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Exercise 1. Full Einstein-Hilbert functional
Let M be a compact orientable smooth manifold.

(1) Recall that in the vacuum and with no cosmological constant, the Einstein-Hilbert functional is:

S(g) =
1

2κ

∫
M

Sg vg

where g is any semi-Riemannian metric and we denote by Sg and vg the scalar curvature and
volume form of g, and κ = 8πG

c4 = 8π is a constant. Recall why the Euler-Lagrange equation for
this action is Ric− 1

2 Sg = 0.

(2) In the presence of a cosmological constant Λ ∈ R, the Einstein-Hilbert functional is

S(g) =
1

2κ

∫
M

(Sg − 2Λ) vg .

Show that the Euler-Lagrange equation is Ric− 1
2 Sg + Λg = 0.

(3) (*) The presence of matter is encoded by a smooth real-valued function LM(g, x) which depends
on g and x ∈ M (the Einstein-Hilbert Lagrangian). In this case the E-H functional is

S(g) =

∫
M

[
1

2κ
(Sg − 2Λ) + LM

]
vg . (1)

Show that the Euler-Lagrange equation is

Ric−
1
2

Sg + Λg = κT

where T B −2 δLM
δgµν + LMgµν is the stress-energy tensor. (Equation (1) is called Einstein’s field

equations.) How to interpret a solution of this equation?

Exercise 2. Second variation of the Einstein-Hilbert functional
Let g be a critical point of the Einstein-Hilbert functional S(g) =

∫
M

Sg vg, i.e. a Ricci-flat metric.
The second variation of the E-H functional in the direction of a symmetric covariant 2-tensor h is
S′′g (h) B

d2

dt2 |t=0S(g + th).

(1) Show that S has no strict local extrema by consider constant scaling of the metric . For this reason,
we now only consider variations which preserve the total volume.

(2) Show that Diff(M) naturally acts on metrics by pullback and that S is constant in restriction to
any orbit. Conclude that S′′g (h) = 0 if h is tangent to the Diff(M)-orbit through g. Describe such
tensors h.

(3) Consider the conformal class of g, i.e. the space of metrics of the form f g for some smooth
function f : M → (0,+∞). Show that tangent deformations to this space are of the form h = f g
for some smooth function f : M → R, and the infintesimal variation preserves volume if and only
if

∫
M

f vg = 0. (*) For such h, show that the second variation is S′′g (h) = −
(n−1)(n−2)

2

∫
M

f∆ f vg.
Conclude that g is a strict local minimum of S in restriction to such conformal deformations.



Exercise 3. Hodge star, codifferential, divergence, and Hodge Laplacian

Let (M,g) be a compact oriented semi-Riemannian manifold of dimension n.

(1) Consider a fixed tangent spaceV = TxM with inner product gx = 〈•, •〉. Show that there is a natural
inner product in ΛkV∗. (First define an inner product in V∗, then in the space of k-multilinear
maps.) We define an inner product on Ωk(M,E) by 〈α, β〉L2 B

∫
M
〈α, β〉 vg.

(2) The Hodge star is the operation ∗ : ΛkV∗ → Λn−kV∗ characterized by α ∧ ∗β = 〈α, β〉vg.
(i) Show that ∗ is well-defined and express it using an orthonormal frame of V .
(ii) Show that ∗1 = vg.
(iii) Show that the Hodge star is a linear isometry: 〈∗α,∗β〉 = 〈α, β〉.
(iv) Show that the Hodge star is an involution up to sign: ∗ ∗ α = (−1)k(n−k)+index(g)α.

(3) Define the codifferential d∗ B (−1)n(k−1)+1+index(g) ∗ d∗.
(i) Show that d∗ is a linear map : Ωk(M,R) → Ωk−1(M,R) for any k ∈ {0, . . . ,n}.
(ii) Check that d∗ ◦ d∗ = 0.
(iii) Show that d∗ is the formal adjoint of the differential d: 〈dα, β〉L2 = 〈α,d∗β〉L2 .

(4) The divergence of a vector field X is the function div X defined by: d(iXvg) = (div X)vg where
iXvg ∈ Ωn−1(M,R) is the contraction of X against vg.
(i) Show that div X = − d∗X .
(ii) Prove the divergence theorem:

∫
M
(div X) vg = 0.

(5) The Hodge Laplacian is the operator ∆ B d∗ d + d d∗.
(i) Show that ∆ is an endomorphism of Ωk(M,R) for any k ∈ {0, . . . ,n}.
(ii) Show that onΩ0(M,R), the Hodge Laplacian is equal to minus the Laplace-Beltrami operator

defined by ∆ f = div(grad f ).
(iii) Show that if g is Riemannian, the Hodge Laplacian is a nonnegative operator in the sense

that 〈∆α,α〉L2 > 0 and that show that 〈∆α,α〉L2 = 0 if and only if ∆α = 0. Show that α is
harmonic (∆α = 0) iff α is closed and co-closed (dα = d∗α = 0).

Exercise 4. Killing fields

Let (M,g) be a compact semi-Riemannian manifold. A smooth vector field X is called a Killing fied if
LXg = 0, where L denotes the Lie derivative.

(1) Recall the definition(s) of the Lie derivative.

(2) Show that X is a Killing field if and only if the flow of X preserves g: the diffeomorphism ϕXt is
an isometry for all t. Why did we assume M is compact?

(3) Show that X is a Killing field if and only if g(∇Y X, Z) + g(Y,∇Z X) = 0 for all vector fields Y and
Z , where ∇ is the Levi-Civita connection of g.

(4) Let M be a Minkowski spacetime and let ξ = (t, x, y, z) be an inertial coordinate system. (What’s
that again?) Show that e1 =

∂
∂t is a Killing field.

(5) Show that any parallel vector field is a Killing field.

(6) (*) Conversely, let X be a Killing field. Assume (M,g) has nonpositive Ricci curvature. Derive
from Bochner’s formula −1

2∆‖X ‖
2 = −Ric(X,X) + ‖∇X ‖2 that X is parallel. Show that if (M,g)

has negative Ricci curvature then it admits no Killing fields other than 0.

(7) (*) Show that if X is a Killing field and α is a harmonic form then LXα = 0.
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