Exercise Sheet 4

Exercise 1. Full Einstein-Hilbert functional

Let *M* be a compact orientable smooth manifold.

(1) Recall that in the vacuum and with no cosmological constant, the Einstein-Hilbert functional is:

$$\mathcal{S}(g) = \frac{1}{2\kappa} \int_M S_g v_g$$

where g is any semi-Riemannian metric and we denote by S_g and v_g the scalar curvature and volume form of g, and $\kappa = \frac{8\pi G}{c^4} = 8\pi$ is a constant. Recall why the Euler-Lagrange equation for this action is Ric $-\frac{1}{2}Sg = 0$.

(2) In the presence of a cosmological constant $\Lambda \in \mathbb{R}$, the Einstein-Hilbert functional is

$$\mathcal{S}(g) = \frac{1}{2\kappa} \int_M (S_g - 2\Lambda) v_g \; .$$

Show that the Euler-Lagrange equation is $\operatorname{Ric} -\frac{1}{2}Sg + \Lambda g = 0$.

(3) (*) The presence of matter is encoded by a smooth real-valued function $\mathcal{L}_{M}(g, x)$ which depends on g and $x \in M$ (the *Einstein-Hilbert Lagrangian*). In this case the E-H functional is

$$S(g) = \int_{M} \left[\frac{1}{2\kappa} (S_g - 2\Lambda) + \mathcal{L}_{\mathrm{M}} \right] v_g .$$
 (1)

Show that the Euler-Lagrange equation is

$$\operatorname{Ric} -\frac{1}{2}Sg + \Lambda g = \kappa T$$

where $T := -2 \frac{\delta \mathcal{L}_M}{\delta g^{\mu\nu}} + \mathcal{L}_M g_{\mu\nu}$ is the *stress-energy tensor*. (Equation (1) is called *Einstein's field equations*.) How to interpret a solution of this equation?

Exercise 2. Second variation of the Einstein-Hilbert functional

Let g be a critical point of the Einstein-Hilbert functional $S(g) = \int_M S_g v_g$, i.e. a Ricci-flat metric. The second variation of the E-H functional in the direction of a symmetric covariant 2-tensor h is $S''_g(h) \coloneqq \frac{d^2}{dt^2}|_{t=0} S(g+th).$

- (1) Show that S has no strict local extrema by consider constant scaling of the metric. For this reason, we now only consider variations which preserve the total volume.
- (2) Show that Diff(*M*) naturally acts on metrics by pullback and that *S* is constant in restriction to any orbit. Conclude that $S''_g(h) = 0$ if *h* is tangent to the Diff(*M*)-orbit through *g*. Describe such tensors *h*.
- (3) Consider the conformal class of g, i.e. the space of metrics of the form fg for some smooth function f: M → (0, +∞). Show that tangent deformations to this space are of the form h = fg for some smooth function f: M → ℝ, and the infinitesimal variation preserves volume if and only if ∫_M f v_g = 0. (*) For such h, show that the second variation is S''_g(h) = -(n-1)(n-2)/2 ∫_M f Δf v_g. Conclude that g is a strict local minimum of S in restriction to such conformal deformations.

Exercise 3. Hodge star, codifferential, divergence, and Hodge Laplacian

Let (M, g) be a compact oriented semi-Riemannian manifold of dimension *n*.

- (1) Consider a fixed tangent space $V = T_x M$ with inner product $g_x = \langle \cdot, \cdot \rangle$. Show that there is a natural inner product in $\Lambda^k V^*$. (First define an inner product in V^* , then in the space of *k*-multilinear maps.) We define an inner product on $\Omega^k(M, E)$ by $\langle \alpha, \beta \rangle_{L^2} \coloneqq \int_M \langle \alpha, \beta \rangle v_g$.
- (2) The *Hodge star* is the operation $*: \Lambda^k V^* \to \Lambda^{n-k} V^*$ characterized by $\alpha \wedge *\beta = \langle \alpha, \beta \rangle v_{\varrho}$.
 - (i) Show that * is well-defined and express it using an orthonormal frame of V.
 - (ii) Show that $*1 = v_g$.
 - (iii) Show that the Hodge star is a linear isometry: $\langle *\alpha, *\beta \rangle = \langle \alpha, \beta \rangle$.
 - (iv) Show that the Hodge star is an involution up to sign: $**\alpha = (-1)^{k(n-k)+index(g)}\alpha$.
- (3) Define the *codifferential* $d^* := (-1)^{n(k-1)+1+index(g)} * d^*$.
 - (i) Show that d^{*} is a linear map : $\Omega^k(M,\mathbb{R}) \to \Omega^{k-1}(M,\mathbb{R})$ for any $k \in \{0,\ldots,n\}$.
 - (ii) Check that $d^* \circ d^* = 0$.
 - (iii) Show that d^{*} is the formal adjoint of the differential d: $\langle d\alpha, \beta \rangle_{L^2} = \langle \alpha, d^*\beta \rangle_{L^2}$.
- (4) The *divergence* of a vector field X is the function div X defined by: $d(i_X v_g) = (\operatorname{div} X)v_g$ where $i_X v_g \in \Omega^{n-1}(M, \mathbb{R})$ is the contraction of X against v_g .
 - (i) Show that div $X = -d^*X$.
 - (ii) Prove the divergence theorem: $\int_{M} (\operatorname{div} X) v_g = 0.$
- (5) The *Hodge Laplacian* is the operator $\Delta := d^* d + d d^*$.
 - (i) Show that Δ is an endomorphism of $\Omega^k(M, \mathbb{R})$ for any $k \in \{0, ..., n\}$.
 - (ii) Show that on $\Omega^0(M, \mathbb{R})$, the Hodge Laplacian is equal to minus the Laplace-Beltrami operator defined by $\Delta f = \operatorname{div}(\operatorname{grad} f)$.
 - (iii) Show that if g is Riemannian, the Hodge Laplacian is a nonnegative operator in the sense that $\langle \Delta \alpha, \alpha \rangle_{L^2} \ge 0$ and that show that $\langle \Delta \alpha, \alpha \rangle_{L^2} = 0$ if and only if $\Delta \alpha = 0$. Show that α is harmonic ($\Delta \alpha = 0$) iff α is closed and co-closed ($d\alpha = d^*\alpha = 0$).

Exercise 4. Killing fields

Let (M, g) be a compact semi-Riemannian manifold. A smooth vector field X is called a *Killing fied* if $\mathcal{L}_X g = 0$, where \mathcal{L} denotes the Lie derivative.

- (1) Recall the definition(s) of the Lie derivative.
- (2) Show that X is a Killing field if and only if the flow of X preserves g: the diffeomorphism φ_t^X is an isometry for all t. Why did we assume M is compact?
- (3) Show that *X* is a Killing field if and only if $g(\nabla_Y X, Z) + g(Y, \nabla_Z X) = 0$ for all vector fields *Y* and *Z*, where ∇ is the Levi-Civita connection of *g*.
- (4) Let *M* be a Minkowski spacetime and let $\xi = (t, x, y, z)$ be an inertial coordinate system. (What's that again?) Show that $e_1 = \frac{\partial}{\partial t}$ is a Killing field.
- (5) Show that any parallel vector field is a Killing field.
- (6) (*) Conversely, let X be a Killing field. Assume (M,g) has nonpositive Ricci curvature. Derive from Bochner's formula $-\frac{1}{2}\Delta ||X||^2 = -\operatorname{Ric}(X,X) + ||\nabla X||^2$ that X is parallel. Show that if (M,g) has negative Ricci curvature then it admits no Killing fields other than 0.
- (7) (*) Show that if *X* is a Killing field and α is a harmonic form then $\mathcal{L}_X \alpha = 0$.