where g is any semi-Riemannian metric and we denote by S, and v, the scalar curvature and
volume form of g, and « = S’Ct—f = 8 is a constant. Recall why the Euler-Lagrange equation for

this action is Ric —%Sg =0.

(2) In the presence of a cosmological constant A € R, the Einstein-Hilbert functional is

S(g) = %(/M(sg —2A) v, .

Show that the Euler-Lagrange equation is Ric —%S g+Ag=0.

(3) (*) The presence of matter is encoded by a smooth real-valued function Ly(g, x) which depends
on g and x € M (the Einstein-Hilbert Lagrangian). In this case the E-H functional is

1
s = [ [2—<Sg —2A)+£M] v (M
M K
Show that the Euler-Lagrange equation is

1
RiC—ESg + Ag =«T

where T = -2 ggL,}‘ﬂ + LMmguv is the stress-energy tensor. (Equation (1) is called Einstein’s field

equations.) How to interpret a solution of this equation?

Exercise 2. Second variation of the Einstein-Hilbert functional

Let g be a critical point of the Einstein-Hilbert functional S(g) = /M Sg Vg, i.e. a Ricci-flat metric.
The second variation of the E-H functional in the direction of a symmetric covariant 2-tensor 4 is

Sy(h) = %hZOS(g +th).

(1) Show that S has no strict local extrema by consider constant scaling of the metric . For this reason,
we now only consider variations which preserve the total volume.

(2) Show that Diff(M) naturally acts on metrics by pullback and that S is constant in restriction to
any orbit. Conclude that S;'(h) = 0 if & is tangent to the Diff(M)-orbit through g. Describe such
tensors A.

(3) Consider the conformal class of g, i.e. the space of metrics of the form fg for some smooth
function f: M — (0,+o0). Show that tangent deformations to this space are of the form & = fg
for some smooth function f: M — R, and the infintesimal variation preserves volume if and only
if fM fvg =0. (*) For such h, show that the second variation is Sy'(h) = —W fM fAfv,.
Conclude that g is a strict local minimum of § in restriction to such conformal deformations.



Exercise 3. Hodge star, codifferential, divergence, and Hodge Laplacian
Let (M, g) be a compact oriented semi-Riemannian manifold of dimension 7.

(1) Consider a fixed tangent space V = T, M with inner product g, = (+,+). Show that there is a natural
inner product in AKV*. (First define an inner product in V*, then in the space of k-multilinear
maps.) We define an inner product on QX(M, E) by (@, B), 2 = fM (a,B) vg.

(2) The Hodge star is the operation *: AKV* — A" *V* characterized by a A *8 = (a, B)vg.
(i) Show that = is well-defined and express it using an orthonormal frame of V.
(ii) Show that *1 = v.
(iii) Show that the Hodge star is a linear isometry: (xa,*8) = {(a, B8).
(iv) Show that the Hodge star is an involution up to sign: # % @ = (—1)k(r—k)+index(g)
(3) Define the codifferential d* := (—1)"k-D+1+index(g) ;. .
(i) Show that d* is a linear map : Q%(M,R) — Q*"1(M,R) for any k € {0,...,n}.
(i) Check thatd* o d* = 0.
(iii) Show that d* is the formal adjoint of the differential d: (da, 8);2 = {(@,d"B);:.
(4) The divergence of a vector field X is the function div X defined by: d(ixve) = (div X)v, where
ixvg € Q" 1(M,R) is the contraction of X against v,.
(i) Show thatdivX = —d*X.
(ii) Prove the divergence theorem: f iy (divX)ve = 0.

(5) The Hodge Laplacian is the operator A := d*d + dd*.
(i) Show that A is an endomorphism of QX(M,R) for any k € {0,...,n}.
(ii) Show that on Q°(M,R), the Hodge Laplacian is equal to minus the Laplace-Beltrami operator
defined by Af = div(grad f).
(iii) Show that if g is Riemannian, the Hodge Laplacian is a nonnegative operator in the sense
that (A, a);» > 0 and that show that (Aa,a);» = 0 if and only if Ao = 0. Show that « is
harmonic (Aa = 0) iff « is closed and co-closed (da = d*a = 0).

Exercise 4. Killing fields

Let (M, g) be a compact semi-Riemannian manifold. A smooth vector field X is called a Killing fied if
Lxg =0, where L denotes the Lie derivative.

(1) Recall the definition(s) of the Lie derivative.

(2) Show that X is a Killing field if and only if the flow of X preserves g: the diffeomorphism ¢ is
an isometry for all z. Why did we assume M is compact?

(3) Show that X is a Killing field if and only if g(Vy X, Z) + g(¥Y,VzX) = 0 for all vector fields Y and
Z, where V is the Levi-Civita connection of g.

(4) Let M be a Minkowski spacetime and let & = (1, x, y, z) be an inertial coordinate system. (What’s
that again?) Show that e = % is a Killing field.

(5) Show that any parallel vector field is a Killing field.

(6) (*) Conversely, let X be a Killing field. Assume (M, g) has nonpositive Ricci curvature. Derive
from Bochner’s formula —%A||X||2 = —Ric(X, X) + ||[VX||? that X is parallel. Show that if (M, g)
has negative Ricci curvature then it admits no Killing fields other than 0.

(7) (*) Show that if X is a Killing field and « is a harmonic form then Lxa = 0.



