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Preface

Hyperbolic geometry is a very special subject: it is the star of geometries, and geometry is

the star of mathematics! Well, perhaps this is a bit of an exaggeration, yet a useful one to

have in mind—few topics have such historical and conceptual weight.

The history of mathematics and science, indeed, speaks for the importance of hyperbolic

geometry. The names of several of the greatest mathematicians are attached to it, such

as Gauss and Poincaré, and its incredibly fertile development is related to the (re)birth of

projective spaces, Fuchsian groups, Minkowski spacetime, among other decisive notions

for modern mathematics and physics, including the mathematical framework for Einstein’s

theory of relativity!

While the revolutionary discovery of hyperbolic geometry mainly took place in the 19th

century, it continued to play a leading role in the mathematics of the 20th, culminating with

Thurston’s geometrization program and its completion in the early 21st century by Perelman,

which solved the famous Poincaré conjecture. To this day, hyperbolic geometry and its avatars

remain an intensely active field of research, both in mathematics and in applied sciences—it

shows promise, for instance, in the emerging field of data science and machine learning.

∗ ∗ ∗

Why did I write this textbook? It started as a set of lecture notes that I wrote for a Master

course I taught at TU Darmstadt in the winter 2019–2020, building on notes for a similar

course I held at Rutgers University in 2017. After a push of some colleagues and friends, I

decided to upgrade them into a proper book. I hope that it fills a gap in the literature, as an

ambitious first course on hyperbolic geometry—more details below.

Goal and intended audience. The goal of the book is to provide a first course on hyperbolic
geometry with little or no prerequisites of differential geometry. It intends to be fairly thor-

ough while staying self-contained and not too advanced. The book is suitable for a course

at the early graduate (Master) level or advanced undergraduate (Bachelor) level in a mathe-

matics curriculum. More broadly, it is meant to be useful to anyone looking to properly learn

the basics (and more) of hyperbolic geometry, whether to pursue higher level education or

research in a related area, or to apply it to other fields.
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Contents. All the standard features of hyperbolic spaces are rigorously introduced and

studied: the different models of any dimension (the hyperboloid model, Cayley–Klein and

Beltrami–Klein models, Poincaré ball and half-space models); hyperbolic geodesics, distance,

curvature, and isometries; the ideal boundary and the classification of isometries; hyperbolic

triangles and trigonometry; tessellations of the hyperbolic plane, and more. Beyond hyper-

bolic geometry, readers will have the opportunity to learnmany essential notions of geometry:

the concept of curvature, Minkowski space and the Lorentz group, projective geometry and

quadrics, Möbius transformations and conformal geometry, metric geometry and Gromov

hyperbolicity. . . In addition, the book features a couple of “bonus chapters”: on Einstein’s

theory of relativity and its connection to hyperbolic geometry, and on the applications of

hyperbolic geometry to data science and machine learning.

Approach and style. The approach aims to be clean and rigorous, using the framework and

style of modern mathematics, although historical aspects are occasionally mentioned. (For

other subjects usually covered in mathematics textbooks, this would go without saying, but

hyperbolic geometry is special given the historical weight of the “synthetic” approach.) After

the first two introductory chapters, the book develops the formal concepts that allow the most

effective definitions of hyperbolic spaces, such as pseudo-Euclidean spaces and projective

spaces. Readers are therefore expected to be able to handle a certain level of abstraction.

Why learn hyperbolic geometry? I see at least three excellent reasons for students in math-

ematical sciences to learn hyperbolic geometry: (1) Since the 19th century, non-Euclidean

geometry has become a standard framework in mathematics and physics. Hyperbolic geome-

try is the star of non-Euclidean geometries, and gives fundamental insight on all phenomena

related to negative curvature. (2) A course in hyperbolic geometry is a great opportunity to

learn a diversity of classical geometric notions that are useful across many areas of mathe-

matics. In this book, you will (re-)discover bits of Riemannian geometry, relativity theory,

real and complex projective geometry, and more. (3) In contemporary mathematical research,

hyperbolic geometry is at the intersection of several important fields: geometry and topology,

group theory, complex geometry, and others. I refer to [ Can+ , §15] for a discussion of this.

(4) Bonus reason! Hyperbolic geometry shows promising possibilities for data science and

machine learning: this is the content of  Part VII . It could therefore appeal to students who

aspire to be data scientists or engineers.

What does this book not cover? This remains to be written.

Prerequisites. No prerequisites are assumed beyond a (solid) standard undergraduate cur-

riculum in mathematics, including linear algebra and multivariable calculus. Students who

have an additional background in geometry (such as differential geometry of curves and sur-

faces, Riemannian geometry, projective geometry, etc.) will nevertheless be able to put their

prior knowledge to excellent use. In contrast to the course that I taught at Rutgers University,

I elected not to include a mini-course on Riemannian geometry beyond the introductory

 Chapter 2 . As a consequence, the book focuses more on classical geometric aspects than

differential ones, despite my personal inclination for the latter.
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Exercises. Each chapter is concluded with a list of exercises. Some solutions and hints are

included at the end of the book, but I recommend resisting the temptation to look at them

as long as possible. It is essential that students really work on the exercises. No serious

mathematics can truly be learned without asking and answering many questions and solving

problems. Spending this time and effort cannot be spared, but it makes it more fun and often

more effective to work with other students or a teacher.

Other references. This remains to be written.

Historical disclaimer. This remains to be written.

How did I write this book? This book was written with the LATEX typesetting system.

Technically, I run a TeX Live installation on the operating system Debian GNU/Linux,
and I use the editor Kile. To create figures, I have worked with the software GeoGebra,
the vector graphics editor Inkscape, the Python package matplotlib, and the LaTeX

package Tikz. To keep track of files, I use the version control system Git. (There is nothing
original about these choices!) Most if not all the sofware that I use is free and open-source, not
only because I support it philosophically, but also because it is often the best. I am indebted

to Donald Knuth, Richard Stallman, Linus Torvalds, and all other free-spirited enthusiasts

and talented programmers who have made and continue to make free sofware a reality.

Acknowledgments. This remains to be written.

To all readers: learn and enjoy; write me! I sincerely hope that you find this book instruc-

tive and that you find joy and beauty in learning hyperbolic geometry. I absolutely appreciate

all feedback: please contact me with any mathematical or non-mathematical questions, re-

ports of mistakes and typos, suggestions for improvement, criticism, and more. The best way

to contact me is by e-mail:  brice@loustau.eu . Thank you!

Brice Loustau

Heidelberg, October 2021
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Part I

Preliminaries

You must not attempt this approach to parallels. I know this way to its very
end. I have traversed this bottomless night, which extinguished all light and joy of
my life. I entreat you, leave the science of the parallels alone. . . I thought I would
sacrifice myself for the sake of truth. I was ready to become a martyr who would
remove the flaw from geometry and return it purified to mankind. I accomplished
monstrous, enormous labors [. . . ] I have traveled past all reefs of this infernal Dead
Sea and have always come back with broken mast and torn sail. The ruin of my
disposition and my fall date back to this time.

– Farkas Bolyai to his son János in 1820, on Euclid’s parallel postulate 

2
 

I have discovered such wonderful things that I was amazed, and it would be
an everlasting piece of bad fortune if they were lost. When you, my dear Father,
see them, you will understand; at present I can say nothing except this: that out of
nothing I have created a strange new universe.

– János Bolyai’s response to his father in 1823 

3
 

2
Quoted from [ Gra1 ].

3
Ibid.



CHAPTER 1

From Euclid to hyperbolic geometry

Disclaimer: This chapter is a draft.

In this first preliminary chapter, we propose a brief introduction to hyperbolic geometry that

puts the emphasis on the axiomatic approach going back to Euclid’s Elements.
Note that in the remainder of the book, we will neglect the historical (and the “synthetic”)

approach to hyperbolic geometry in favor of a modern and effective mathematical treatment.

It will therefore be harmless to forget the contents of this chapter for the most part, although

we will sporadically refer back to it for insight.

∗ ∗ ∗

The discovery of non-Euclidean geometries in the 19th century was one of the most

significant developments in the history of mathematics and had a profound impact on science

and philosophy. This is well put by Marvin Greenberg [ Gre ]:

Most people are unaware that in the early nineteenth century a revolution took place in
the field of geometry that was as scientifically profound as the Copernican revolution in
astronomy and, in its impact, as philosophically important as the Darwinian theory of
evolution 

1
 . “The effect of the discovery of hyperbolic geometry on our ideas of truth and

reality has been so profound,” wrote the great Canadian geometer H. S. M. Coxeter, “that
we can hardly imagine how shocking the possibility of a geometry different from Euclid’s
must have seemed in 1820.” Today, however, we have all heard of the space-time geometry
in Einstein’s theory of relativity. [. . . ]

1
While these parallels are compelling, they should perhaps not be taken too literally. The Copernican

revolution (1543), a part of the “Scientific Renaissance”, was still a classical—arguably “Euclidean”—theory. On

the other hand, hyperbolic geometry bloomed in the romantic 19th century, which broke classical rules in art

and science. A comparison with Einstein’s theory of relativity would seem more pertinent to me.

2



There aremany excellent references discussing the fascinating discovery of non-Euclidean

geometry and its historical, mathematical, and philosophical implications. Although I am not

an expert, I can confidently recommend the monographs of Harold Coxeter [ Cox3 ], Jeremy

Gray [ Gra2 ], Marvin Greenberg [ Gre ], John Milnor [ Mil1 ], Boris Rosenfeld [ Ros ], John Still-

well [ Sti1 ], and Richard Trudeau [ Tru ]. If you can read French, I recommend the phenomenal

book of Jean-Daniel Voelke [ Voe ]; let me also mention the essays of Jean Dieudonné [ Die ]

and Henri Poincaré [ Poi2 , Chap. 3].

The goal of this chapter is of course not to compete with these books. Instead, we will con-

tent with just enough background to convey a decent sense of the “origin story” of hyperbolic

geometry, without attempting to be historically precise or thorough. That said, I absolutely

encourage readers to explore the above references and more; the subject is fascinating and

great insight is to be gained from learning the history of geometry.
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CHAPTER 1. FROM EUCLID TO HYPERBOLIC GEOMETRY

1.1 Euclid’s postulates

The long history leading up to the discovery of hyperbolic geometry originates in the Elements
of Euclid 

2
 . This treatise of mathematics, divided in 13 books was written in ca. 300 BC by

the mathematician Euclid of Alexandria. It is undoubtedly the most influential work of

mathematics ever written.

Euclid’s method is axiomatic and constructive. This approach is far from outdated, on

the contrary: the foundation of contemporary mathematics, as it has been formalized since

the first half of the 20th century with mathematical logic, is strikingly similar to Euclid’s

Elements. We discuss this more in  § 1.3 .

Euclid introduces 5 postulates (axioms):

(E1) There exists a line through any two points.

(E2) Any line may be extended indefinitely.

(E3) Any center and radius determines a unique circle.

(E4) All right angles are congruent. (See  Figure 1.1 .)

(E5) If a straight line falling on two straight lines make the interior angles on the same side

less than two right angles, the two straight lines, if produced indefinitely, meet on that

side on which the angles are less than two right angles. (See  Figure 1.2 .)

Remark 1.1. By line, Euclid means straight line segment. He does not directly consider infinite
lines, which is a very reasonable position. By two lines being parallel, one must understand:

they do not intersect, even when extended indefinitely.

Remark 1.2. Note that Euclid does not state uniqueness in the first postulate  (E1) . In particular,

it does not exclude spherical geometry.

Remark 1.3. The fourth postulate  (E4) may be interpreted as follows: For any two config-

urations of two straight lines intersecting at a right angle, there exists a rigid motion (i.e.

an orientation-preserving isometry) which takes the first configuration to the second: see

 Figure 1.1 .

Based on these five postulates (and five “common notions”), Euclid develops an extensive

treatise of mathematics (geometry and number theory). It is divided in thirteen books, con-

sisting of a collection of definitions, constructions, theorems, and proofs. For instance, the

first book contains the Pythagorean theorem and the sum of the angles in a triangle, as well

as many other constructions of plane geometry.

2
For a translation of the Elements in English, Thomas L. Heath’s 1908 translation is the main reference. A

second edition was published by Dover in 1956 [ Euc ].
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1.2. DISCOVERY OF NON-EUCLIDEAN GEOMETRY

Figure 1.1: Euclid’s fourth postulate: Any two right angles are congruent.

Figure 1.2: The fifth postulate: If 𝛼 + 𝛽 < 2 , then ℓ and ℓ′ intersect (on the right side).

1.2 Discovery of non-Euclidean geometry

For centuries, mathematicians have questioned the fifth postulate, often called the Parallel
postulate. See  Figure 1.2 for an illustration. This postulate sounds more convoluted than the

first four. Could it not simply be derived from them?

Today, the parallel postulate often stated into the equivalent form:

(E5’) Given a line and a point not on it, there exists a unique parallel through the point.

5



CHAPTER 1. FROM EUCLID TO HYPERBOLIC GEOMETRY

There are many other equivalent formulations of the fifth postulate, such as: the sum of

the angles of any triangle is equal to two right angles.

Until the 19th century, mathematicians were unable to prove whether the fifth postulate

was a consequence of the first four or not. The 19th century was the century of romanti-

cism, which decided that classical rules should be broken. A breakthrough was achieved by

Lobachevsky (and Gauss, Bolyai, Taurinus, Cayley, and others) 

3
 . He constructed a complete

alternative to Euclidean geometry, starting from the assumption that the first four postulates

are true, but the fifth postulate is false. Initially, the goal of this strategy was to reach a contra-

diction, which would prove that the fifth postulate does derive from the first four. However, it

eventually became clear that this new geometry was as respectable and beautiful as Euclid’s.

Remark 1.4. Spherical geometry also offers an alternative to non-Euclidean geometry. This

is the geometry on a sphere, where straight lines are arcs of great circles. Note that it does

not satisfy the first axiom of Euclid if we add uniqueness to straight lines through two points:

consider antipodal points. In fact, antipodal points are especially problematic because there

is an infinity of straight lines between them. One can remedy this issue by identifying any

two antipodal points. The resulting surface is known as the real projective plane, equipped

with the geometry inherited from the sphere. This geometry is called elliptic geometry, and
is the only other non-Euclidean geometry besides hyperbolic geometry. The fifth postulate

for elliptic geometry reads: Any two lines intersect (i.e., there are no parallels). This case

must be excluded to obtain hyperbolic geometry, therefore the fifth postulate for hyperbolic

geometry reads:

(H5) Given a line and a point not on it, there exists at least two parallels through the point.

As an example, Lobachevsky developed the notion of angle of parallelism: given a line

𝑙 and a point 𝐴 at distance 𝑎 from 𝑙 , the angle of parallelism 𝛼 is the least angle such that the

line 𝑙′ as in  Figure 1.3 is parallel to 𝑙 (i.e. does not intersect 𝑙).

It is important to note that Lobachevsky, despite writing a considerable treatise of hyper-

bolic geometry à la Euclid, did not answer the question of whether Euclid’s fifth postulate is

independent of the first four. Indeed, it was still possible that Lobachevsky’s geometry was

inconsistent, and that he simply did not yet find a contradiction. The same can be said of the

work of Gauss, Taurinus, and Bolyai.

The questionwas definitively settled by Beltrami in 1868 [ Bel2 ;  Bel3 ], who found amodel—
in fact several models—for the hyperbolic plane, in other words a “universe” where the axioms

of hyperbolic geometry are satisfied.

The first model proposed by Beltrami is now known as the Beltrami–Klein model (or

Cayley–Klein model, or simply Klein model 

4
 ). We will study it in detail in  Chapter 8 , but its

3
Hyperbolic geometry is still occasionally called Lobachevsky geometry. Lobachevsky was the first to

publish his extensive work in 1829, but by then other mathematicians had also discovered in part this new

geometry: Gauss, Schweikart and Taurinus, Farkas and Janos Bolyai.

4
Klein ([ Kle1 ;  Kle2 ]) showed the projective nature of Beltrami’s model and gave the formula for the metric

in terms of cross-ratios, inspired by work of Cayley [ Cay ]. For a more detailed historical account, refer to [ AP ].
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Figure 1.3: Angle of parallelism.

description is surprisingly simple: the hyperbolic plane is an open Euclidean disk; points in

this model are points inside the disk, and lines are chords, i.e. straight line segments with

(imaginary) endpoints on the boundary circle. See  Figure 1.4 . However, angles and distances

are not as they appear to our Euclidean eyes. In particular, until we define angles, distances,

and isometries, we cannot verify Euclid’s axioms 3. and 4.

Beltrami also proposed a second pair of models, which are now known as the Poincaré

disk and half-space models 

5
 . The disk model is again an open Euclidean disk, but this time

lines are defined as circles of arcs that are orthogonal to the boundary circle. See  Figure 1.5 .

Distances are also distorted in this model with respect to our Euclidean eyes, but not angles:

it is a conformal model. We will study this model in  Chapter 10 .

1.3 Notions of mathematical logic

Let us reconsider the previous historical discussion in the eyes of mathematical logic. I warn

the reader that what follows is a naive presentation: Euclid’s system does not actually meet

the requirements of a theory as it is defined by first-order logic. The axiomatic foundation

of geometry has generated considerable work since the late 19th century; notable modern

axiomatizations of Euclid’s theory were proposed by Hilbert (1899), Birkhoff (1932), Tarski

(1959).

A mathematical theory is based on a syntax, axioms, and rules of inference, from which

theorems are derived (also cosmetically called lemmas, propositions, corollaries, etc). The

majority of contemporarymathematics implicitly uses the theory of sets of Zermelo–Fraenkel,

but other setups can also be relevant. Regardless, Euclid’s treatise and its axiomatic approach

5
Poincaré rediscovered the disk and half-plane models in 1882 and revealed the connection between 2-

dimensional hyperbolic geometry and complex geometry [ Poi1 ].
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Figure 1.4: Points and lines in the Beltrami–Klein model.

Figure 1.5: Points and lines in the Poincaré disk model.

appears singularly modern.

Ideally, the axioms that one chooses to base a mathematical theory should have the

following qualities:

(1) Consistency: No two axioms are incompatible; more generally, no contradiction can

be derived from the axioms.
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(2) Completeness: Any mathematical statement that makes sense in the theory should be

either provable or disprovable.

(3) Independence: No axiom should be a consequence of the others.

Clearly, the most important quality is consistency: an inconsistent theory is worthless.

Completeness is less essential, but a theory feels imperfect without it. In theory, independence

is not an important quality, but it is the question of the independence of Euclid’s axioms that

led to the discovery of hyperbolic geometry!

Let us go back to discussing the independence of Euclid’s fifth postulate. Beltrami’s work

shows that, assuming there exists a model for Euclidean geometry (the Euclidean plane!), one

can construct a model where the axioms of hyperbolic geometry, namely (E1)–(E4) and (H5),

are satisfied. In particular, he created a model for Lobachevsky’s geometry. From the point

of view of logic, Beltrami’s model shows that hyperbolic geometry is consistent if Euclidean

geometry is. This is a direct consequence of Gödel’s completeness theorem:

Theorem 1.5 (Gödel’s completeness theorem). A theory is consistent if and only if it has a
model.

Consequently, assuming Euclidean geometry is consistent, Euclid’s fifth postulate cannot

be a consequence of the first four.

Let us mention that in general, achieving/proving consistency and completeness of a

theory in first-order logic is tragically elusive. The celebrated incompleteness theorems of

Gödel say that

(1) It is impossible to prove the consistency of a theory; not unless one includes it in a

larger theory that is assumed consistent.

(2) A theory is never complete.

However, Gödel’s incompleteness theorems only apply to theories containing arithmetic.

In particular, they do not apply to Euclidean geometry. It has been proven that (a modern

axiomatization of) Euclidean geometry is in fact consistent and complete: refer to [ Mat ] as a

starting point to seek more information about this.

1.4 Historical elements
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1.5 Exercises

Exercise 1.1. Beltrami–Klein disk and Poincaré disk

(1) Prove that Euclid’s postulate (E1) holds in the Beltrami–Klein disk.

For now, we cannot really discuss postulates (E2), (E3), and (E4), because we have yet to
define distances, angles, and isometries in this model, but we will see that they also hold.

(2) Show that Euclid’s postulate (E5) does not hold in the Beltrami–Klein disk.

(3) Repeat the exercise with the Poincaré disk.

Exercise 1.2. Triangles in the Poincaré disk

We recall that the Poincaré disk model is conformal: the angles between two lines (or curves)

from the point of view of hyperbolic geometry is the same as their Euclidean angle (i.e., the

angle between the tangents).

(1) Draw a right-angled triangle in the Poincaré disk.

(2) Show that in the Poincaré disk, the sum of angles in a triangle is always less than 𝜋 .

Argue that over all nondegenerate triangles, the sum ranges in the interval (0, 𝜋).

Exercise 1.3. Independence of Euclid’s fifth postulate

Using Gödel’s theorem, explain carefully why Beltrami’s models for the hyperbolic plane

show that hyperbolic geometry is no less consistent than Euclidean geometry. Conclude that

if Euclidean geometry is consistent, then Euclid’s fifth postulate is independent from the first

four.

Remark: This exercise, just like the presentation of  § 1.3 , is naive: it implicitly assumes that
Euclid’s system meets the requirements of a theory as defined by first-order logic, where Gödel’s
theorem applies. This is not quite the case.
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CHAPTER 2

Curvature

Disclaimer: This chapter is a draft.

In this second chapter, we propose a semi-formal introduction to the concept of curvature.

This is another preliminary chapter, but it is important to study it because it includes defini-

tions and propositions that will be used in subsequent chapters. In particular, a few useful

notions of Riemannian geometry are introduced, without assuming any knowledge of differ-

entiable manifolds.

Roughly speaking, curvature measures how much a geometric object—such as a curve, a

surface, or a higher-dimensional object—deviates from being flat, in other words Euclidean.

Exploring and developing this idea unveils substantial and beautiful mathematics. This is

what this chapter attempts to do, although superficially in order to avoid getting overwhelmed

by technical details or theoretical obstacles.

The main protagonist of this book, hyperbolic space, is the model geometric object of

constant negative curvature. One of the goals of this course is to prove this fact in several

ways, to derive some consequences, and beyond: to acquire a fairly deep understanding of

the features of a negatively curved “world”.

∗ ∗ ∗

The flow of the chapter is quite straigthforward: we begin with the curvature of space

curves in  § 2.1 , then surfaces  § 2.2 , and work our way towards more generality in  § 2.3 . We

conclude with themodel spaces of constant curvature in  § 2.4 and a brief mention of curvature

in metric spaces in  § 2.5 .

Prerequisites and references. Having some knowledge of differential geometry will make it

far easier to read this chapter, but it is not a prerequisite. We only assume a solid background

11



CHAPTER 2. CURVATURE

in Euclidean vector spaces and multivariable calculus, although we will recall many basic

definitions. For readers looking to properly learn Riemannian geometry, I can recommend the

great books of Jack Lee ([ Lee3 ], preceded by [ Lee1 ] and [ Lee2 ]), I also like [ GHL ] preceded

by [ Laf ]. For “elementary differential geometry” (curves and surfaces in Euclidean space),

do Carmo [ Car1 ] is a good option, but there are many others. Spivak’s books [ Spi ] are a

thorough reference for differential geometry, though more advanced.
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2.1. CURVATURE OF SPACE CURVES

2.1 Curvature of space curves

Curves are the one-dimensional objects of differential geometry. A curve typically “lives” in

an ambient space, such as the Euclidean plane, three-dimensional Euclidean space, or more

general geometric objects (surfaces, higher dimensional manifolds, metric spaces, etc.). It is

even possible to consider “abstract” curves, that do not live in any ambient space.

However, the curvature of a curve is a notion relative to the space inwhich it lives; abstract

curves do not any have curvature in any reasonable sense 

1
 . In this section, we discuss the

curvature of “space curves”, i.e. curves in three-dimensional Euclidean space.

2.1.1 Basic definitions

Consider three-dimensional Euclidean space 𝐸 = R3. More generally, we could take for 𝐸

any Euclidean vector or affine space. Let us recall that a Euclidean vector space is a finite-
dimensional vector space equipped with an inner product, and a Euclidean (affine) space
is an affine space modelled on a Euclidean vector space.

Let 𝛾 be a smooth (parametrized) curve in 𝐸. By definition, this is a smooth map

𝛾 : 𝐼 → 𝐸, where 𝐼 ⊆ R is an interval of the real line (that is nonempty and not reduced to a

point). In this book, we shall use smooth as an alias for “of class C∞
”. The fact that we will

always assume our curves and other differential geometric objects to be of class C∞
is mainly

a lazy habit; for instance it would just fine to work with curves of class C2 or C3.

The velocity of the curve 𝛾 at a time 𝑡 ∈ 𝐼 is the derivative
−−−→
𝛾 ′(𝑡) ∈ R3. Note that when

𝐸 is a Euclidean affine space, the velocity

−−−→
𝛾 ′(𝑡) is not an element of 𝐸, but of the associated

vector space. This being understood, we shall drop the arrow over 𝛾 ′(𝑡), which is a useful

notation but a bit cumbersome. Using the inner product of our vector space, one can measure

the norm ‖𝛾 ′(𝑡)‖, called the speed of 𝛾 .

In many situations, one is not really interested in the parametrized curve 𝛾 itself, which

is a map 𝐼 → 𝐸, but only in its image, which is a subset of 𝐸. It is common, although not

very rigorous, to say “the curve 𝛾” to refer to either. One can always reparametrize a curve
without changing its image: this consists in putting𝛾 (𝑠) B 𝛾 (𝑡) where 𝑡 = 𝜑 (𝑠) is a change of
variables given by a function 𝜑 : 𝐽 → 𝐼 (which is assumed smooth, increasing, and bijective).

Note that changing the parametrization of a curve does not change its image, but it does

change its velocity and speed.

An example of quantity that is independent of parametrization is the length of a curve:

by definition, this is the integral of its speed 𝑙 (𝛾) B
∫
𝐼
‖𝛾 ′(𝑡)‖ d𝑡 . The fact that 𝑙 (𝛾) is left

unchanged by a reparametrization is an immediate application of the change of variables

theorem for integrals.

1
Rather, any sensible definition of curvature should imply that curves have vanishing intrinsic curvature.

One way to convince oneself of this is to realize that any metric curve is locally isometric to a Euclidean line

(the arclength parameter provides a local isometry to R), which is flat by definition.
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The parametrized curve 𝛾 is called regular if its velocity (equivalently its speed) never

vanishes. It is always possible to parametrize a regular curve by arclength: this means

that 𝛾 has unit speed (constant speed equal to 1). In this situation, the parameter is usually

denoted 𝑠 and called arclength parameter . This name comes from the fact that the arclength

parameter is unique up to addition of a constant, and given by 𝑠 =
∫ 𝑡

𝑡0
‖𝛾 ′(𝑢)‖ d𝑢, in other

words 𝑠 is the length of the curve 𝛾 between a fixed time 𝑡0 and the time 𝑡 .

Example 2.1. A circle in the Euclidean plane 𝐸 = R2 is the set of points at a distance 𝑅 > 0

(the radius) from some fixed point Ω = (𝑥0, 𝑦0) (the center). It can be parametrized by

𝛾 (𝑡) =
(
𝑥0 + 𝑅 cos(𝜔 (𝑡 − 𝑡0)), 𝑦0 + 𝑅 sin(𝜔 (𝑡 − 𝑡0))

)
where 𝜔 and 𝑡0 are real constants. This

parametrization has constant speed 𝑣 = 𝑅𝜔 , in fact any constant speed parametrization is of

this form (up to reversing time).

More generally, in a Euclidean space 𝐸, the set of points at distance 𝑅 > 0 from a point Ω ∈
𝐸 is a sphere, and its intersection with any affine plane 𝑃 going through Ω is a circle of center

Ω and radius 𝑅. This circle is parametrized by 𝛾 (𝑡) = Ω + 𝑅 cos(𝜔 (𝑡 − 𝑡0))®𝑖 + sin(𝜔 (𝑡 − 𝑡0)) ®𝑗 ,
where (®𝑖, ®𝑗) is an orthonormal basis of the vector space underlying 𝑃 .

2.1.2 Curvature

Let 𝛾 be a smooth regular curve. Without loss of generality, one can assume that 𝛾 is

parametrized by arclength, in other words has unit speed. The following proposition is

elementary but conceptually important:

Proposition 2.2. A curve 𝛾 parametrized by arclength is a straight line if and only 𝛾 ′′ = 0.

In the language of differential geometry, a straight line parametrized by arclength (ormore

generally by constant speed) is called a geodesic. The lemma above thus says that geodesics

are curves with vanishing acceleration, a characterization that holds in great generality (for

Riemannian manifolds).

When 𝛾 is any regular curve, still parametrized by constant speed, its acceleration is

always normal to the curve. Indeed, taking the derivative of the identity ‖𝛾 ′(𝑠)‖2 = 1 yields

2〈𝛾 ′(𝑠), 𝛾 ′′(𝑠)〉 = 0, and since 𝛾 ′(𝑠) is non-null and tangent to the curve, 𝛾 ′′(𝑠) is normal.

Informally speaking, the direction of 𝛾 ′′(𝑠) shows in which direction the curve is turning,

and its norm indicates how fast it is turning (this is consistent with the preceding lemma, at

least). The next definition thus sounds reasonable:

Definition 2.3. Let 𝛾 be a smooth space curve parametrized by arclength. The curvature
of 𝛾 is the function 𝜅 (𝑠) B ‖𝛾 ′′(𝑠)‖.

Remark 2.4. This notion of curvature is extrinsic, in the sense that depends on how the curve

is embedded in Euclidean space. If one moves the curve in space, even without stretching it,

its curvature will change. We shall see that for surfaces, it is possible to define an intrinsic
curvature. One observation that holds in great generality is that curvature has to do with

second-order derivatives.
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While this definition of curvature is extremely simple analytically, it is possible to give

a more geometric interpretation of it. First observe that, when 𝛾 is a circle, its curvature is

equal to the inverse of the radius (this is an easy calculation, given the parametrization given

in  Example 2.1 ). This makes sense: the smaller the radius, the sharper the turn.

It is possible to extend this interpretation to any regular curve 𝛾 by introducing the notion

of osculating circle. By definition, the osculating circle at 𝛾 (𝑠0) is the circle having best

contact with 𝛾 at 𝑠0. More precisely, it is the unique circle parametrized by arclength such

that 𝑐 (𝑠0) = 𝛾 (𝑠0), 𝑐′(𝑠0) = 𝛾 ′(𝑠0), and 𝑐′′(𝑠0) = 𝛾 ′′(𝑠0). We leave as an easy exercise to the

reader to check that this circle is indeed uniquely defined. The radius 𝑅(𝑠0) of the osculating
circle is called the radius of curvature. See  Figure 2.1 .

Remark 2.5. The osculating circle at 𝛾 (𝑠0) is not well-defined when 𝛾 ′′(𝑠0) = 0, strictly speak-

ing. Note however that the tangent line to the curve has second-order contact with the curve

in this situation. One can therefore consider that this line is the osculating “circle”, and that

it has infinite radius 𝑅(𝑠0) = +∞.

Figure 2.1: Osculating circle and radius of curvature.

Note: This figure and many others were created with the free software GeoGebra [ Hoh+ ].

Remark 2.6. If𝛾 is not parametrized by arclength, one can always reparametrize it by arclength

to define its curvature 𝜅 (𝑡) at any point. Alternatively, 𝜅 (𝑡) can be directly computed by

𝜅 (𝑡) = ‖𝑇 ′(𝑡)‖
‖𝛾 ′(𝑡)‖ =

‖𝛾 ′(𝑡) × 𝛾 ′′(𝑡)‖
‖𝛾 ′(𝑡)‖3
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where 𝑇 (𝑡) = 𝛾 ′(𝑡)
‖𝛾 ′(𝑡)‖ is the unit tangent vector and 𝛾

′(𝑡) × 𝛾 ′′(𝑡) denotes the cross-product
of vectors in R3. This formula is an elementary exercise: see  Exercise 2.1 .

Having set everything up, the following proposition should be fairly clear:

Proposition 2.7. Let 𝛾 be a smooth regular curve. The curvature of 𝛾 is the inverse of its radius
of curvature:

𝜅 (𝑡) = 1

𝑅(𝑡)

Proof. Since the circle of curvature does not “see” the parametrization of 𝛾 , we can assume

that𝛾 is parametrized by arclength. Let 𝑠0 ∈ 𝐼 . By definition, 𝜅 (𝑠0) = ‖𝛾 ′′(𝑠0)‖. Let 𝑐 (𝑠) be the
osculating circle to 𝛾 at 𝑠0. We know that the curvature of a circle is equal to the inverse of its

radius, therefore ‖𝑐′′(𝑠0)‖ = 1

𝑅(𝑠0) . Since 𝑐
′′(𝑠0) = 𝛾 ′′(𝑠0), we conclude that 𝜅 (𝑠0) = 1

𝑅(𝑠0) . �

For completeness, we could further introduce the Frenet–Serret frame (𝑇, 𝑁, 𝐵) , the
notion of torsion , and mention the “fundamental theorem of space curves” (curves are

determined by their curvature and torsion). This would not be require much more work but

we shall not need these notions; out of interest, they are discussed in  Exercise 2.3 .

2.2 Curvature of surfaces

Let now 𝑆 ⊆ R3 be surface. To be accurate, this means that 𝑆 is a smooth 2-dimensional

embedded submanifold of R3; there are several equivalent definitions of what this means, but

let us not worry about these details.

Tangent plane. At any point 𝑝 ∈ 𝑆 , there is a tangent plane to the surface T𝑝 𝑆 ⊆ R3,
which is an affine plane. There are many equivalent definitions of it; one possible way to

think about tangent vectors ®𝑢 ∈ T𝑝 𝑆 is that they are the velocities of smooth curves 𝛾 : 𝐼 → 𝑆

(i.e. smooth curves 𝛾 : 𝐼 → R3 whose image is in 𝑆).

Unit normal. One can also define a unit normal ®𝑁𝑝 to the surface at 𝑝: it is a unit vector
that is orthogonal to T𝑝 𝑆 . There are two choices for the unit vector ®𝑁𝑝 . Locally, one can
always make a consistent choice at all points near 𝑝 (so that the map 𝑝 ↦→ ®𝑁𝑝 is continuous).
Globally, one can make a consistent choice for ®𝑁 if and only if the surface is orientable.

Geodesics. Among curves in 𝑆 , the most special are geodesics. Intuitively, a geodesic is
easy to define: imagine that you have a little car toy, whose wheels are powered by a battery

that never runs out. You can initially set the speed of rotation of the wheels, and never change

it afterwards. Also, the car wheels are always straight, it never turns. If you release this car

on a plane, its trajectory will be a straight line, parametrized by the car. More generally, if

you release this car on a surface, it will define a geodesic. This is really the right way to

think about geodesics: they are parametrized curves with constant intrinsic velocity, i.e. zero

intrinsic acceleration. Of course, formalizing all this requires some work, which we skip. This

description makes the following proposition intuitively obvious:
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Proposition 2.8. For any ®𝑣 ∈ T𝑝 𝑆 , there exists a unique geodesic in 𝑆 through 𝑝 with initial
tangent vector ®𝑣 .

We will denote this geodesic 𝛾®𝑣 . The following proposition gives a possible alternative

definition for geodesics:

Proposition 2.9. A curve 𝛾 on 𝑆 is a geodesic if and only if it has constant speed and is locally
length minimizing.

Precisely, being locally length minimizing means that every 𝑡0 ∈ 𝐼 and for every 𝑡1 suf-

ficiently close to 𝑡0, the length of 𝛾 between 𝑡0 and 𝑡1 is minimal along all curves from 𝑡0 to

𝑡1.

We will make good use of the following proposition:

Proposition 2.10. Let 𝑓 : 𝑆 → 𝑆 be an isometry (e.g., induced by an isometry of R3). Let 𝐹 ⊆ 𝑆
denote a connected component of the fixed point set of 𝑓 . If 𝑣 ∈ T𝑝 𝑆 is tangent to 𝐹 , then the
(image of) whole geodesic 𝛾𝑣 is contained in 𝐹 .

Proof. Consider the curve 𝛾𝑣 B 𝑓 ◦𝛾𝑣 . Since 𝑓 is an isometry, 𝛾𝑣 is also a geodesic. Moreover,

since 𝐹 is fixed by 𝑓 , tangent vectors to 𝐹 are fixed by d𝑓 . It follows that 𝛾 ′𝑣 (0) = d𝑓 (𝛾 ′𝑣 (0)) =
d𝑓 (𝑣) = 𝑣 . By uniqueness of the geodesic with initial velocity 𝑣 , we conclude that 𝛾𝑣 = 𝛾𝑣 .

This shows that 𝛾𝑣 is contained in the fixed set of 𝐹 , and one concludes by connectedness of

𝛾𝑣 . �

Remark 2.11.  Proposition 2.10 holds more generally in any Riemannian manifold: the proof

is the same.

Length of curves. Note that on 𝑆 , one can measure the length of any curve 𝛾 : 𝐼 → 𝑆 : it is

simply its length as a curve in R3.

Intrinsic metric (first fundamental form).Note that since the velocity of 𝛾 is always tangent
to 𝑆 , the length of curves in 𝑆 only depends on the restriction of the inner product of R3 to

the tangent planes to 𝑆 . This data, the assignment 𝑝 ∈ 𝑆 ↦→ 𝑔𝑝 where 𝑔𝑝𝑥 is the inner product

on T𝑝 𝑆 , is called the intrinsic Riemannian metric on 𝑆 , or first fundamental form.

Remark 2.12 (Comment on the word “intrinsic”). Let 𝑓 : 𝑆 → 𝑆′ be an (Riemannian) isometry

between surfaces in R3. By definition, this means that at any 𝑝 ∈ 𝑆 , the differential d𝑓 is

a linear isometry between the Euclidean planes (T𝑝 𝑆, 𝑔𝑝) and (T𝑓 (𝑝) 𝑆, 𝑔′𝑓 (𝑝)). This easily
implies that 𝑓 (locally) preserves lengths of curves, in particular 𝑓 is a (local) metric isometry.

A notion relative to surfaces is called intrinsic if, for any isometry 𝑓 : 𝑆 → 𝑆′, the notion on

𝑆′ coincide with its transport from 𝑆 to 𝑆′ using 𝑓 . One quickly see that the first fundamental

form being intrinsic is essentially a tautology.

Extrinsic curvatures. We would like to define the extrinsic curvature of 𝑆 at 𝑝 in the

direction ®𝑣 ∈ T𝑝 𝑆 as the curvature at 𝑝 of the geodesic𝛾®𝑣 (see  Remark 2.14 ). The only problem

is that this does not have a sign, or rather it is always nonnegative. However, given a choice
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of unit normal ®𝑁 , one can choose the sign as follows: we decide that the extrinsic curvature

is positive if 𝛾 ′′(0) and 𝑁 have same direction ( ®𝑁 points towards the center of the osculating

circle), and is negative if they have opposite directions ( ®𝑁 points away from the center of the

osculating circle). For example,  Figure 2.2 illustrates an negative extrinsic curvature. NB: It is

a consequence of 𝛾 being a geodesic that its acceleration is always normal to the surface (by

definition, a geodesic has vanishing intrinsic acceleration, which means that the orthogonal

projection of the acceleration to the tangent space of the surface vanishes).

Figure 2.2: Any point 𝑝 ∈ 𝑆 and tangent vector ®𝑣 ∈ T𝑝 𝑆 define a unique geodesic 𝛾®𝑣 . In

this example, the acceleration 𝛾 ′′®𝑣 (0) and the chosen normal ®𝑁 have same direction: ®𝑁 points

towards the center of the osculating circle. Therefore the extrinsic curvature 𝜌 (®𝑣) is positive,
given by 𝜌 (®𝑣) = + 1

𝑅
where 𝑅 is the radius of the osculating circle.

This definition of the extrinsic curvature, while theoretically right (see  Remark 2.14 ), is

not very practical because it is generally not easy to find the geodesic𝛾®𝑣 explicitly. Thankfully
there is a variation of this definition that allows straightforward calculations. Let 𝛾 be any
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curve in 𝑆 with 𝛾 ′(0) = ®𝑣 . We cannot just take the curvature of 𝛾 , because that is not

independent of the choice of 𝛾 . However, the quantity 〈 ®𝑁,𝛾 ′′(0)〉 is independent of 𝛾 (see

 Proposition 2.13 ) That quantity, usually called normal curvature of 𝛾 , clearly coincides with
the extrinsic curvature for the geodesic 𝛾®𝑣 since 𝛾

′′
®𝑣 (0) is collinear to ®𝑁 . (Another special

curve having this property is the curve 𝛾®𝑣,𝑁 obtained by intersecting the affine plane through

𝑝 spanned by ®𝑣 and ®𝑁 with 𝑆 , parametrized by arclength.)

Proposition 2.13. Let 𝑝 ∈ 𝑆 and 𝑣 ∈ T𝑝 𝑆 . The normal curvature
〈
𝛾 ′′(0), ®𝑁

〉
is independent

of the choice of the curve 𝛾 such that 𝛾 (0) = 𝑝 and 𝛾 ′(0) = ®𝑣 . We call it extrinsic curvature of
𝑆 at 𝑝 in the direction ®𝑣 and denote it 𝜌𝑝 (®𝑣). Moreover, it can be written:

𝜌𝑝 (®𝑣) =
〈
𝛾 ′′(0), ®𝑁

〉
= −

〈
∇®𝑣 ®𝑁, ®𝑣

〉
.

Proof. Since the curve 𝛾 is always in 𝑆 , its velocity is always orthogonal to ®𝑁 :

〈 ®𝑁𝛾 (𝑡), 𝛾 ′(𝑡)〉 = 0 .

Differentiating this identity gives

〈(∇𝛾 ′(𝑡) ®𝑁 )𝛾 (𝑡), 𝛾 ′(𝑡)〉 + 〈 ®𝑁𝛾 (𝑡), 𝛾 ′′(𝑡)〉 = 0 .

At 𝑡 = 0, this reads

〈
∇®𝑣 ®𝑁, ®𝑣

〉
+ 〈 ®𝑁𝛾 (𝑡), 𝛾 ′′(0)〉 = 0. �

Second fundamental form.  Proposition 2.13 shows that 𝜌𝑝 (®𝑣) is a quadratic form of ®𝑣 : there
exists a symmetric bilinear form 𝐵𝑝 : T𝑝 𝑆 × T𝑝 𝑆 → R such that 𝜌𝑝 (®𝑣) = 𝐵𝑝 (®𝑣, ®𝑣), namely:

𝐵𝑝 (®𝑢, ®𝑣) = −
〈
∇®𝑢 ®𝑁, ®𝑣

〉
.

𝐵𝑝 is the second fundamental form of 𝑆 at 𝑝 .

Remark 2.14. For advanced readers, let us mention that more generally, the second funda-

mental form can elegantly be defined as the (Riemannian) Hessian of the inclusion of a

submanifold. This amounts to the definition above in terms of acceleration of geodesics. In

general, the second fundamental form takes values in the normal bundle of the submanifold.

Amusingly, the mean curvature is the trace of the Hessian (divided by the dimension), i.e. the

“Laplacian” (also known as tension field) of the inclusion.

Principal curvatures, mean curvature, Gaussian curvature. By definition, the principal
curvatures at 𝑝 are the minimal and maximal values of the extrinsic curvatures at 𝑝 in the

directions of all unit vectors, attained in the respective principal directions of curvature.
Themean curvature 𝐻𝑝 ∈ R (also sometimes called extrinsic curvature) at 𝑝 is defined as

the average (half-sum) of principal curvatures, and the Gaussian curvature 𝐾𝑝 ∈ R is the

product of the principal curvatures.

A nice and immediate consequence of the spectral theorem is:
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Theorem 2.15. The principal curvatures are the eigenvalues of the second fundamental form
𝐵 (or rather, of the matrix of 𝐵 taken in any orthonormal basis). The principal directions of
curvature are orthogonal, and eigenvectors of 𝐵. The mean curvature is the trace of 𝐵, and the
Gaussian curvature is the determinant of 𝐵.

A very important theorem is the Theorema Egregium (which roughly means “very impor-

tant theorem”):

Theorem 2.16 (Theorema Egregium). The Gaussian curvature is intrinsic.

In other words, if 𝑓 : 𝑆 → 𝑆′ is an isometry, then 𝐾 = 𝐾′ ◦ 𝑓 . We will not prove the

Theorema Egregium. The other most important theorem of the theory of surfaces in R3 is

the theorem of Gauss–Bonnet:

Theorem 2.17 (Gauss–Bonnet Theorem). If 𝑆 is a closed surface without boundary, then∫
𝑆

𝐾 d𝐴 = 2𝜋 𝜒 (𝑆) .

The integer 𝜒 (𝑆) is the Euler characteristic of 𝑆 , a topological invariant. It is remarkable

that the Gauss–Bonnet theorem relates the geometry and the topology of the surface.

Remark 2.18. The Gauss–Bonnet theorem holds more generally for abstract Riemannian

surfaces, possibly with boundary. We will briefly see this general version in  Chapter 14 .

2.3 Curvature of Riemannian manifolds

2.3.1 Riemannian surfaces

Let 𝑆 be a surface in R3. More generally, 𝑆 can be any “abstract surface” (2-dimensional

manifold), whatever that means—at the very least, 𝑆 has a well-defined tangent space T𝑝 𝑆

at any point 𝑝 ∈ 𝑆 . Suppose that, instead of taking the restriction of the inner product of R3

in T𝑝 𝑆 , we take any other inner product product. In other words, we choose a map 𝑔 which

assigns to a point 𝑝 an inner product in T𝑝 𝑆 , and we require that 𝑔 depends smoothly on 𝑝 ,

whatever that means. (It means, for instance, that 𝑔𝑝 (𝑋,𝑌 ) is a smooth function of 𝑝 ∈ 𝑆
whenever 𝑋 and 𝑌 are smooth vector fields.) Such a family of inner products on the tangent

spaces of 𝑆 is called a Riemannian metric on 𝑆 .
An important class of examples is when 𝑆 = Ω is an open subset of R2. In this case, T𝑝 𝑆

is canonically identified to R2 for every 𝑝 ∈ 𝑆 . Therefore a Riemannian metric on 𝑆 is simply

a C∞
map 𝑔 : Ω → S

+
2
(R) where S+

2
(R) indicates the set of symmetric positive definite 2 × 2

matrices.

As an example, let us look at the Poincaré half-plane (which we will study in  Chapter 10 ).

We take Ω = {(𝑥,𝑦) ∈ R2, 𝑦 > 0} and 𝑔(𝑥,𝑦) =
𝑔0
𝑦2
, where 𝑔0 = 〈·, ·〉 is the standard inner
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product on R2. In usual Riemannian geometry notations, this Riemannian metric is written

d𝑠2 =
d𝑥2 + d𝑦2

𝑦2
.

Remark 2.19 (Riemannian geometry notations). Professors or textbooks rarely take the time

to carefully explain notations such as d𝑠2 =
d𝑥2+d𝑦2
𝑦2

; let me try to correct this bad habit.

The notation 𝑔 = d𝑠2 for the Riemannian metric is a customary abuse of notations. It

relates to the fact that when 𝑠 is an arclength parameter, d𝑠 is called the “line element”, because

it gives the length of the curve when integrated. Given any parametrization 𝑡 ↦→ 𝛾 (𝑡) of a
curve, the line element can be computed as d𝑠 = ‖®𝑣 ‖ d𝑡 , where ®𝑣 = 𝛾 ′(𝑡) is the velocity. In
other words, we have d𝑠 =

√︁
𝑔(®𝑣, ®𝑣) d𝑡 . By abuse of notation, the quadratic form ®𝑣 ↦→ 𝑔(®𝑣, ®𝑣)

and the associated symmetric bilinear form 𝑔 are both denoted d𝑠2.

Now let us explain the notations d𝑥 , d𝑦, d𝑥2, etc. Basically, the inner product 𝑔 on R2 with

matrix

(
𝛼 𝛽

𝛽 𝛾

)
is denoted 𝑔 = 𝛼 d𝑥2 + 2𝛽 d𝑥 d𝑦 + 𝛾 d𝑦2. But why?

Technically, d𝑥 is the derivative of the function Ω ⊆ R2 → R, (𝑥,𝑦) ↦→ 𝑥 . It is the

constant map on Ω with values in L(R2,R) which is always equal to 𝑒∗
1
. Similarly, d𝑦 is the

constant map equal to 𝑒∗
2
. Recall that (𝑒∗

1
, 𝑒∗

2
) denotes the dual basis of the canonical basis of

R2: 𝑒∗𝑖 is the linear form 𝑢 ↦→ 𝑢𝑖 .

Finally, d𝑥 d𝑦 stands for the symmetric product of d𝑥 and d𝑦, while d𝑥2 (resp. d𝑦2) is the

symmetric product of d𝑥 (resp. d𝑦) with itself. In general, the symmetric product of two linear
forms 𝛼 and 𝛽 is the symmetric bilinear form defined by (𝑢, 𝑣) ↦→ 𝛼 (𝑢)𝛽 (𝑣)+𝛼 (𝑣)𝛽 (𝑢)

2
.

When (𝑆, 𝑔) is a surface equipped with a Riemannian metric, one can seamlessly develop

all the same notions as before: the velocity of curves on 𝑆 still make sense, so does their

speed (using 𝑔), etc. In particular, geodesics are well-defined. Note however that unless

we have an isometric embedding of (𝑆, 𝑔) in a Euclidean space R𝑁  

2
 , we cannot define the

Gaussian curvature like before. Nevertheless, it is possible to define the Gaussian curvature

in a consistent way, so that whenever 𝑆 → 𝑆′ is an isometry, 𝐾 = 𝐾′ ◦ 𝑓 . This can be done

explicitly with formulas, but they are not very insightful.

One particular case of interest is when 𝑔 is conformally flat metric, i.e. 𝑔 is pointwise

proportional to a Euclidean metric. On Ω ⊆ R2, this means that 𝑔 = 𝑓 𝑔0 where 𝑓 = 𝑒2𝜑 : Ω →
R is some smooth positive function, and 𝑔0 = d𝑥2 + d𝑦2 is the Euclidean metric. In this case,

the Gaussian curvature is computed by:

𝐾 = −𝑒−2𝜑Δ𝜑 .

(This is a particular case of the more general formula 𝐾 = 𝑒−2𝜑 (𝐾0 + Δ0𝜑) relating the

Gaussian curvatures of any two conformal metrics.)

2
Such an isometric embedding always exists: this is the Nash embedding theorem.
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In particular, for the Poincaré half-plane, we have 𝜑 = − log(𝑦), from which we find

Δ𝜑 = 1

𝑦2
, and 𝐾 = −1. Thus we already have a “proof” that the Poincaré half-plane has

constant curvature −1. We shall later see several other proofs of this fundamental feature of

the hyperbolic plane.

2.3.2 Higher dimensional Riemannian manifolds

Sectional curvature

When𝑀 is a higher dimensional Riemannian manifold, the Gaussian curvature is generalized

as the sectional curvature. This depends on the choice of a point 𝑝 ∈ 𝑆 and a 2-dimensional

subspace 𝑃 ⊆ T𝑝 𝑀 .

For instance, assume𝑀 is a submanifold of 𝑅𝑛. One can still equip𝑀 with a Riemannian

metric by restricting the Euclidean inner product to each tangent space of𝑀 . Hence we can

still measure lengths of curves, talk about geodesics, etc.

The definition of the sectional curvature is as follows. Consider the surface 𝑆𝑃 obtained

by taking all geodesics in𝑀 are tangent to 𝑃 at 𝑝 (their initial velocity belongs to 𝑃 ). Then 𝑆 is

a surface (for connoisseurs of Riemannian geometry: 𝑆 is just exp𝑝 (𝑃). Just take its Gaussian
curvature.

Riemann curvature tensor

The sectional curvature is very geometric, but as anmathematical object it is a bit complicated:

one could say it is a real-valued function on the Grassmannian of 2-planes Gr2𝑀 . It turns out

that all sectional curvatures can be encoded in an object that has a concise definition and is

easier to calculate: the Riemann curvature tensor. This object 𝑅 is a quadrilinear map on the

tangent space: given 4 tangent vectors 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ T𝑝 𝑀 , it assigns a number 𝑅(𝑣1, 𝑣2, 𝑣3, 𝑣4).
This is a tensor, i.e. is linear in 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ T𝑝 𝑀 , moreover it has several symmetries, but

let us not go into details.

The relation between the Riemann curvature tensor and the sectional curvature is that

for any two vectors 𝑢 and 𝑣 at 𝑝 , the sectional curvature of the plane spanned by 𝑢 and 𝑣 is

𝐾 (𝑢, 𝑣) = 〈𝑅(𝑢, 𝑣)𝑣,𝑢〉
‖𝑢 ∧ 𝑣 ‖2

where we denote ‖𝑢 ∧ 𝑣 ‖2 = ‖𝑢‖2‖𝑣 ‖2 − 〈𝑢, 𝑣〉2 (and 〈·, ·〉 = 𝑔 is the Riemannian metric).

It is “just” linear algebra to show that 𝐾 determines 𝑅 and conversely. For a differential

geometer, 𝑅 has an incredibly pleasant definition: it is exactly the lack of commutation of

second derivatives in𝑀 . More precisely, it is the curvature of the Levi-Civita connection:

𝑅(𝑋,𝑌 ) = ∇2

𝑋,𝑌 − ∇2

𝑌,𝑋

But explaining this more precisely would take us beyond the scope of this course.
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2.3.3 Taylor expansion of the metric

In a way, the curvature of a Riemannian manifold is precisely the measurement of how the

Riemannian metric locally differs from the Euclidean metric to second order. This point of

view is in fact faithful to Bernhard Riemann’s original approach: he defines the curvature

tensor in his 1854 habilitation [ Rie1 ] via the formula:

𝑔𝑖 𝑗 = 𝛿𝑖 𝑗 −
1

3

𝑅𝑖𝑘 𝑗𝑙𝑥
𝑘𝑥𝑙 +𝑂 (𝑟 3)

in normal coordinates. Let us give a more geometric characterization (we refer to [ GLM ,

Appendix A] for details).

Let 𝑝 ∈ 𝑀 and consider two tangent vectors 𝑢, 𝑣 ∈ T𝑝 𝑀 . Denote by 𝛾𝑢 and 𝛾𝑣 the

geodesics from 𝑝 with initial velocities 𝑢 and 𝑣 respectively. Then

𝑑 (𝛾𝑢 (𝑡), 𝛾𝑣 (𝑡))2 = ‖𝑢 − 𝑣 ‖2 𝑡2 − 1

3

〈𝑅(𝑢, 𝑣)𝑣,𝑢〉 𝑡4 +𝑂 (𝑡5) .

as 𝑡 → 0. In other words, with the sectional curvature:

𝑑 (𝛾𝑢 (𝑡), 𝛾𝑣 (𝑡))2 = ‖𝑢 − 𝑣 ‖2 𝑡2 − 1

3

𝐾 (𝑢, 𝑣)‖𝑢 ∧ 𝑣 ‖2 𝑡4 +𝑂 (𝑡5) .

The important thing to note is that 𝑑E (𝛾𝑢 (𝑡), 𝛾𝑣 (𝑡)) B ‖𝑢 − 𝑣 ‖2 𝑡2 is exact in a Euclidean

space, therefore the next order term gives the deviation from the Euclidean distance. In

particular, observe that if 𝐾 > 0, then 𝑑 < 𝑑E: the distance between geodesics is closer than

in a Euclidean space; on the contrary, if 𝐾 < 0 then 𝑑 > 𝑑E: geodesics diverge faster than in

a Euclidean space. See  Figure 2.3 for an illustration.

2.4 Model spaces of constant curvature

Using classical techniques of Riemannian geometry, one can show:

Theorem 2.20. Any two Riemannian manifolds of the same dimension and with same constant
sectional curvature are locally isometric.

In other words, 𝑛-dimensional metrics of constant sectional curvature 𝑘 ∈ R are locally

unique. In a nutshell, the proof goes as follows: using Jacobi fields, one sees that for a

Riemannian manifold of constant sectional curvature, the Riemannian metric’s expression

is forced to a have a fixed expression in normal coordinates. For more details, see [ Lee3 ,

Theorem 10.14, Corollary 10.15].

By definition, amodel space or a space form of constant sectional curvature is a complete,

simply-connected manifold of constant sectional curvature. We recall that a Riemannian

manifold is called complete if lines (geodesics) can be extended indefinitely. Equivalently, it

is complete as a metric space (Hopf-Rinow theorem).

Using the Cartan–Hadamard theorem, one can derive from the previous theorem:
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Figure 2.3: Geodesic deviation: the distance between geodesics 𝛾𝑢 (𝑡) and 𝛾𝑣 (𝑡) is controlled
by the sectional curvature 𝐾 (𝑢, 𝑣).

Theorem 2.21. In any dimension, the space form of constant curvature 𝑘 ∈ R is unique up to
isometry.

Space forms are thus essentially unique; also, they exist! Depending on the sign of 𝑘 ∈ R,
the space formM𝑛

𝑘
takes three different forms:

• For 𝑘 > 0, the space form of constant curvature 𝑘 is denoted S𝑛
𝑅
where 𝑘 = 1

𝑅2
. The

usual model for it is the Euclidean sphere of squared radius 𝑅 in R𝑛+1.
• For 𝑘 = 0, the space form of constant curvature 𝑘 is Euclidean space E𝑛. The usual

model for it is R𝑛 with its standard Euclidean structure.

• For 𝑘 < 0, the space form of constant curvature 𝑘 is hyperbolic space H𝑛
𝑅
where

𝑘 = − 1

𝑅2
. One model for it is the pseudo-Euclidean sphere of “imaginary radius” 𝑅

√
−1

in Minkowski space R𝑛,1, as we shall see in  Chapter 5 . However, we shall also see other

useful models: the Beltrami–Klein model ( Chapter 8 ), the Poincaré ball and half-space

models ( Chapter 10 ).

Combining the two previous theorems, we can state:

Theorem 2.22. Let 𝑀 be a complete Riemannian manifold of constant sectional curvature
𝑘 ∈ R. Then𝑀 is covered by the space formM𝑛

𝑘
. In other words,𝑀 is isometric to a quotient of

the space formM𝑛
𝑘
by a free and wandering action of a discrete group of isometries.

Note that, after scaling the metric, one can assume 𝑀 has constant sectional curvature

1, 0, or −1. In many ways, the latter case is the most interesting. A manifold with constant

sectional curvature −1 is called a hyperbolic manifold.
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The previous theorem implies that any complete hyperbolic manifold is a quotient of

hyperbolic space H𝑛. This is remarkable because it shows that while Riemannian metrics are

rather flexible objects, hyperbolic metrics are quite rigid. A consequence of this is that the

study of hyperbolic manifolds is more algebraic, and less differential, that one could expect.

This explains why a course in hyperbolic geometry belongs in the realm of classical geometry

more than differential geometry, much like a course in Euclidean geometry.

2.5 Curvature of metric spaces

Metric spaces are clearly much more general than Riemannian manifolds. Can we extend the

notion of curvature to metric spaces? In a nutshell, yes, there are several slightly different

definitions of curvature in metric spaces that coincide for Riemannian manifolds. However:

• All such definitions build on the Riemannian case, or at least the model spaces of

constant sectional curvature (called space forms). Therefore, one should start by un-

derstanding curvature in Riemannian manifolds, or at least in space forms.

• There is a trade-off: the notion of curvature in metric spaces is not as precise as in

Riemannian manifolds.

Despite these nuances, the notion of curvature inmetric spaces is very useful. In particular,

Gromov hyperbolic spaces offer the right frame to classify the isometries of hyperbolic space.

We postpone this discussion until  Chapter 12 .
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2.6 Exercises

Exercise 2.1. Formula for the curvature of a space curve

Let 𝛾 : 𝐼 → 𝐸 be a smooth regular curve in a 3-dimensional Euclidean space. We assume that

𝛾 (𝑡) is not necessarily parametrized by arclength and we call 𝑠 an arclength parameter.

(1) Let 𝑇 (𝑡) B 𝛾 ′(𝑡)
‖𝛾 ′(𝑡)‖ (unit tangent). Using the chain rule, show that 𝑇 (𝑠) = d𝛾

d𝑠
.

(2) Show that 𝜅 (𝑠) =
d𝑇
d𝑠


and 𝜅 (𝑡) = ‖𝑇 ′(𝑡)‖

‖𝛾 ′(𝑡)‖ =
‖𝛾 ′(𝑡)×𝛾 ′′(𝑡)‖

‖𝛾 ′(𝑡)‖3 .

(3) Compute the curvature of the ellipse with equation
𝑥2

𝑎2
+ 𝑦2

𝑏2
= 1 in the 𝑥𝑦-plane.

Exercise 2.2. Osculating ellipse

Let 𝛾1 and 𝛾2 be two smooth regular curves in a Euclidean space 𝐸. Assume that 𝛾1 and 𝛾2
meet at some point 𝑝 = 𝛾1(𝑡1) = 𝛾2(𝑡2).
(1) One could say that𝛾1 and𝛾2 have order𝑘 contact at 𝑝 if there is an equality of derivatives

𝛾 (𝑖) (𝑡1) = 𝛾 (𝑖) (𝑡2) for all 𝑖 ∈ {0, . . . , 𝑘}. Is this notion invariant under reparametrization

of 𝛾1 or 𝛾2? Is it invariant under post-composition of 𝛾1 and 𝛾2 by a diffeo 𝜑 : R
3 → R3?

(2) We say instead that𝛾1 and𝛾2 have order𝑘 contact at 𝑝 if there is an equality of derivatives
𝛾 (𝑖) (𝑠1) = 𝛾 (𝑖) (𝑠2) for all 𝑖 ∈ {0, . . . , 𝑘} after 𝛾1 and 𝛾2 have been reparametrized by

arclength. Answer the same questions asked in  (1) .

(3) Let us call 𝛾1 and 𝛾2 osculating at 𝑝 if they have second-order contact at 𝑝 in the sense

of  (2) . Is this consistent with the definition of the osculating circle? Is it true that 𝛾1
and 𝛾2 are osculating at 𝑝 if and only if they are tangent and have same curvature at 𝑝?

(4) (*) Let 𝐶 denote the unit circle in R2 (with equation 𝑥2 + 𝑦2 = 1). Show that for any

𝑝0 ∈ 𝐶 and for any 𝑝 ≠ 𝑝0 ∈ R2, there exists a unique ellipse through 𝑝 that has order

4 contact with 𝐶 at 𝑝0. Hint: Start with the case 𝑝0 = (1, 0) and 𝑝 = (𝑥𝑝, 0).

Exercise 2.3. Frenet–Serret frame and torsion

Let 𝛾 : 𝐼 → 𝐸 be a smooth regular curve in a 3-dimensional Euclidean space, parametrized by

arclength. Assume that 𝛾 ′′ does not vanish.

(1) Let 𝑇 (𝑠) B 𝛾 ′(𝑠) (unit tangent), 𝑁 (𝑠) B 𝛾 ′′(𝑠)
‖𝛾 ′′(𝑠)‖ (principal normal), and 𝐵(𝑠) B

𝑇 (𝑠) × 𝑁 (𝑠) (unit binormal). Show that (𝑇 (𝑠), 𝑁 (𝑠), 𝐵(𝑠)) is an orthonormal basis.

(2) The frame of 𝐸 with origin 𝛾 (𝑠) and basis (𝑇 (𝑠), 𝑁 (𝑠), 𝐵(𝑠)) is called Frenet–Serret
frame (see  Figure 2.4 ). What is the equation of the osculating circle in this frame?

(3) We pick a fixed orthonormal frame of 𝐸. Let 𝑄 (𝑠) be the matrix whose rows are given

by the coordinates of 𝑇 (𝑠), 𝑁 (𝑠), and 𝐵(𝑠) respectively.
(a) Argue that 𝑄 ∈ O(3,R), i.e. 𝑄 (𝑠)𝑄 (𝑠)T = 𝐼3.
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Figure 2.4: Frenet–Serret frame.

(b) Derive from the previous question that 𝑄′(𝑠)𝑄 (𝑠)T is antisymmetric.

(c) On the other hand, show that the first row of 𝑄′(𝑠)𝑄 (𝑠)T is
[
0 𝜅 (𝑠) 0

]
.

(d) Derive from the two previous question that there exists a number 𝜏 (𝑠), called the

torsion of 𝛾 , such that 𝑄′(𝑠)𝑄 (𝑠)T =


0 𝜅 (𝑠) 0

−𝜅 (𝑠) 0 𝜏 (𝑠)
0 −𝜏 (𝑠) 0

 .
(e) Conclude that the Frenet–Serret formulas hold:

𝑇 ′ = 𝜅𝑁

𝑁 ′ = −𝜅𝑁 + 𝜏𝐵
𝐵′ = −𝜏𝐵

(4) Check that the helix 𝛾 (𝑡) = (𝑎 cos 𝑡, 𝑎 sin 𝑡, 𝑏𝑡) has constant curvature and torsion.
(5) (*) Using the Picard–Lindelöf (aka Cauchy–Lipschitz) theorem, show that the curvature

and torsion of a space curve determine it uniquely up to an affine isometry of 𝐸. (This

is the “fundamental theorem of space curves”.)

(6) Show that any curve with constant nonzero curvature and torsion is a helix.
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Exercise 2.4. Mean curvature

Recall that for a surface 𝑆 ⊆ R3, we defined the mean curvature 𝐻𝑝 at a point 𝑝 ∈ 𝑆 as the

half-sum of the principal curvatures. Show that 𝐻𝑝 could instead be defined as, quite literally,

the mean extrinsinc curvature at 𝑝 . (First you’ll have to make sense of this statement!)

Exercise 2.5. The sphere

Let 𝑆𝑛
𝑅
denote the sphere of radius 𝑅 > 0 centered at the origin in R𝑛+1. We would like

to understand geodesics and curvature in 𝑆𝑛
𝑅
. This exercise may seem basic, but it is very

important: we will follow the same strategy for the hyperboloid in Minkowsi space.

(1) Show that any linear isometry of R𝑛+1 induces a Riemannian isometry of 𝑆𝑛
𝑅
. Optional:

show that the group of isometries of 𝑆𝑛
𝑅
is O(𝑛 + 1).

(2) For now, we consider the sphere 𝑆 = 𝑆2
𝑅
in R3.

(a) Show that for any 𝑝 ∈ 𝑆 and 𝑣 ∈ T𝑝 𝑆 , there exists a plane 𝐻 ⊆ R3 such that the

reflection 𝑠𝐻 through 𝐻 leaves 𝑝 and 𝑣 invariant.

(b) Show that geodesics on 𝑆 are exactly the great circles (intersection of 𝑆 with planes

through the origin), parametrized with constant speed.

(c) Show that we have the explicit expression:

𝛾𝑣 (𝑡) = cos (‖𝑣 ‖𝑡) 𝑝 + 𝑅 sin (‖𝑣 ‖𝑡) 𝑣

‖𝑣 ‖ .

(d) Let 𝑝, 𝑞 ∈ 𝑆 . Show that their distance on 𝑆 is given by 𝑑 (𝑝, 𝑞) = 𝑅 ](𝑝, 𝑞) where
](𝑝, 𝑞) denotes the unoriented angle between 𝑝 and 𝑞 seen as vectors in R3.

(3) What is the exterior unit normal 𝑁 at 𝑝? Show that the extrinsic curvature 𝜌𝑝 (𝑣) is
equal to − 1

𝑅
for any unit vector 𝑣 . Conclude that the Gaussian curvature is

1

𝑅2
at 𝑝 , and

hence everywhere.

(4) Let 𝑛 > 2.

(a) Show that  (2) remains true with 𝑆𝑛
𝑅
instead of 𝑆 and R𝑛+1 instead of R3, as long as

by plane we mean a 2-dimensional subspace.

(b) Let 𝑃 ⊆ T𝑝 𝑆
𝑛
𝑅
be a 2-plane. Denote 𝐸𝑃 ⊆ R𝑛+1 the subspace spanned by 𝑝 and 𝑃 .

Show that the union of geodesics in 𝑆𝑛
𝑅
with initial velocity in 𝑃 is the sphere 𝑆𝑃

of radius 𝑅 in 𝐸𝑃 . In the terminology of Riemannian geometry: exp𝑝 (𝑃) = 𝑆𝑃 .
(c) Conclude that 𝑆𝑛

𝑅
has constant sectional curvature

1

𝑅2
.

Exercise 2.6. The tractricoid

One of the obstacles to the discovery of the hyperbolic plane is that it cannot be smoothly

completely embedded as a surface in R3.  

3
 However, it is possible to smoothly embed a piece

of the hyperbolic plane in R3, as this exercise illustrates.

3
There are no complete surfaces of constant Gaussian curvature −1 of class C2

in R3 (Efimov’s theorem,
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(1) Consider the tractrix curve in the 𝑥𝑧-plane parametrized by:

𝛾 : [0, +∞) → R3

𝑡 ↦→ (𝑥 (𝑡) = sech 𝑡, 𝑦 (𝑡) = 0, 𝑧 (𝑡) = 𝑡 − tanh 𝑡)

where sech = 1

cosh
is the hyperbolic secant and tanh = sinh

cosh
is the hyperbolic tangent.

Draw the tractrix in the plane. Optional: Show that the tractrix is the path followed by

a reluctant dog on a leash (in German, a tractrix is a Hundekurve).

(2) The tractricoid (sometimes called pseudosphere  

4
 ) is the surface 𝑆 in R3 obtained

by rotating the tractrix defined above around the 𝑧-axis. Show that it has parametric

equations:

𝑥 = sech 𝑡 cos𝜃

𝑦 = sech 𝑡 sin𝜃

𝑧 = 𝑡 − tanh 𝑡 .

Show that rotations around the 𝑧-axis and reflections through vertical planes containing

the 𝑧-axis are isometries of 𝑆 . Draw a sketch of 𝑆 .

(3) We denote 𝑓 (𝜃, 𝑡) B (𝑥 (𝜃, 𝑡), 𝑦 (𝜃, 𝑡), 𝑧 (𝜃, 𝑡)). Consider the curves 𝑐𝑡 (𝜃 ) = 𝑓 (𝜃, 𝑡) when
𝑡 is fixed (“parallels”) and 𝛾𝜃 (𝑡) = 𝑓 (𝜃, 𝑡) when 𝜃 is fixed (“meridians”). Draw such

curves on 𝑆 . Using a symmetry argument, show that the curves 𝛾𝜃 (𝑡) are geodesics up
to parametrization.

(4) Consider a point 𝑝 = 𝑓 (𝜃0, 𝑡0) on the tractricoid. Our goal is to show that the Gaussian

curvature of 𝑆 at 𝑝 is −1.
(a) Explain why it is enough to show it when 𝜃0 = 0.

(b) Compute the velocities of 𝑐𝑡0 and 𝛾0 at 𝑝 . Derive an expression of the unit normal

vectors at 𝑝 .

(c) Compute the extrinsic curvatures of 𝑆 at 𝑝 in the unit directions tangent to 𝑐𝑡0
and 𝛾0.

(d) Using a symmetry argument, explain why the principal directions of curvatures

of 𝑆 at 𝑝 must be tangent to 𝑐𝑡0 or 𝛾0. Derive the value of the principal curvatures

at 𝑝 , conclude that 𝑆 has Gaussian curvature −1 at 𝑝 , and hence everywhere.
(5) Compute the arclength parameter of 𝛾 (𝑡). Show that the tractricoid is incomplete.

1964 [ Efi ], also see [ Mil2 ]). Hilbert first proved it for class C4
in 1901. Surprisingly, there are C1

embeddings

of the hyperbolic plane in R3. This is a corollary of the Nash-Kuiper C1
embedding theorem. See  http:

//www.math.cornell.edu/~dwh/papers/crochet/crochet.html for illustrations of crocheted hyperbolic

planes.

4
Depending on authors, pseudosphere may refer to the tractricoid specifically, or to any surface in R3 of

Gaussian curvature−1. I find the termmore appropriate for level sets of the quadratic form in a pseudo-Euclidean

vector space (this includes the hyperboloid model of the hyperbolic plane).
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Exercise 2.7. The Poincaré disk

The Poincaré disk D is defined as the unit disk equipped with the Riemannian metric:

d𝑠2 =
4

(
d𝑥2 + d𝑦2

)
(1 − 𝑥2 − 𝑦2)2

In this exercise, we denote𝑂 ∈ D the point which is at the origin in R2.

(1) Show that the Poincaré metric on D is conformal to the Euclidean metric. Is the Eu-

clidean metric complete on D?

(2) Show that any 𝑓 ∈ O(2) induces an isometry of D that fixes 𝑂 . Optional: show the

converse.

(3) Show that any diameter of D (straight chord through the origin) is a geodesic. Hint:
consider the fixed points of a reflection 𝑓 ∈ O(2).

(4) Find a parametrization of geodesics through the origin. Find an expression of the

distance between𝑂 and an arbitrary point in D.

(5) Show that D is complete. Use the Hopf-Rinow theorem.

(6) Compute the curvature of D.

Exercise 2.8. Euclid’s postulates for Riemannian surfaces (*)

Give an interpretation of Euclid’s postulates for Riemannian surfaces and discuss their impli-

cations.

This exercise is not easy, and best suited to students with a solid background of Riemannian
geometry. Regardless, I recommend that you read the solution.
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Part II

Pseudo-Euclidean geometry and the hyperboloid model

A four-dimensional continuum described by the “co-ordinates” 𝑥1, 𝑥2, 𝑥3, 𝑥4,
was called “world” by Minkowski, who also termed a point-event a “world-point”.
[. . . ] We can regard Minkowski’s “world” in a formal manner as a four-dimensional
Euclidean space (with an imaginary time coordinate) ; the Lorentz transformation
corresponds to a “rotation” of the co-ordinate system in the four-dimensional “world.”

– Albert Einstein 

5
 

The mathematical education of the young physicist [Albert Einstein] was not
very solid, which I am in a good position to evaluate since he obtained it from me
in Zurich some time ago.

– Hermann Minkowski 

6
 

5
Einstein, Relativity: The Special and the General Theory [ Ein ].

6
Quoted from [ New ].



CHAPTER 3

Pseudo-Euclidean spaces

In this chapter, we introduce pseudo-Euclidean spaces and, a special case, the Minkowski

space of any dimension. Our main motivation for studying Minkowski space is that it is the

stage for the hyperboloid model introduced in  Chapter 5 . Remarkably, Minkowski space also

plays a central role in the theory of relativity presented in the “bonus”  Chapter 6 .

In modern mathematics, a Euclidean space is defined as a finite-dimensional real vector

space equipped with an inner product, that is a positive definite symmetric bilinear form.

(More generally, it can be an affine space modelled on such a vector space.) Pseudo-Euclidean
spaces are the analog when the inner product is indefinite, though still nondegenerate. They

sharemany similaritieswith Euclidean spaces but also have important differences. Minkowski

spaces 

1
 are a special case, having index 𝑞 = 1, and offer a few specific features. (The index is

the maximal dimension of a negative definite subspace.)

Historically, Minkowskian and pseudo-Euclidean geometry (and their differential exten-

sions, Lorentzian and pseudo-Riemannian geometry) rose after the discovery of the theory

of relativity in the late 19th and early 20th century by Hendrik Lorentz, Henri Poincaré, and

Albert Einstein. In special relativity, Minkowski space is the model for “spacetime”; it is the

solution of Einstein’s equations in a vacuum.

For students in mathematics, it is not necessary to understand—or even be aware of—

the physics side of the story in order to learn Minkowski spaces and hyperbolic geometry,

although it is palpable in some of the terminology introduced in this chapter: spacelike and
timelike vectors, light cone, etc. Moreover, in  Chapter 6 (which can safely be skipped), we will

see direct connections between hyperbolic geometry and the theory of relativity.

For presentation purposes, I decided to include a separate chapter on Minkowski spaces

( Chapter 4 ), but it is little more than a summary of definitions and results of this chapter

specialized to 𝑞 = 1. A benefit of this presentation is that the reader in a hurry may skip this

chapter and refer back to it whenever needed, although I do recommend reading it throughout.

As a prerequisite for this chapter, we assume that the reader is familiar with abstract

linear algebra and Euclidean vector spaces: orthogonality, linear isometries, etc.

1
Some authors such as A. Thompson [ Tho ] call Minkowski space a finite-dimensional real vector space

equipped with a norm. I am under the impression that this choice of terminology is marginal and misleading.
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3.1. SYMMETRIC BILINEAR FORMS

3.1 Symmetric bilinear forms

Readers are expected to be partly familiar with the contents of this section; for this reason we

keep it fairly condensed. (A good reference for a more detailed treatment is Marcel Berger’s

Geometry  

2
 .)

3.1.1 Symmetric bilinear forms

Let 𝑉 be a vector space over a field K. Soon we will fix K = R, but in later chapters we will

occasionally encounter complex vector spaces.

A bilinear form on 𝑉 is a function 𝑏 : 𝑉 ×𝑉 → K that is linear in each entry: the two

functions 𝑏 (·, 𝑣0) and 𝑏 (𝑢0, ·) must be linear forms 𝑉 → K for any fixed 𝑢0 and 𝑣0 in 𝑉 . It is

called symmetric if 𝑏 (𝑣,𝑢) = 𝑏 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 .
The quadratic form associated to 𝑏 is the function 𝑞 : 𝑉 → K defined by 𝑞(𝑣) = 𝑏 (𝑣, 𝑣).

Clearly, 𝑞 is uniquely determined by𝑏; the converse is also true by the polarization formula:

𝑏 (𝑢, 𝑣) = 1

2

(𝑞(𝑢 + 𝑣) − 𝑞(𝑢) − 𝑞(𝑣)) .

This identity is simply obtained by writing 𝑏 (𝑢 + 𝑣,𝑢 + 𝑣) = 𝑏 (𝑢,𝑢) + 2𝑏 (𝑢, 𝑣) + 𝑏 (𝑣, 𝑣). Note
that to conclude, we need to assume that 2 is invertible, i.e. K is not a field of characteristic 2.

If𝑉 is finite-dimensional and equipped with a basis (𝑒1, . . . , 𝑒𝑛), a vector 𝑢 =
∑𝑛
𝑘=1

𝑢𝑘𝑒𝑘 is

represented by the column vector𝑈 = [𝑢1, . . . , 𝑢𝑛]T. The bilinear form 𝑏 has amatrix repre-
sentation 𝐵 =

[
𝑏𝑖 𝑗

]
16𝑖, 𝑗6𝑛

∈ M(𝑛,K) defined by 𝑏𝑖 𝑗 = 𝑏 (𝑒𝑖, 𝑒 𝑗 ). If 𝑢, 𝑣 ∈ 𝑉 are represented by

column vectors 𝑈 ,𝑉 , then 𝑏 (𝑢, 𝑣) can be computed as the matrix product 𝑏 (𝑢, 𝑣) = 𝑈T 𝐵𝑉 .

The bilinear form 𝑏 is symmetric if and only if 𝐵 is a symmetric matrix i.e. 𝐵T = 𝐵.

Remark 3.1. The choice of a basis (𝑒1, . . . , 𝑒𝑛) is equivalent to an isomorphism𝑉 ∼−→ K𝑛: the
vector with coordinates (𝑢1, . . . , 𝑢𝑛) is identified to the corresponding element of K𝑛. The

matrix representation of 𝑏 identifies it as a symmetric bilinear form on K𝑛.

Example 3.2. The determinant on𝑉 = R2 is defined by det((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 𝑥1𝑦2 − 𝑥2𝑦1. Is
it a bilinear form? Write its matrix representation in the canonical basis ofR2. Is it symmetric?

If (𝑒′
1
, . . . , 𝑒′𝑛) is a new basis, the change of basis is encoded by the transition matrix

𝑃 ∈ GL(𝑛,K), whose 𝑘-th column is 𝑒′
𝑘
represented in the old basis. If 𝑈 and 𝑈 ′

are the

representations of 𝑢 ∈ 𝑉 in the old and new bases, then 𝑈 = 𝑃 𝑈 ′
. It follows that the

representation of𝑏 in the new basis is𝐵′ = 𝑃T 𝐵 𝑃 . Thematrices 𝐵 and𝐵′ are called congruent.
Example 3.3. Let 𝑞(𝑥,𝑦) = 𝑥𝑦. Show that 𝑞 is a quadratic form on R2 and give the associated

symmetric bilinear form. Compute its matrix representation in the canonical basis of R2, and

then in the basis (𝑒′
1
, 𝑒′

2
) with 𝑒′

1
= (1, 1) and 𝑒′

2
= (−1, 1).

2
Chapter 13 in vol. II of [ Ber2 ] (English) or [ Ber1 ] (French). The French edition was re-edited in 2016 [ Ber3 ]

but it seems scarcely available.

33



CHAPTER 3. PSEUDO-EUCLIDEAN SPACES

One can associate to a bilinear form𝑏 twomaps𝑏L, 𝑏R : 𝑉 → 𝑉 ∗
defined by𝑏L(𝑢) = 𝑏 (𝑢, ·)

and 𝑏R(𝑣) = 𝑏 (·, 𝑣). (This technique is called currying, especially in computer science.) The

bilinear form 𝑏 is symmetric if and only if 𝑏L = 𝑏R, in which case their common kernel is

called the radical or kernel of 𝑏, denoted ker𝑏. It is furthermore called nondegenerate
if it has trivial radical, equivalently 𝑏L is injective, and a perfect pairing when 𝑏L is an

isomorphism𝑉 ∼−→ 𝑉 ∗
. When𝑉 is finite-dimensional, the rank of 𝑏 is defined as the rank of

𝑏L (or 𝑏R), and is equal to the codimension of ker𝑏 by the rank-nullity theorem; in particular,

𝑏 is nondegenerate if and only if it is a perfect pairing.

Example 3.4. On 𝑉 = K2
, the (bilinear form with) quadratic form 𝑞(𝑥,𝑦) = 2𝑥𝑦 is nonde-

generate: its polarization is 𝑏 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 𝑥1𝑦2 + 𝑥2𝑦1, which is zero for all (𝑥2, 𝑦2)
only if (𝑥1, 𝑦1) = 0. On the other hand, 𝑞(𝑥,𝑦) = (𝑥 − 𝑦)2 is degenerate: the polarization is

𝑏 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = (𝑥1 − 𝑦1) (𝑥2 − 𝑦2), and its radical is the line 𝑥 = 𝑦.

Example 3.5. A sophisticated example, for readers familiar with de Rham cohomology: On a

(compact, connected, oriented) manifold, the exterior product of differential forms induces a

perfect pairingH
𝑘 ×H

𝑛−𝑘 → H
𝑛 ≈ R. This is a difficult result that can be proven with Hodge

theory or the de Rham isomorphism. It yields the Poincaré duality H
𝑛−𝑘 ∼−→ (H𝑘)∗ ≈ H𝑘 .

If 𝑓 : 𝑉 →𝑊 is a linear map and 𝑏 is a bilinear form on𝑊 , the pullback of 𝑏 by 𝑓 is the

bilinear form on 𝑉 defined by (𝑓 ∗𝑏) (𝑣1, 𝑣2) = 𝑏 (𝑓 (𝑣1), 𝑓 (𝑣2)). When𝑊 = 𝑉 and 𝑓 ∈ GL(𝑉 ),
𝑏 and 𝑓 ∗𝑏 are called equivalent. In a basis of 𝑉 , if the matrix representations of 𝑏 and 𝑓 are

𝐵 and 𝑃 respectively, then the matrix of 𝑓 ∗𝑏 is 𝑃T 𝐵 𝑃 . In particular, two bilinear forms are

equivalent if and only if their matrix representations are congruent. (See  Exercise 3.3 .)

3.1.2 Orthogonality

Assume 𝑉 is equipped with a symmetric bilinear form 𝑏, which we also denote 〈·, ·〉. Two
vectors 𝑢, 𝑣 are called (𝑏-)orthogonal if 〈𝑢, 𝑣〉 = 0. When this happens, we write 𝑢 ⊥ 𝑣 .

Remark 3.6. This terminology and notations are typically reserved for 𝑏 nondegenerate (and

maybe K = R), which we will assume soon enough.

More generally, when𝐴, 𝐵 are subsets of𝑉 , we say that𝐴 and 𝐵 are orthogonal and write

𝐴 ⊥ 𝐵 when𝑢 ⊥ 𝑣 for all𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. The largest subset of𝑉 orthogonal to𝐴 is denoted

𝐴⊥
, it consists of all 𝑣 ∈ 𝑉 such that 𝑣 ⊥ 𝐴, and is a vector subspace.

Remark 3.7. Check that the radical of 𝑏 is 𝑉⊥
.

A vector 𝑣 is called isotropic if 𝑣 ⊥ 𝑣 i.e. 𝑞(𝑣) = 0 (and anisotropic otherwise). The set
of isotropic vectors is the isotropic cone (of 𝑏, or 𝑞). The radical of 𝑏 is always contained

in the isotropic cone; the converse is false in general. If 𝑏 has a trivial isotropic cone (only

contains 0), it is called definite (and indefinite otherwise). This is a very strong property: it
is equivalent to 𝑏 being nondegenerate in restriction to any subspace. See  Exercise 3.2 .

Remark 3.8. The isotropic cone is a (linear) cone in the sense that it is invariant by scalar

multiplication, i.e. it is a union of vector lines. It is also a quadric, as the set of solutions of
the quadratic equation 𝑞 = 0. This will be discussed in more detail in  § 7.5 .
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Example 3.9. Let𝑉 = R3. The isotropic cone of 𝑞(𝑥,𝑦, 𝑧) B 𝑥2 +𝑦2 +𝑧2 is trivial; the isotropic
cone of 𝑞(𝑥,𝑦, 𝑧) B 𝑥2 + 𝑦2 − 𝑧2 is the cone 𝑥2 + 𝑦2 = 𝑧2 shown in  Figure 3.1 ; the isotropic

cone of 𝑞(𝑥,𝑦, 𝑧) B 𝑥𝑦 is the union of the two vector planes 𝑥 = 0 and 𝑧 = 0.

Proposition 3.10. Assume 𝑉 is finite-dimensional. For any subspace𝑊 , dim𝑊 ⊥ > codim𝑊

with equality if 𝑏 is nondegenerate, and𝑊 ⊕𝑊 ⊥ = 𝑉 if and only if of 𝑏�𝑊 is nondegenerate.

Remark 3.11. It is possible that 𝑏 is degenerate but not its restriction 𝑏�𝑊 , and vice-versa.

Proof. Consider the map 𝑓 : 𝑉 → 𝑊 ∗
defined by 𝑓 (𝑣) (𝑤) = 𝑏 (𝑣,𝑤). By the rank–nullity

theorem, dimker 𝑓 + dim Im 𝑓 = dim𝑉 . Since ker 𝑓 = 𝑊 ⊥
and dim Im 𝑓 6 𝑊 , we get

dim𝑊 ⊥ > dim𝑉 − dim𝑊 , as desired. If 𝑏 is nondegenerate, then 𝑏L is surjective, hence 𝑓

is surjective (any linear form on𝑊 can be extended to 𝑉 ), therefore we have equality in the

previous argument. (Alternatively,𝑊 ⊥
is the preimage by 𝑏L of the annihilator (also called

polar)𝑊 ◦ ⊆𝑊 ∗
, and it is a basic fact of linear algebra that dim𝑊 ◦ = codim𝑊 .)

For the second statement, observe that ker(𝑏�𝑊 ) =𝑊 ∩𝑊 ⊥
. Therefore𝑊 ∩𝑊 ⊥ = {0} if

and only if 𝑏�𝑊 is nondegenerate. The conclusion then follows from the first statement. �

Recall that in a vector space 𝑉 , any decomposition 𝑉 =𝑊1 ⊕𝑊2 allows one to define the

projection onto𝑊1 along𝑊2 by 𝑝 (𝑤) = 𝑤1 (see  § A.1.2 for details). If𝑊2 =𝑊
⊥
1
, then 𝑝 is

called the orthogonal projection onto𝑊 .

Corollary 3.12. Assume 𝑉 is finite-dimensional. The orthogonal projection 𝑝 : 𝑉 →𝑊 on a
subspace𝑊 is well-defined if and only if𝑏�𝑊 is nondegenerate. If𝑏 is definite, then the orthogonal
projection onto any subspace𝑊 is well-defined.

Proof. If 𝑏 is definite, the restriction of 𝑏 to any subspace is definite hence nondegenerate. �

Theorem 3.13. Assume 𝑉 is finite-dimensional and 𝑏 is a symmetric bilinear form. Then 𝑉
admits an orthogonal basis, i.e. a basis whose elements are pairwise orthogonal.

Proof. If𝑞 = 0, any basis works. Otherwise, let 𝑒1 ∈ 𝑉 such that𝑞(𝑒1) ≠ 0. By  Proposition 3.10 ,

𝑒⊥
1
is a subspace of codimension 1 such that 𝑉 = 𝑒1 ⊕ 𝑒⊥1 . Conclude by induction. �

Remark 3.14. There are two famous algorithms to explicitly construct an orthogonal basis:

• The Lagrange method (also called Gauss reduction in French, strangely): Write the

quadratic form 𝑞 as a sum of squares of linear forms by eliminating mixed terms. For

instance, 𝑞(𝑥,𝑦) = 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 can be rewritten (assuming 𝑎 ≠ 0):

𝑞(𝑥,𝑦) = 𝑎
[
𝑥 + 𝑏

𝑎
𝑦

]
2

+
(
𝑐 − 𝑏

2

𝑎

)
𝑦2 .

Hence the change of coordinates: 𝑥′ = 𝑥 + 𝑏
𝑎
𝑦 and 𝑦′ = 𝑦.
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• The Gram–Schmidt process, which only applies when 𝑏 is definite. Start with any

basis (𝑣1, . . . , 𝑣𝑛), put 𝑒1 = 𝑣1, and project 𝑣𝑘+1 orthogonally on span(𝑒1, . . . , 𝑒𝑘) to obtain
𝑒𝑘+1. For instance, if 𝑞(𝑥,𝑦) = 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 in the basis (𝑣1, 𝑣2), then 𝑒2 = 𝑣2 − 𝑏

𝑎
𝑣1.

(If you are not acquainted with these methods, it is a good idea to look them up.) The example

above shows that when both methods apply, they are dual to each other: both produce the

transition matrix 𝑃 =

[
1

−𝑏
𝑎

0 1

]
, but Lagrange yields the new coordinates while Gram–Schmidt

yields the new basis. I am surprised not to find this fact spelled out anywhere!

Corollary 3.15. Assume𝑉 is finite-dimensional and let 𝑞 be a quadratic form. In suitable linear
coordinates (𝑥1, . . . , 𝑥𝑛), 𝑞 can be written 𝑞(𝑥) = 𝜆1𝑥21 + · · · + 𝜆𝑟𝑥2𝑟 where 𝑟 is the rank of 𝑞 and
𝜆1, . . . , 𝜆𝑟 ∈ K× are nonzero scalars.

Proof. Take the coordinate system associated to an orthogonal basis. The matrix representa-

tion of 𝑏 is diagonal, and the number of nonzero entries is the rank of the matrix. �

Corollary 3.16. If 𝑉 is finite-dimensional and K = C, any quadratic form can be written
𝑞(𝑥) = 𝑥2

1
+ · · · + 𝑥2𝑟 in a suitable coordinate system, and 𝑟 is the rank of 𝑞.

Corollary 3.17. If 𝑉 is finite-dimensional and K = C, any quadratic form can be written
𝑞(𝑥) = 𝑥2

1
+ · · · + 𝑥2𝑝 − 𝑥2𝑝+1 − · · · − 𝑥2𝑝+𝑞 in suitable coordinates, and 𝑝 + 𝑞 is the rank of 𝑞.

Proof of  Corollary 3.16 and  Corollary 3.17 . Let (𝑒1, . . . , 𝑒𝑛) and 𝜆1, . . . , 𝜆𝑟 be the basis and the

scalars given by  Corollary 3.15 . If K = C, any scalar is a square, so we can put 𝜆𝑘 = 𝜇2
𝑘
and

𝑒′
𝑘
= 𝑒𝑘/𝜇𝑘 . If K = R, put 𝜆𝑘 = ±𝜇2

𝑘
depending on the sign of 𝜆𝑘 : call 𝑝 the number of positive

values and 𝑞 the number of negative ones. Conclude. �

3.1.3 Positivity and signature

Henceforth, and for the remainder of the chapter, we assume that K = R.

A symmetric bilinear form 𝑏 is positive (semi)definite [resp. negative (semi)definite] if
the associated quadratic form 𝑞 takes (semi)positive [resp. (semi)negative] values on𝑉 − {0}.
(We use semipositive as a synonym for nonnegative, i.e. positive or zero.) A vector subspace

𝑊 ⊆ 𝑉 is called (semi)positive [resp. (semi)negative] if the restriction 𝑏�𝑊 has that quality.

Proposition 3.18. Assume that 𝑏 is positive [resp. negative] semidefinite. Then the isotropic
cone of 𝑏 is equal to its radical. Furthermore, it is equivalent for 𝑏 to be positive or negative
definite, or to be definite, or to be nondegenerate.

Proof. This is a good exercise: try to do it yourself (also see  Exercise 3.2 ). �

Theorem 3.19 (Sylvester’s law of inertia). Let𝑉 be real vector space of finite dimension 𝑛 and
𝑏 be a symmetric bilinear form.
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(i) The dimension 𝑝 [resp. 𝑞] of any maximal positive [resp. negative] subspace is the same,
called positive index [resp. (negative) index]. The pair (𝑝, 𝑞) is the signature of 𝑏.

(ii) One has 𝑝 + 𝑞 + 𝑟 = 𝑛 where 𝑟 is the dimension of the radical of 𝑏.
(iii) There exists a basis of 𝑉 for which the matrix representation of 𝑏 is the diagonal matrix:

𝐼𝑝,𝑞 B


𝐼𝑝 0 0

0 −𝐼𝑞 0

0 0 0


(iv) There exists a system of coordinates in which the quadratic form associated to 𝑏 is:

𝑞(𝑥) = 𝑥2
1
+ · · · + 𝑥2𝑝 − 𝑥2𝑝+1 − · · · − 𝑥2𝑝+𝑞 .

Conversely, any quadratic form with this property has signature (𝑝, 𝑞).
(v) Two symmetric bilinear forms are equivalent if and only if they have same signature.

Proof.  (i) Let𝑊0 be a positive subspace whose dimension 𝑝0 is maximal among all positive

subspaces. If𝑊 is a maximal positive subspace of dimension 𝑝 , then 𝑝 6 𝑝0. On the other

hand, 𝑉 = 𝑊 ⊕𝑊 ⊥
(by  Proposition 3.10 ), and𝑊 ⊥

is seminegative, otherwise𝑊 would

not be maximal. Since𝑊0 is positive, it intersects𝑊
⊥
trivially, so that dim(𝑊0 +𝑊 ⊥) =

dim𝑊0 + dim𝑊 ⊥ = 𝑝0 + (𝑛 − 𝑝). However dim(𝑊0 +𝑊 ⊥) 6 𝑛, that is 𝑝0 6 𝑝 . We conclude

that 𝑝 = 𝑝0. Of course, the negative version of this argument also works.

 (ii) Let𝑊+ be a maximal positive subspace. We saw that𝑊 ⊥
+ is seminegative, and it clearly

contains ker𝑏. Consider the restriction 𝑏�𝑊 ⊥
+ . It is seminegative, and its kernel is still ker𝑏.

By  Proposition 3.18 , ker𝑏 is also its cone, therefore 𝑏 is negative on any complementary

subspace𝑊− of ker𝑏 in𝑊 ⊥
+ . We obtain the decomposition

𝑉 =𝑊+ ⊕𝑊− ⊕ ker𝑏

where𝑊+ is maximal positive and𝑊− is negative.𝑊− is in fact maximal negative because 𝑏

is semipositive on the orthogonal complement𝑊+ ⊕ ker𝑏. This proves that 𝑝 + 𝑞 + 𝑟 = 𝑛.
 (iii) Construct a basis of𝑉 by concatenating an orthonormal basis of (𝑊+, 𝑏), an orthonor-

mal basis of (𝑊−,−𝑏), and any basis of ker𝑏. (We assume it known that positive spaces admit

orthonormal bases, either by  Corollary 3.17 , or by the Gram–Schmidt process.)

 (iv) It is evident that in the coordinate system associated to that basis, 𝑞(𝑥) = 𝑥2
1
+ · · · +

𝑥2𝑝 − 𝑥2𝑝+1 − · · · − 𝑥2𝑝+𝑞 . Conversely, let 𝑞 be a quadratic form that can be written like so

relative to some basis (𝑒1, . . . , 𝑒𝑛). The subspace𝑊+ [resp.𝑊−] spanned by (𝑒1, . . . , 𝑒𝑝) [resp.
(𝑒𝑝+1, . . . , 𝑒𝑝+𝑞)] is positive [resp. negative] and has dimension 𝑝 [resp. 𝑞], therefore 𝑝 6 𝑝0
and 𝑞 6 𝑞0. On the other hand, 𝑝 +𝑞 and 𝑝0 +𝑞0 are both equal to the rank of 𝑏. In conclusion

we must have 𝑝 = 𝑝0 and 𝑞 = 𝑞0.

 (v) Being equivalent is a transitive relation, and  (iv) shows that a symmetric bilinear form

has signature (𝑝, 𝑞) if and only if it is equivalent to 𝑞. �
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We call (pseudo-)orthonormal (with respect to 𝑏, or 𝑞) any basis of 𝑉 as in  (iii) , as well

as the associated system of coordinates as in  (iv) .

We conclude this section with a proposition that will be key for the hyperboloid model

(rendezvous in  Chapter 5 ):

Proposition 3.20. If𝑊 is a positive [resp. negative] subspace of dimension𝑘 , then𝑊 ⊕𝑊 ⊥ = 𝑉 ,
and the signature of 𝑏 on𝑊 ⊥ is (𝑝 − 𝑘, 𝑞) [resp. (𝑝, 𝑞 − 𝑘)].

Proof. We have already seen that𝑊 ⊕𝑊 ⊥ = 𝑉 in  Proposition 3.10 . It is enough to do the case

where𝑊 is positive: for the other case, just take −𝑏. The same argument as in the proof of

 Theorem 3.19 shows that we can write𝑊 ⊥ = 𝑈+ ⊕𝑈− ⊕ ker𝑏 with𝑈+ maximal positive and

𝑈− maximal negative in𝑊 ⊥
. Denote by (𝑝2, 𝑞2) the signature of 𝑏 on𝑊 ⊥

, so that 𝑝2 = dim𝑈+
and 𝑞2 = dim𝑈−. The decomposition𝑉 =𝑊 ⊕𝑈+ ⊕𝑈− ⊕ ker𝑏 shows that 𝑘 + 𝑝2 +𝑞2 + 𝑟 = 𝑛.
On the other hand, we know that 𝑝 +𝑞 + 𝑟 = 𝑛, moreover 𝑘 + 𝑝2 6 𝑝 since𝑊 ⊕𝑈+ is positive
and 𝑞2 6 𝑞 since𝑈− is negative. We conclude that 𝑝 = 𝑘 + 𝑝2 and 𝑞 = 𝑞2. �

3.2 Pseudo-Euclidean spaces

3.2.1 Definition

Let𝑉 be a real vector space. Recall that an inner product on𝑉 is a positive definite symmetric

bilinear form; when 𝑉 is finite-dimensional it is then called Euclidean. Similarly:

Definition 3.21. Let 𝑉 be a finite-dimensional real vector space. A pseudo-inner product
on 𝑉 is a nondegenerate symmetric bilinear form 𝑏 = 〈·, ·〉. Equipped with a pseudo-inner

product, 𝑉 is called a pseudo-Euclidean vector space.

Remark 3.22. We do not rule out Euclidean spaces, but one could. We say that 𝑉 (or 𝑏) has

mixed signature when 𝑏 is indefinite, i.e. has signature (𝑝, 𝑞) with 𝑝 > 0 and 𝑞 > 0.

Remark 3.23. AEuclidean space is either a Euclidean vector space or an affine spacemodelled

on one. We retain the same convention for a pseudo-Euclidean space. By definition, a

pseudo-Euclidean affine (sub)space has the same signature as its underlying vector space.

Example 3.24. Let 𝑉 = R𝑛. Choose two integers 𝑝, 𝑞 > 0 such that 𝑛 = 𝑝 + 𝑞. Consider the
symmetric bilinear form:

〈𝑥,𝑦〉 = 𝑥1𝑦1 + · · · + 𝑥𝑝𝑦𝑝 − 𝑥𝑝+1𝑦𝑝+1 − · · · − 𝑥𝑛𝑦𝑛 . (3.1)

By  Theorem 3.19  (iv) , it has signature (𝑝, 𝑞), and by  (ii) it is nondegenerate. The space

(R𝑛, 〈·, ·〉) is the canonical pseudo-Euclidean space of signature (𝑝, 𝑞), denoted R𝑝,𝑞 .
Example 3.25. A pseudo-Euclidean space of negative index 𝑞 = 1 is called aMinkowski space.
The canonical Minkowski space of dimension 𝑛+1 is R𝑛,1. We will study Minkowski spaces

specifically in  Chapter 4 .
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3.2.2 Spacelike, timelike, lightlike

This terminology originates in physics, of course (rendezvous in  Chapter 6 ). Instead of using

the adjectives positive, negative, and isotropic for nonzero vectors, it is customary to say

spacelike, timelike, and lightlike (or null).
The isotropic cone is also called the light cone. See  Figure 3.1 for an illustration of the

light cone in the Minkowski space R2,1.

Figure 3.1: The light cone in Minkowski space R2,1.

Remark 3.26. For linear (or affine) subspaces, the most common convention is: spacelike =
positive, timelike = contains a timelike vector, and lightlike = semipositive but not positive.

In addition, null = isotropic, and causal = seminegative. The spacelike/timelike/lightlike

quality of a vector or subspace is called its causal character. Note that a vector has the same

causal character as its linear span; for this reason the zero vector is considered spacelike. (See

for instance [ SW ], [ ONe ], [ Chr ].)

Remark 3.27. This terminology is especially relevant for a Minkowski space, but it is harmless

to use it for any pseudo-Euclidean space. In physics, a Minkowski space is usually called a

Minkowski spacetime, and a pseudo-Euclidean space of signature (𝑝, 𝑞) a (p+q)-spacetime.

3.2.3 Classification

Recall that a basis (𝑒1, . . . , 𝑒𝑛) of a pseudo-Euclidean space of signature (𝑝, 𝑞) is orthonormal
if 〈𝑒𝑘 , 𝑒𝑙〉 = 0 for 𝑘 ≠ 𝑙 , 〈𝑒𝑘 , 𝑒𝑘〉 = 1 for 1 6 𝑘 6 𝑝 , and 〈𝑒𝑘 , 𝑒𝑘〉 = −1 for 𝑝 + 1 6 𝑘 6 𝑝 + 𝑞.

Theorem 3.28. Any pseudo-Euclidean vector space𝑉 admits an orthonormal basis. Its number
of spacelike [resp. timelike] elements is the positive [resp. negative] index of 𝑉 .

Proof. This is a rephrasing of  Theorem 3.19  (iii) . �

39



CHAPTER 3. PSEUDO-EUCLIDEAN SPACES

We will study pseudo-Euclidean isometries in  § 3.7 , but let us give a definition now. A

map 𝑓 : (𝑉 ,𝑏) → (𝑉 ′, 𝑏′) between two pseudo-Euclidean vector spaces is called a linear
isometry if 𝑓 is a linear isomorphism and 𝑓 ∗𝑏′ = 𝑏 (see  § 3.1.1 for the definition of pullback).

Concretely, 〈𝑓 (𝑢), 𝑓 (𝑣)〉𝑉 ′ = 〈𝑢, 𝑣〉𝑉 for any 𝑢, 𝑣 ∈ 𝑉 . When such an isometry exists, 𝑉 and

𝑉 ′
are called isomorphic (as pseudo-Euclidean vector spaces) or simply isometric.

Theorem 3.29. Two pseudo-Euclidean vector spaces are isometric if and only if they have the
same signature. Any pseudo-Euclidean space of signature (𝑝, 𝑞) is isometric to R𝑝,𝑞 .

Proof. This is again essentially a rephrasing of Sylvester. Let𝑉 be a pseudo-Euclidean vector

space of signature (𝑝, 𝑞). By  Theorem 3.19  (iv) , there exist coordinates in which the pseudo-

inner product is like ( 3.1 ). This coordinate system defines an isomorphism 𝑉 ∼−→ R𝑝,𝑞 . The
first statement follows from the second and the uniqueness of the signature. �

Remark 3.30.  Theorem 3.29 is easily extended to pseudo-Euclidean affine spaces.

3.3 Pseudo-Euclidean spheres

Pseudo-Euclidean spheres are the analog of Euclidean spheres. The first notable difference is

that a of negative “square radius” is generally not empty.

Definition 3.31. Let 𝑉 be a pseudo-Euclidean vector space. Let𝑚 ∈ R. The subset 𝑆𝑚 ⊆ 𝑉
defined by 𝑆 B {𝑣 ∈ 𝑉 | 〈𝑣, 𝑣〉 =𝑚} is called a (pseudo-)sphere and𝑚 is its square radius.

Remark 3.32. In other words, 𝑆𝑚 is the𝑚-level set of the quadratic form 𝑣 ↦→ 〈𝑣, 𝑣〉.
Remark 3.33. More generally, in a pseudo-Euclidean space 𝐸, the sphere with center𝑂 ∈ 𝑀
and square radius 𝑚 ∈ R is the set 𝑆𝑂,𝑚 B {𝑀 ∈ 𝐸 |

〈−−→
𝑂𝑀,

−−→
𝑂𝑀

〉
= 𝑚}. Using affine

notation, this is simply put: 𝑆𝑂,𝑚 = 𝑂 + 𝑆𝑚.
Example 3.34. Let 𝑉 = R2,1. The 𝑚-pseudosphere in 𝑉 is the subset of R3 with equation

𝑥2 +𝑦2 − 𝑧2 =𝑚. For𝑚 > 0, this is a connected surface called hyperboloid of one sheet, and
for𝑚 < 0 it is a disconnected surface called hyperboloid of two sheets. For𝑚 = 0, it is the

isotropic cone of R2,1, also called light cone. See  Figure 3.2 .

We list the main features of pseudo-Euclidean spheres in two theorems:

Theorem 3.35. Let𝑉 be a pseudo-Euclidean vector space of mixed signature (𝑝, 𝑞). Let 𝑆 = 𝑆𝑚
be the sphere with square radius𝑚 in 𝑉 where𝑚 ∈ R× is any nonzero real number.

(i) 𝑆 is nonempty.
(ii) 𝑆 is closed in 𝑉 but not compact. It is connected unless (𝑞 = 1 and𝑚 < 0) or (𝑝 = 1 and

𝑚 > 0), in which case it has two connected components.
(iii) For any subspace𝑊 ⊆ 𝑉 , the sphere of square radius𝑚 in𝑊 is 𝑆 ∩𝑊 .
(iv) 𝑆 is preserved by any linear isometry 𝑓 : 𝑉 → 𝑉 .
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Figure 3.2: Spheres in R2,1: a two-sheeted hyperboloid (𝑚 < 0), the light cone (𝑚 = 0), a

one-sheeted hyperboloid (𝑚 > 0).

Theorem 3.36. In the same setup as the previous theorem:
(i) 𝑆 is a proper quadric.
(ii) 𝑆 is a smooth hypersurface.
(iii) The linear tangent space to 𝑆 at a point 𝑣 ∈ 𝑆 is the hyperplane T𝑣 𝑆 = 𝑣⊥.
(iv) The signature of any tangent space to 𝑆 is (𝑝 − 1, 𝑞) if𝑚 > 0 and (𝑝, 𝑞 − 1) if𝑚 < 0.

Remark 3.37. Both theorems are easily extended to any sphere 𝑆𝑂,𝑚 in a pseudo-Euclidean

space (see  Remark 3.33 ). The linear tangent space at𝑀 ∈ 𝑆 is then written T𝑀 𝑆 =
(−−→
𝑂𝑀

)⊥
.

Remark 3.38. Both theorems also apply for a Euclidean sphere, with the same proof. The only

problem with allowing 𝑝 = 0 or 𝑞 = 0 is that 𝑆 can be empty if𝑚 has the wrong sign.

Remark 3.39.  Theorem 3.36  (i) (and its proof) can be ignored until after reading  Chapter 7 .

Proof of  Theorem 3.35 .  (i) If𝑚 > 0, take any spacelike vector 𝑣 , which exists because 𝑝 > 0,

and scale it so that 〈𝑣, 𝑣〉 =𝑚. Proceed similarly if𝑚 < 0.

 (ii) 𝑆 is closed because it is the preimage of {𝑚} by the quadratic function 𝑣 ↦→ 〈𝑣, 𝑣〉. It is
not compact because it is unbounded with respect to a Euclidean norm on 𝑉 . To see this, let

𝑒+ [resp. 𝑒−] be a unit spacelike [resp. timelike] vector. The intersection of 𝑆 with the plane

span(𝑒+, 𝑒−) is the hyperbola with equation 𝑥2 − 𝑦2 =𝑚.

The fact that 𝑆 has one or two connected components as stated is fairly easy to see but

lengthy to argue properly. I suggest you try to figure it out on your own instead of reading

further (start by looking at  Figure 3.2 ).

Let us first reduce the number of dimensions. By  Theorem 3.19  (iv) , in suitable coordinates

𝑆 is given by 𝑥2
1
+ · · · + 𝑥2𝑝 − 𝑥2𝑝+1 · · · − 𝑥2𝑛 =𝑚. For any 𝑗 ∈ {2, . . . , 𝑝}, any Euclidean rotation

(centered at the origin) in the 𝑥1𝑥 𝑗 -plane preserves 𝑥
2

1
+ 𝑥2𝑗 . It follows that this rotation, while

leaving all other coordinates unchanged, preserves 𝑆 . If 𝑥 ∈ 𝑆 is a point on the sphere with

𝑥 𝑗 ≠ 0, one can always apply such a rotation 𝑟𝜃 to obtain 𝑥 𝑗 = 0. The path 𝑡 ∈ [0, 𝜃 ] ↦→ 𝑟𝑡 (𝑥)
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is a continuous path in 𝑆 that takes 𝑥 to the intersection of 𝑆 with the hyperplane 𝑥 𝑗 = 0. This

proves that 𝑆 does not have more connected components than 𝑆 ∩ {𝑥 𝑗 = 0}. By applying the

same argument repeatedly, we can kill off all the positive coordinates except 𝑥1, and similarly

kill all the negative coordinates except 𝑥𝑝+1. We are left with the hyperbola 𝑥2
1
− 𝑥2𝑝+1 = 𝑚,

which has two branches, therefore 𝑆 has at most two connected components.

If 𝑝 > 2 and𝑚 > 0, one can take one step back (put back the 𝑥2 dimension) to realize that

𝑆 is actually connected: the two branches of the hyperbola 𝑥2
1
− 𝑥2𝑝+1 =𝑚 are connected by

the rotations 𝑟𝑡 with 𝑡 = 0 → 𝜋 inside 𝑥2
1
+ 𝑥2

2
− 𝑥2𝑝+1. Visually: the hyperboloid of one sheet

shown in  Figure 3.2 is clearly connected. Similarly, 𝑆 is connected if 𝑞 > 2 and𝑚 < 0.

Finally, let us prove that 𝑆 has at least two connected components if 𝑞 = 1 and𝑚 < 0

[resp. 𝑝 = 1 and𝑚 > 0]. Let 𝑣0 be any vector ∈ 𝑆 (we have seen this exists), then −𝑣0 is also
in 𝑆 . The hyperplane 𝐻 B 𝑣⊥

0
is positive [resp. negative] by  Proposition 3.20 ; since𝑚 < 0

[resp.𝑚 > 0],𝐻 does not intersect 𝑆 . The complement𝑉 −𝐻 has two connected components:

𝐻± = {𝑣 ∈ 𝑉 : ± 〈𝑣, 𝑣0〉 > 0}; one contains 𝑣0 and the other −𝑣0. In conclusion, 𝑆 is a subset

of the disjoint union of two open sets, 𝐻+ and 𝐻−, but is not contained in either: this is the

definition of a disconnected set.

 (iii) By definition, the pseudo-inner product in𝑊 is the restriction of 𝑉 ’s. Conclude.

 (iv) If 𝑓 : 𝑉 → 𝑉 is an isometry, then 〈𝑓 (𝑣), 𝑓 (𝑣)〉 = 〈𝑣, 𝑣〉 for any 𝑣 ∈ 𝑉 , therefore

𝑓 (𝑣) ∈ 𝑆𝑚 if and only if 𝑣 ∈ 𝑆𝑚. �

Proof of  Theorem 3.36 . Let 𝑓 : 𝑉 → R be the function defined by 𝑓 (𝑣) = 〈𝑣, 𝑣〉 −𝑚, so that 𝑆

is the zero set of 𝑓 .

 (i) In coordinates, 𝑓 is a polynomial function of degree 2, therefore 𝑆𝑚 is a quadric. We

have seen that it is nonempty in  Theorem 3.35  (i) . It remains to show that 𝑆 is nondegenerate,

i.e. its projective completion is nondegenerate. The homogenization of 𝑓 on 𝑉 × R is easy to

figure out:
ˆ𝑓 (𝑣, 𝑡) = 〈𝑣, 𝑣〉 −𝑚𝑡2. This is a quadratic form of signature (𝑝, 𝑞 + 1) on 𝑉 × R,

therefore it is nondegenerate by  Theorem 3.19  (ii) .

 (ii) The function 𝑓 (𝑣) = 〈𝑣, 𝑣〉 −𝑚 is differentiable at any 𝑣 ∈ 𝑉 with (d𝑓 )𝑣 = 2〈𝑣, ·〉. If
𝑣 ∈ 𝑆 , then (d𝑓 )𝑣 is not the zero linear form, since (d𝑓 )𝑣 (𝑣) = 2𝑚 ≠ 0. This shows that 𝑓 is a

submersion on 𝑆 by definition. Recall moreover that 𝑆 is a level set of 𝑓 (the zero level set). It

is a classical theorem of differential geometry that in this scenario, 𝑆 is a smooth hypersurface

(a smooth submanifold of codimension one), and the linear tangent space to 𝑆 at 𝑣 is ker(d𝑓 )𝑣 .
 (iii) Since T𝑣 𝑆 = ker(d𝑓 )𝑣 and (d𝑓 )𝑣 = 2〈𝑣, ·〉, we find T𝑣 𝑆 = ker〈𝑣, ·〉 = 𝑣⊥.
 (iv) We just saw that T𝑣 𝑆 = 𝑣⊥. If𝑚 > 0, then 𝑣 is spacelike, therefore 𝑣⊥ has signature

(𝑝 − 1, 𝑞) by  Proposition 3.20 . Conclude similarly if𝑚 < 0.

�
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3.4 Distances and lengths

3.4.1 Norm and distance

There is no sensible definition of a genuine norm in a pseudo-Euclidean vector space. We can

try ‖𝑣 ‖ B
√︁
|〈𝑣, 𝑣〉|, but this “norm” has problems: ‖𝑣 ‖ = 0 does not imply 𝑣 = 0; worse, the

triangle inequality ‖𝑢 + 𝑣 ‖ 6 ‖𝑢‖ + ‖𝑣 ‖ is not always satisfied. For this reason, it is not even
a seminorm. Bearing this in mind, we still call ‖𝑣 ‖ =

√︁
|〈𝑣, 𝑣〉| the (pseudo-)length of 𝑣 .

For the same reasons, in a pseudo-Euclidean affine space, one can try define a “distance”

𝑑 (𝐴, 𝐵) B ‖𝐵 − 𝐴‖, but it runs into the problems that 𝑑 (𝐴, 𝐵) = 0 does not imply 𝐴 = 𝐵,

and it does not verify the triangle inequality. The latter defect says that it is not even a

pseudometric. Let us mention that, from the physical point of view of “spacetime”:

• When 𝑢 = 𝐵 − 𝐴 is spacelike, then 𝑑 (𝐴, 𝐵) can be interpreted as a spatial distance

(although the perceived distance between 𝐴 and 𝐵 differs for most observers).

• When 𝑢 = 𝐵 −𝐴 is timelike, then 𝑑 (𝐴, 𝐵) represents a (proper) time interval.
This will be explained in  Chapter 6 .

3.4.2 Lengths of curves

As in the Euclidean case, one can extend the notion of length to curves:

Definition 3.40. Let 𝐸 be a pseudo-Euclidean space. The (pseudo-)length of a curve 𝛾 : 𝐼 →
𝐸 of class C1 is the nonnegative real number ℓ (𝛾) B

∫
𝐼
‖𝛾 ′(𝑡)‖ d𝑡 .

Remark 3.41. In the language of differential geometry, one can write ℓ (𝛾) =
∫
𝛾
d𝑠 where d𝑠

is the 1-density on 𝐸 defined by d𝑠 (𝑣) = ‖𝑣 ‖. (It is the line element induced by the pseudo-

Riemannian metric 𝑔 = 〈·, ·〉 on 𝐸.) Indeed, by definition

∫
𝛾
d𝑠 =

∫
𝐼
𝛾∗ d𝑠 =

∫
𝐼
d𝑠 (𝛾 ′(𝑡)) d𝑡 .

A differentiable curve 𝛾 is called spacelike [resp. timelike, resp. lightlike] if 𝛾 ′(𝑡) is
spacelike [resp. timelike, resp. lightlike] for all 𝑡 . Notice that if 𝛾 is lightlike, then ℓ (𝛾) =

0. As in the Euclidean setting, the length of a spacelike or timelike curve is invariant by

reparametrization, and one can always reparametrize a spacelike or timelike curve so that its

speed ‖𝛾 ′(𝑡)‖ = d𝑠
d𝑡
is constant or even equal to 1. (In physics, a timelike curve is also called a

world line and the “arclength parameter” 𝑠 is called proper time and often denoted 𝜏 .)

Recall that 𝛾 is called regular if 𝛾 ′ is nonvanishing, and we call 𝛾 a geodesic if 𝛾 ′′ = 0,

equivalently 𝛾 (𝑡) = 𝐴 + 𝑢𝑡 for some 𝐴 ∈ 𝐸 and 𝑢 ∈ 𝑉 = ®𝐸, in other words 𝛾 is an affine

parametrization of a straight line. Similarly to the Euclidean setting ( § A.3.3 ), one shows:

Theorem 3.42. Let 𝛾 : 𝐼 → 𝐸 be a smooth regular curve in a pseudo-Euclidean space 𝐸. The
following are equivalent:

(i) 𝛾 is a geodesic.

(ii) 𝛾 is a critical point of the energy functional E (𝛾) B 1

2

∫
𝐼

〈𝛾 ′(𝑡), 𝛾 ′(𝑡)〉 d𝑡 .
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Furthermore, if 𝛾 is assumed spacelike or timelike:

(iii) 𝛾 has constant speed and is a crit. point of the length functional ℓ (𝛾) =
∫
𝐼

‖𝛾 ′(𝑡)‖ d𝑡 .

Proof. The proof is the same as in the Euclidean setting (see  §A.3.3 ). The onlymodificationwe

need is: how to conclude that𝛾 ′′ = 0 knowing that

∫
𝐼
〈𝛾 ′′(𝑡), 𝑋 (𝑡)〉 d𝑡 = 0 for any infinitesimal

variation 𝑋 (𝑡)? In the Euclidean case, we easily win with 𝑋 (𝑡) = 𝛾 ′′(𝑡), but in the pseudo-

Euclidean setting this argument fails: what if 𝛾 ′′(𝑡) is isotropic? Instead, we conclude with:
Lemma 3.43. If 𝛼 (𝑡) is a nonvanishing continuous curve in ®𝐸, there exists another continuous
curve 𝛽 (𝑡) such that 〈𝛼 (𝑡), 𝛽 (𝑡)〉 = 1 for all 𝑡 .

To prove this lemma, first observe that for any nonzero 𝛼 (𝑡) ∈ ®𝐸, there exists some

𝛽 (𝑡) ∈ ®𝐸 such that 〈𝛼 (𝑡), 𝛽 (𝑡)〉 ≠ 0 (by nondegeneracy of the inner product). After scaling

𝛽 (𝑡), we can get 〈𝛼 (𝑡), 𝛽 (𝑡)〉 = 1. The fact that 𝛽 (𝑡) can be chosen continuously when 𝛼 (𝑡) is
continuous is an annoying exercise of topology which we leave to the most diligent readers.

To conclude the proof of the theorem, assume that 𝛾 ′′ does not vanish identically. By

continuity, there exists a small interval 𝐽 ⊆ 𝐼 where 𝛾 ′′ is nonvanishing. Apply the lemma to

the restriction 𝛼′′�𝐽 to obtain a curve 𝛽 (𝑡). Put 𝑋 (𝑡) = 𝜌 (𝑡)𝛽 (𝑡) where 𝜌 is a bump function
supported in 𝐽 (i.e. a smooth function such that 0 < 𝜌 6 1 inside 𝐽 and 𝜌 = 0 outside of 𝐽 ;

this always exists.) We obtain

∫
𝐼
〈𝛾 ′′(𝑡), 𝑋 (𝑡)〉 d𝑡 =

∫
𝐽
𝜌 (𝑡) d𝑡 > 0: contradiction. �

Remark 3.44. The assumption that 𝛾 is spacelike or timelike for  (iii) is necessary to compute

the first variation of the length as in  § A.3.3 .

Corollary 3.45. For any 𝐴, 𝐵 ∈ 𝐸, the line segment [𝐴, 𝐵] is the unique geodesic from 𝐴 to 𝐵
(up to parametrization) and is length-minimizing among all C1 curves from 𝐴 to 𝐵.

Proof. Let 𝑢 B 𝐵 −𝐴. Since geodesics are affine parametrizations of straight lines, it is clear

that 𝛾0(𝑡) = 𝐴 + 𝑢𝑡 is the unique geodesic from 𝐴 to 𝐵 up to reparametrization. Its length is

ℓ (𝛾0) =
∫
1

0
‖𝑢‖ d𝑡 = ‖𝑢‖ = 𝑑 (𝐴, 𝐵). To conclude that this is the minimum of the lengths of

all curves from 𝐴 to 𝐵 is a bit more subtle than in the Euclidean case ( § A.3.3 ).

If 𝑢 is lightlike, then 𝑑 (𝐴, 𝐵) = 0, so there is nothing to show. If 𝑢 is spacelike or timelike,

wewould love to conclude by saying that aminimumof the length (parametrized by arclength)

is a critical point of the energy functional, which must be a geodesic by  Theorem 3.42 . How-

ever, this proof is not complete: we need to rule out the possibility that the energy has no

minimum. Let us leave this last point for the most advanced readers to reflect on. �

Remark 3.46. While a spacelike geodesic is a minimizer of the energy functional, a timelike

geodesic has negative energy and is a maximizer! A lightlike geodesic is also a critical point

of the energy yet neither a minimum nor maximum (call it a saddle point). In all three cases,

a geodesic is a minimizer of the length functional by  Corollary 3.45 . However it is not true

that a curve is a geodesic if and only if it is length minimizing, do you see why? ( Exercise 3.4 .)
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3.5 Angles

The notion of angle is also tricky to extend to pseudo-Euclidean spaces. To understand this,

let us first remember how angles are defined in a Euclidean space.

3.5.1 Euclidean angles

Geometrically, an angle (measured in radians) represents an arclength on a unit circle. More

precisely, let 𝑢 and 𝑣 be two nonzero vectors in a Euclidean vector space 𝑉 . One can always

divide 𝑢 and 𝑣 by their length to obtain unit vectors 𝑢0 and 𝑣0 which lie on the unit circle 𝑆

in the plane 𝑃 = span(𝑢, 𝑣). The (unoriented) angle 𝜃 B ](𝑢, 𝑣) is, by definition, the length

of the arc between ®𝑢0 and ®𝑣0 on 𝑆 : see  Figure 3.3 .

Figure 3.3: Angle between two vectors in a Euclidean plane. Here d𝑠 is the Euclidean line
element: d𝑠 =

√︁
d𝑥2 + d𝑦2 in orthonormal coordinates.

Alternatively, one can define the angle ](𝑢, 𝑣) algebraically (we could also say analytically)
by observing that it measures the deficit of equality in the Cauchy–Schwarz inequality:

|〈𝑢, 𝑣〉| 6 ‖𝑢‖ ‖𝑣 ‖ .

Indeed, 𝜃 B ](𝑢, 𝑣) can be defined as the unique real number in [0, 𝜋] (modulo 2𝜋 ) such that:

〈𝑢, 𝑣〉 = ‖𝑢‖ ‖𝑣 ‖ cos𝜃 .
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Note that the Cauchy–Schwarz inequality derives directly from the positive definiteness

of the inner product. Do you remember the proof? It is very pretty: the function 𝑝 (𝑡) =

〈𝑡𝑢 + 𝑣, 𝑡𝑢 + 𝑣〉 = ‖𝑢‖2𝑡2 + 2𝑡 〈𝑢, 𝑣〉 + ‖𝑣 ‖2 is a second degree polynomial, moreover it is always

nonnegative, so its (reduced) discriminant Δ/4 = 〈𝑢, 𝑣〉2 − ‖𝑢‖2‖𝑣 ‖2 must be nonpositive.

Remark 3.47. Of course, the geometric and the algebraic definitions of angles are equivalent.

This coincidence can be interpreted either as a definition of the cosine function, or as a

consequence of the celebrated Euler’s formula 𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃 . (Can you see why?)

3.5.2 Pseudo-Euclidean angles

Let 𝑢 and 𝑣 be two vectors in a pseudo-Euclidean vector space𝑉 contained in a vector plane

𝑃 ⊆ 𝑉 . Similarly to the Euclidean case, we want to define the angle between 𝑢 and 𝑣 as the

arc length between the matching points on the unit circle in 𝑃 , but we need to be a bit careful.

First of all, there is a priori two unit “circles” in 𝑃 , namely 𝑆± = {𝑤 ∈ 𝑃 | 〈𝑤,𝑤〉 = ±1}.
(These are one-dimensional pseudo-Euclidean spheres, see  § 3.3 .) Henceforth we assume that

𝑢 and 𝑣 are both spacelike or both timelike, so that 𝑢0 and 𝑣0 both lie on 𝑆+ or on 𝑆−. In other

cases, e.g. when 𝑢 or 𝑣 is isotropic, we consider that the angle ](𝑢, 𝑣) is undefined.
Let us examine the different cases for the signature of the plane 𝑃 :

• If 𝑃 is positive definite [resp. negative definite], there is no issue: 𝑢0 and 𝑣0 both lie

on the circle 𝑆+ [resp. 𝑆−] (while the other is empty), and the angle ](𝑢, 𝑣) =
∫
𝛾
d𝑠 is

well-defined similarly to the Euclidean case (see  Figure 3.3 ). We call it a circular angle.

• If 𝑃 has signature (1, 1) (i.e. is a Minkowski plane, see  § 4.5 ), then 𝑆+ and 𝑆− are both

hyperbolas: 𝑥2−𝑦2 = ±1 in orthonormal coordinates. To define ](𝑢, 𝑣), we assume that

𝑢0 and 𝑣0 both lie on either 𝑆+ or on 𝑆−, i.e. are either both spacelike or both timelike.

Furthermore, 𝑢0 and 𝑣0 must be on the same branch of the hyperbola for there to be

an arc joining them. Algebraically, the latter condition says that 〈𝑢, 𝑣〉 > 0 if 𝑢 and 𝑣

are spacelike, and 〈𝑢, 𝑣〉 < 0 if 𝑢 and 𝑣 are timelike. In summary, if 〈𝑢,𝑢〉, 〈𝑣, 𝑣〉, and
〈𝑢, 𝑣〉 are all positive or all negative, then one can define ](𝑢, 𝑣) = ℓ (𝛾) =

∫
𝛾
d𝑠 as in

 Figure 3.4 . We call it a hyperbolic angle.

• If 𝑃 is degenerate: this is not the most important case but it is insightful to understand

it. Say 𝑃 has signature (1, 0) (the (0, 1) case is similar). Then 𝑆− is empty, and 𝑆+ is the
union of two lines: in orthonormal coordinates (𝑥,𝑦), the equation of 𝑆+ is 𝑥2 = 1, so

it is the union of the lines 𝑥 = ±1. The unit vectors 𝑢0 and 𝑣0 lie on the same branch

provided that 〈𝑢, 𝑣〉 > 0, in which case we define ](𝑢, 𝑣) =
∫
𝛾
d𝑠 as in  Figure 3.5 and

call it a degenerate angle. However, since the line element d𝑠 = |d𝑥 | vanishes along
𝑥 = ±1, one finds that ](𝑢, 𝑣) = 0: the measure of any degenerate angle is zero!

Remark 3.48. If 𝑢 and 𝑣 are linearly independent, then the plane 𝑃 is of course their linear

span. Otherwise, there could be several choices of 𝑃 with different signatures. Check that,

depending on this choice, ](𝑢, 𝑣) could be either be equal to 0, 𝜋 , or undefined.
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Figure 3.4: Hyperbolic angle between two vectors in a Minkowski plane.Mind that d𝑠 is the
pseudo-Euclidean line element: d𝑠 =

√︁
|d𝑥2 − d𝑦2 | in orthonormal coordinates.

What about the algebraic definition of angles with Cauchy–Schwarz? The following

theorem could be taken as a definition:

Theorem 3.49. Let 𝑢, 𝑣 ∈ 𝑉 and let 𝑃 ⊆ 𝑉 be a vector plane containing them. Assume that 𝑢
and 𝑣 are both spacelike or both timelike and let 𝜀 = ±1 indicate their common sign.

• If 𝑃 is positive or negative definite, then Cauchy–Schwarz holds: |〈𝑢, 𝑣〉| 6 ‖𝑢‖ ‖𝑣 ‖. The
angle ](𝑢, 𝑣) is circular and equals the unique real number 𝜃 ∈ [0, 𝜋] such that:

〈𝑢, 𝑣〉 = 𝜀 ‖𝑢‖ ‖𝑣 ‖ cos𝜃 .

• If 𝑃 has mixed signature, then reversed Cauchy–Schwarz holds: |〈𝑢, 𝑣〉| > ‖𝑢‖ ‖𝑣 ‖. The
angle ](𝑢, 𝑣) is well-defined when the sign of 〈𝑢, 𝑣〉 is 𝜀, in which case it is a hyperbolic
angle and equals the unique real number in 𝜃 ∈ [0, +∞) such that:

〈𝑢, 𝑣〉 = 𝜀 ‖𝑢‖ ‖𝑣 ‖ cosh𝜃 .

• If 𝑃 is degenerate, then the Cauchy–Schwarz equality holds: |〈𝑢, 𝑣〉| = ‖𝑢‖ ‖𝑣 ‖. The angle
](𝑢, 𝑣) is well-defined when that the sign of 〈𝑢, 𝑣〉 is 𝜀, in which case it is a degenerate
angle and equals 𝜃 = 0. Note that we still have:

〈𝑢, 𝑣〉 = 𝜀 ‖𝑢‖ ‖𝑣 ‖ cos[h] 𝜃 .
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Figure 3.5: Degenerate angle between two vectors in a (1, 0) plane. Here d𝑠 is the degenerate
line element: d𝑠 = |d𝑥 | in orthonormal coordinates. It follows that ](𝑢, 𝑣) = 0!

Proof. Let us assume that 𝑢 and 𝑣 are linearly independent, so that the vector plane 𝑃 is their

linear span. (The theorem is quickly checked when 𝑢 and 𝑣 are collinear.)

Let 𝑝 : R→ R be defined by 𝑝 (𝑡) = 〈𝑡𝑢 + 𝑣, 𝑡𝑢 + 𝑣〉. This is a second degree polynomial:

𝑝 (𝑡) = ‖𝑢‖2𝑡2 + 2𝑡 〈𝑢, 𝑣〉 + ‖𝑣 ‖2, and its (reduced) discriminant is Δ/4 = 〈𝑢, 𝑣〉2 − ‖𝑢‖2‖𝑣 ‖2.
If 𝑃 is positive definite or negative definite, then the function 𝑝 never changes sign, so

Δ must be nonpositive, i.e. 〈𝑢, 𝑣〉2 6 ‖𝑢‖2‖𝑣 ‖2: this is Cauchy–Schwarz. On the contrary,

if 𝑃 has mixed signature, then 𝑝 (𝑡) must change sign, so that Δ > 0, and we get reversed

Cauchy–Schwarz. If 𝑃 is degenerate, i.e. of signature (1, 0) or (0, 1), then 𝑝 never changes

sign as in the first case, but it admits a real root since there exists isotropic vectors. This

means that Δ = 0, and we obtain the Cauchy–Schwarz equality.

It remains to compute the angle 𝜃 = ](𝑢, 𝑣) in the first two cases. First observe that we

can always consider the opposite inner product −〈·, ·〉, so without loss of generality we can

assume that 𝑢 and 𝑣 are spacelike (𝜀 = 1). We can also harmlessly scale 𝑢 and 𝑣 to get unit

vectors. Under these assumptions, it remains to show that 〈𝑢, 𝑣〉 = cos𝜃 when 𝑃 is positive

definite and 〈𝑢, 𝑣〉 = cosh𝜃 when 𝑃 has mixed signature.

If 𝑃 is positive definite, then in orthonormal coordinates the inner product is written

〈(𝑥,𝑦), (𝑥,𝑦)〉 = 𝑥2+𝑦2. The unit circle 𝑥2+𝑦2 = 1 can be parametrized by𝛾 (𝑡) = (cos 𝑡, sin 𝑡).
This is an arclength parametrization: ‖𝛾 ′(𝑡)‖ =

√
sin

2 𝑡 + cos
2 𝑡 = 1. Let 𝑢 = 𝛾 (𝑡1) and

48



3.6. SPACE AND TIME ORIENTATION

𝑣 = 𝛾 (𝑡2). Without loss of generality, assume that 𝑡1 < 𝑡2. By definition, the angle between 𝑢

and 𝑣 is 𝜃 =
∫ 𝑡2

𝑡1
‖𝛾 ′(𝑡)‖ d𝑡 = 𝑡2 − 𝑡1. On the other hand, we have 〈𝑢, 𝑣〉 = 〈𝛾 (𝑡1), 𝛾 (𝑡2)〉, that

is 〈𝑢, 𝑣〉 = cos(𝑡1) cos(𝑡2) + sin(𝑡1) sin(𝑡2), which indeed coincides with cos(𝜃 ) = cos(𝑡2 − 𝑡1).
If 𝑃 has mixed signature, then in orthonormal coordinates the inner product is written

〈(𝑥,𝑦), (𝑥,𝑦)〉 = 𝑥2 − 𝑦2. The unit “circle” 𝑥2 − 𝑦2 = 1 can be parametrized by 𝛾 (𝑡) =

(cosh 𝑡, sinh 𝑡). This is an arclength parametrization: ‖𝛾 ′(𝑡)‖ =
√︃��

sinh
2 𝑡 − cosh

2 𝑡
�� = 1. Let

𝑢 = 𝛾 (𝑡1) and 𝑣 = 𝛾 (𝑡2). Without loss of generality, assume that 𝑡1 < 𝑡2. The angle between 𝑢

and 𝑣 is 𝜃 =
∫ 𝑡2

𝑡1
‖𝛾 ′(𝑡)‖ d𝑡 = 𝑡2 − 𝑡1. On the other hand, 〈𝑢, 𝑣〉 = 〈𝛾 (𝑡1), 𝛾 (𝑡2)〉, that is 〈𝑢, 𝑣〉 =

cosh(𝑡1) cosh(𝑡2) − sinh(𝑡1) sinh(𝑡2), which coincides with cosh(𝜃 ) = cosh(𝑡2 − 𝑡1). �

Remark 3.50. Our discussion of angles is deeper than it first appears: we essentially defined

(one-dimensional) spherical, hyperbolic, and Euclidean geometries! I invite readers to revisit

this section after reading  Chapter 5 and  Chapter 8 to ponder this claim.

3.6 Space and time orientation

Any finite-dimensional vector (or affine) space is orientable: it can be given one of two possible

orientations. We are going to see that the notion of orientation can be refined for a pseudo-

Euclidean space: it can be given a space orientation and a time orientation independently,

which together determine a global orientation.

3.6.1 Orientation of a vector space

Let us briefly recall how the orientation of a finite-dimensional vector space𝑉 is defined. Say

that a linear automorphism of 𝑓 : 𝑉 → 𝑉 preserves [resp. reverses] orientation when it has

positive [resp. negative] determinant. Next, say that two bases (𝑒1, . . . , 𝑒𝑛) and (𝑒′
1
, . . . , 𝑒′𝑛)

are compatible if the linear automorphism of defined by 𝑓 (𝑒𝑘) = 𝑒′𝑘 is orientation-preserving.
(Equivalently, the transition matrix has positive determinant.) This is an equivalence relation

on the set of all bases and there are two equivalence classes (if dim𝑉 > 0).

An orientation of 𝑉 consists in picking one class of bases as positively oriented; the

others are then negatively oriented. Evidently, there are two choices of orientation. A choice

can be simply made by declaring that some given basis is positively oriented. For instance,

R𝑛 has a canonical basis, hence a canonical orientation.

Remark 3.51. Let GL+(𝑉 ) < GL(𝑉 ) denote the normal subgroup of linear automorphisms

of 𝑉 with positive determinant. The previous paragraph can be summarized pedantically by

saying that an orientation is the choice of a group isomorphism GL(𝑉 )/GL+(𝑉 ) ∼−→ {±1}.
Remark 3.52. For advanced readers: It is cleanest to define determinants and orientation using

tensor algebra. If 𝑉 is a vector line, an orientation of 𝑉 is the choice of a direction. If 𝑉 is

𝑛-dimensional, one can reduce to the one-dimensional case by taking the exterior power Λ𝑛𝑉 .
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Remark 3.53. An orientation of 𝑉 does not induce an orientation of subspaces of 𝑉 . That

being said, if 𝑉 =𝑊1 ⊕𝑊2, then an orientation of both𝑊1 and𝑊2 determine one for 𝑉 .

3.6.2 Space and time orientation

Let𝑉 be a pseudo-Euclidean vector space of mixed signature (𝑝, 𝑞). An orientation of space
[resp. orientation of time] is a consistent choice of orientation for all maximal positive [resp.

negative] subspaces. To see that such a choice is possible, we need to do a bit of work  

3
 .

First we show that there is a canonical way to identify any two maximal subspaces:

Lemma 3.54. Let𝑊 and𝑊 ′ be two maximal positive subspaces. Then the orthogonal projection
𝑝𝑊,𝑊 ′ of𝑊 onto𝑊 ′ is well-defined and it is a linear isomorphism.

Proof. The orthogonal projection 𝑝𝑊 ′ : 𝑉 → 𝑊 ′
is well-defined by  Corollary 3.12 . Since

dim𝑊 = dim𝑊 ′
(by  Theorem 3.19 ), the restriction 𝑝𝑊,𝑊 ′ B (𝑝𝑊 ′)�𝑊 is bijective if and

only if it has trivial kernel. If 𝑝𝑊,𝑊 ′ (𝑣) = 0, then 𝑣 ∈𝑊 ′⊥
, which is a negative subspace by

 Proposition 3.20 . Since𝑊 is positive, we must have 𝑣 = 0. �

The next lemma constructs an interpolation between any two maximal subspaces:

Lemma 3.55. Let𝑊 and𝑊 ′ be two maximal positive subspaces. For any𝑤 ∈𝑊 and 𝑡 ∈ [0, 1],
put 𝑓 (𝑤) B 𝑝−1

𝑊 ′,𝑊 (𝑤) −𝑤 and 𝑝𝑡 (𝑤) B 𝑤 + 𝑡 𝑓 (𝑤).
(i) 𝑓 is a linear map𝑊 →𝑊 ⊥.
(ii) Let𝑊𝑡 denote the graph of 𝑓𝑡 B 𝑡 𝑓 , i.e. the image of 𝑝𝑡 . Then𝑊0 =𝑊 ,𝑊1 =𝑊

′, and𝑊𝑡

is a maximal positive subspace for all 𝑡 ∈ [0, 1].

Proof.  (i) Themap 𝑓 is well-defined and linear; let us show that 𝑓 (𝑊 ) ⊆𝑊 ⊥
. Let𝑤 ′ = 𝑓 (𝑤) ∈

𝑓 (𝑊 ). Then 𝑝𝑊 (𝑤 ′) = 𝑤 − 𝑝𝑊 (𝑤) = 0 since𝑤 ∈𝑊 . This proves that𝑤 ′ ∈ ker𝑝𝑊 =𝑊 ⊥
.

 (ii) Let 𝑞 denote the quadratic form 𝑞(𝑣) = 〈𝑣, 𝑣〉. Since 𝑤 ⊥ 𝑡 𝑓 (𝑤), we have 𝑞(𝑤 +
𝑡 𝑓 (𝑤)) = 𝑞(𝑤) + 𝑡2𝑞(𝑓 (𝑤)) > 0 (unless 𝑤 = 0). This shows that𝑊𝑡 is positive definite.

Finally,𝑊𝑡 is maximal because it has the same dimension as𝑊 , being the graph of 𝑡 𝑓 . �

The two preceding lemmas show that an orientation of any maximal subspace can be

consistently transported to all the others. Let us prove this properly:

Proposition 3.56. Say that two oriented maximal positive subspaces𝑊 and𝑊 ′ have the
same orientation if the orthogonal projection of𝑊 onto𝑊 ′ is orientation-preserving. This is
an equivalence relation on all such oriented subspaces and there are two equivalence classes.

Proof. The relation is clearly reflexive. Let us show that it is symmetric. This amounts to

showing that for any maximal subspaces𝑊 and𝑊 ′
, the map ℎ : 𝑊 → 𝑊 defined by ℎ =

𝑝−1
𝑊 ′,𝑊 ◦𝑝

𝑊,𝑊 ′ is orientation-preserving. Denoteℎ𝑡 :𝑊 →𝑊 the samemap asℎ, only replacing

3
I thank Jérémy Toulisse for helping me figure this out.
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𝑊 ′
by𝑊𝑡 as in  Lemma 3.55 . Then det(ℎ𝑡 ) depends continuously on 𝑡 , and it is nonvanishing,

therefore it is always positive since det(ℎ0) = det(id𝑊 ) = 1. This proves that ℎ = ℎ1 is

orientation-preserving. Transitivity is proved similarly: show that ℎ = 𝑝−1
𝑊1,𝑊3

◦𝑝
𝑊2,𝑊3

◦𝑝
𝑊1,𝑊2

is orientation-preserving by interpolating between𝑊2 and𝑊3.

It is trivial that there are two equivalence classes: given an oriented maximal subspace

𝑊0, any other𝑊 is equivalent to either𝑊0 or𝑊0 with the opposite orientation, since 𝑝𝑊0,𝑊

is either orientation-preserving or reversing. �

Remark 3.57. The preceding discussion applies to maximal negative subspaces: just switch

“positive” and “negative” everywhere. (Or, to be slick, take the opposite pseudo-inner product.)

Definition 3.58. An orientation of space [resp. of time] is the choice of one of the two
equivalence classes of oriented maximal positive [resp. negative] subspaces.

We emphasize that an orientation of space [resp. of time] is determined by an orientation

on any one positive [resp. negative] maximal subspace.

Example 3.59. There is a canonical orientation of space and of time on R𝑝,𝑞: declare that

(𝑒1, . . . , 𝑒𝑝) [resp. (𝑒𝑝+1, . . . , 𝑒𝑝+𝑞)] is a positively oriented.

Remark 3.60. There are 2×2 = 4 orientations of spacetime: two for space, and, independently,

two for time. Each configuration induces an orientation of 𝑉 : choose a maximal positive

subspace𝑊 , then𝑊 ⊥
is maximal negative and𝑊 =𝑊 ⊕𝑊 ⊥

, conclude with  Remark 3.53 .

3.7 Isometries

3.7.1 Linear isometries

Linear maps transport symmetric bilinear forms backwards, by pullback: if 𝑓 : 𝑉 → 𝑉 ′
is a

linear map and 𝑏′ is a symmetric bilinear form on 𝑉 , then one can define 𝑏 = 𝑓 ∗𝑏′ on 𝑉 by

𝑏 (𝑢, 𝑣) B 𝑓 (𝑏′(𝑢), 𝑏′(𝑣)). (See  § 3.1.1 and  Exercise 3.3 for more discussion.)

By definition, a linear map 𝑓 : (𝑉 ,𝑏) → (𝑉 ′, 𝑏′) between two pseudo-Euclidean spaces is

called isometric if 𝑓 ∗𝑏′ = 𝑏. Concretely, this means that 𝑓 preserve the inner product:

∀𝑢, 𝑣 ∈ 𝑉 〈𝑓 (𝑢), 𝑓 (𝑣)〉 = 〈𝑢, 𝑣〉 .

Remark 3.61. We abusively use the same notation for the pseudo-inner product in 𝑉 and 𝑉 ′
;

we will do the same for the length, distance, etc.

Definition 3.62. A linear isometry 𝑓 : 𝑉 → 𝑉 ′
is an isometric linear isomorphism.

Remark 3.63. If𝑉 ′ = 𝑉 , 𝑓 is also called an orthogonal or unitary automorphism. (The latter

is often reserved for the complex version of this story with Hermitian inner products.)
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Remark 3.64. When 𝑉 = 𝑉 ′
, any linear map 𝑓 admits an adjoint 𝑓 ∗ defined by 〈𝑓 (𝑢), 𝑣〉 =

〈𝑢, 𝑓 ∗(𝑣)〉; orthogonal automorphisms are characterized by 𝑓 ∗𝑓 = id𝑉 . See  Exercise 3.7 .

Example 3.65. Let 𝑉 = R1,1. The linear map 𝑟𝑡 : 𝑉 → 𝑉 whose matrix representation is

𝑅𝑡 =

[
cosh 𝑡 sinh 𝑡

sinh 𝑡 cosh 𝑡

]
is a linear isometry which we call a pseudo-rotation or a Lorentz boost (see  § 4.6 ).

The next proposition is trivial:

Proposition 3.66. A linear isometry preserves causal characters (of vectors and subspaces),
lengths (of vectors and curves), angles (between vectors in a plane), distances (between vectors).

Proof. All these notions only depend on the pseudo-inner product. �

Lemma 3.67. Let 𝑓 : 𝑉 → 𝑉 ′ be an arbitrary map between pseudo-Euclidean vector spaces
that preserves the inner product. If 𝑓 is surjective or linear, then it is in fact linear and injective.

Proof. Let us leave this proof as a semi-elementary exercise, it is a good one. For the case

where 𝑓 is assumed linear, start by observing that if𝑊 ⊆ 𝑉 is a positive [resp. negative]

subspace, then 𝑓 (𝑊 ) is too and has the same dimension. �

Remark 3.68. The proof still works if the linear span of 𝑓 (𝑉 ) is nondegenerate in𝑉 ′
. However,

in contrast to the Euclidean setting, the result may be false without this assumption: consider

𝑓 : R→ R2,1 defined by 𝑓 (𝑥) = (𝑥, ℎ(𝑥), ℎ(𝑥)) where ℎ is any function R→ R.

Proposition 3.69. Let 𝑓 : 𝑉 → 𝑉 ′ be a bijective map between pseudo-Euclidean vector spaces.
𝑓 is a linear isometry if and only if it preserves the length and the causal character of any vector.

Proof. It is trivial that if 𝑓 preserves the inner product, then it preserves lengths and causal

characters. The converse is also easy: if ‖ 𝑓 (𝑣)‖ = ‖𝑣 ‖, then 〈𝑓 (𝑣), 𝑓 (𝑣)〉 = ±〈𝑣, 𝑣〉, and the

sign is correct because 𝑓 preserves causal characters. Conclude by polarization (see  § 3.1.1 ).

Since 𝑓 is assumed bijective, it is a linear isomorphism by  Lemma 3.67 . �

Remark 3.70. It is not true that any length preserving linear isomorphism is a linear isometry:

consider 𝑓 : R1,1 → R1,1 defined by 𝑓 (𝑥,𝑦) = (𝑦, 𝑥).

3.7.2 Affine and pseudo-Riemannian isometries

Definition 3.71. Let 𝐸 and 𝐸′ be pseudo-Euclidean affine spaces. An affine map 𝑓 : 𝐸 → 𝐸′

is called an affine isometry when the underlying linear map
®𝑓 : ®𝐸 → ®𝐸′ is a linear isometry.

Remark 3.72. As in the Euclidean setting, affine isometries are essentially linear isometries

composed by translations. More precisely, given any point𝑂 ∈ 𝐸, an affine isometry 𝑓 : 𝐸 →
𝐸′ is uniquely determined by 𝑓 (𝑂) and ®𝑓 by 𝑓 (𝑀) = 𝑓 (𝑂) + ®𝑓

(−−→
𝑂𝑀

)
. When 𝐸 = 𝐸′ is a vector

space, a linear isometry is the same thing as an affine isometry that fixes the origin.
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There is also a differential version of isometries:

Definition 3.73. Amap 𝑓 : 𝐸 → 𝐸′ is called a pseudo-Riemannian isometry if 𝑓 is bijective,
of class C1, and for every𝑀 ∈ 𝐸 the differential d𝑓

𝑀
: ®𝐸 → ®𝐸′ is a linear isometry.

The reader should understand that, a priori, the linear isometry d𝑓
𝑀
changes with 𝑀 .

However the next theorem says that any pseudo-Riemannian must be affine, hence d𝑓
𝑀
= ®𝑓

is in fact independent of𝑀 . I would like to emphasize that this “rigidity” is remarkable:

Remark 3.74. We will see in  Chapter 9 that a C1 map 𝑓 : 𝐸 → 𝐸′ between Euclidean spaces

is conformal if, for every 𝑀 ∈ 𝐸, the differential d𝑓
𝑀
is a linear similarity. By analogy, one

could expect that any conformal map is in fact an affine similarity. This is far from true in

dimension 2: holomorphic functions provide many counter-examples.

Theorem 3.75. Let 𝑓 : 𝐸 → 𝐸′ be a bijective map of class C1 between pseudo-Euclidean spaces.
The following are equivalent:

(i) 𝑓 is an affine isometry.
(ii) 𝑓 is a pseudo-Riemannian isometry.
(iii) 𝑓 is energy preserving: E (𝑓 ◦ 𝛾) = E (𝛾) for any C1 curve 𝛾 : 𝐼 → 𝐸.
(iv) 𝑓 preserves causal characters and is length preserving: ℓ (𝑓 ◦ 𝛾) = ℓ (𝛾).
(v) 𝑓 preserves causal characters and maps any geodesic to a geodesic with the same speed.
(vi) 𝑓 preserves causal characters and is “distance” preserving: 𝑑 (𝑓 (𝐴), 𝑓 (𝐵)) = 𝑑 (𝐴, 𝐵).

Remark 3.76. We say that “𝑓 preserves causal character” when 𝑓 (𝐵)− 𝑓 (𝐴) as the same causal

character as 𝐵 −𝐴 for all 𝐴, 𝐵 ∈ 𝐸, which makes sense for any map 𝑓 : 𝐸 → 𝐸′.

Proof. Thankfully we have already done the hard part of the work in  § 3.4.2 . We prove the

following implications:

 (𝑖)  

 (𝑖𝑖)   (𝑖𝑣)   (𝑣𝑖)  

 (𝑖𝑖𝑖)   (𝑣)  

 (i) ⇒  (ii) : If 𝑓 is an affine isometry, then d𝑓
𝑀

= ®𝑓 is a linear isometry and it coincides

with the differential d𝑓
𝑀
at any point. This proves that 𝑓 is a pseudo-Riemannian isometry.

 (ii) ⇒  (iii) : By definition, E (𝑓 ◦ 𝛾) =
∫
𝐼
〈(𝑓 ◦ 𝛾)′(𝑡), (𝑓 ◦ 𝛾)′(𝑡)〉 d𝑡 . By the chain rule,

(𝑓 ◦ 𝛾)′(𝑡) = d𝑓
𝛾 (𝑡) (𝛾

′(𝑡)), and since 𝑓 is a pseudo-Riemannian isometry we have〈
d𝑓

𝛾 (𝑡) (𝛾
′(𝑡)), d𝑓

𝛾 (𝑡) (𝛾
′(𝑡))

〉
= 〈𝛾 ′(𝑡), 𝛾 ′(𝑡)〉 .

It follows that E (𝑓 ◦ 𝛾) =
∫
𝐼
〈𝛾 ′(𝑡), 𝛾 ′(𝑡)〉 d𝑡 = E (𝛾).

53



CHAPTER 3. PSEUDO-EUCLIDEAN SPACES

 (ii) ⇒  (iv) : The proof that ℓ (𝑓 ◦ 𝛾) = ℓ (𝛾) is the same as for the energy. The fact that
®𝑓

preserves causal character is not easily derived from  (ii) , but it is harmless to derive it from

 (i) (replace  (ii) by  (i) + (ii) in the diagram above).

 (iii) ⇒  (v) : Assume 𝑓 is energy preserving. In particular, a smooth regular curve 𝛾 is a

critical point of the energy if and only if 𝑓 ◦𝛾 is a critical point of the energy. By  Theorem 3.42 ,

this proves that 𝛾 is a geodesic if and only if 𝑓 ◦ 𝛾 is a geodesic. These two geodesics have

the same energy if and only if they have the same speed.

 (v) ⇒  (vi) : Let 𝛾 : [0, 1] → 𝐸 be the unique geodesic with 𝛾 (0) = 𝐴 and 𝛾 (1) = 𝐵: it

is given by 𝛾 (𝑡) = 𝐴 + 𝑡 (𝐵 − 𝐴) where 𝑢 = 𝐵 − 𝐴. Similarly, let Let 𝛾 : [0, 1] → 𝐸′ be the
unique geodesic from 𝑓 (𝐴) to 𝑓 (𝐵), given by 𝛾 (𝑡) = 𝐴 + 𝑡 (𝑓 (𝐵) − 𝑓 (𝐴)). By assumption,

we must have 𝛾 = 𝑓 ◦ 𝛾 , and the speed of 𝛾 must be equal to the speed of 𝛾 , in other words

‖ 𝑓 (𝐵) − 𝑓 (𝐴)‖ = ‖𝐵 −𝐴‖, i.e. 𝑑 (𝑓 (𝐴), 𝑓 (𝐵)) = 𝑑 (𝐴, 𝐵).
 (iv) ⇒  (vi) : This follows from  Corollary 3.45 .

 (vi) ⇒  (i) : 𝑓 is distance-preserving if and only if
®𝑓 preserves the lengths of vectors. Thus

 (i) ⇔  (vi) is the content of  Proposition 3.69 . �

3.7.3 Linear and affine isometry groups

When𝑉 = 𝑉 ′
, linear isometries form a group under composition, called the linear isometry

group or (pseudo-)orthogonal group of𝑉 , denoted O(𝑉 ) (or O(𝑞), where 𝑞 is the quadratic
form on 𝑉 associated to the inner product). Let us record this:

Definition 3.77. Let 𝑉 be a pseudo-Euclidean vector space. The orthogonal group of 𝑉 is

the group of linear automorphisms of 𝑉 that preserve the inner product:

O(𝑉 ) B {𝑓 ∈ GL(𝑉 ) | ∀𝑢, 𝑣 ∈ 𝑉 〈𝑓 (𝑢), 𝑓 (𝑣)〉 = 〈𝑢, 𝑣〉} .

In terms of matrices: choose a basis (𝑒1, . . . , 𝑒𝑛). Denote 𝐵 =
[
〈𝑒𝑖, 𝑒 𝑗 〉

]
16𝑖, 𝑗6𝑛

the matrix

representation of the inner product and𝑀 the matrix of some linear map 𝑓 : 𝑉 → 𝑉 .

Proposition 3.78. 𝑓 is a linear isometry if and only if𝑀T 𝐵𝑀 = 𝐵.

Proof. Let𝑈 and𝑉 be the column vectors representing vectors 𝑢 and 𝑣 . Then 〈𝑢, 𝑣〉 = 𝑈T 𝐵𝑉

and 〈𝑓 (𝑢), 𝑓 (𝑣)〉 = (𝑀𝑈 )T 𝐵 (𝑀𝑉 ) = 𝑈T (
𝑀T 𝐵𝑀

)
𝑉 . It follows that 𝑓 preserves the inner

product if and only if𝑀T 𝐵𝑀 = 𝐵. By  Lemma 3.67 , since 𝑓 is linear, it is then automatically

injective, hence a linear automorphism. �

In particular, if we choose an orthonormal basis so that the matrix of the inner product is

𝐼𝑝,𝑞 as in  Theorem 3.19 , then the isometry group of 𝑉 is identified to the group:

O(𝑝, 𝑞) B
{
𝑀 ∈ M(𝑛,R) | 𝑀T 𝐼𝑝,𝑞𝑀 = 𝐼𝑝,𝑞

}
.

called the pseudo-orthogonal group of signature (𝑝, 𝑞).
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Proposition 3.79. The orthogonal group of any pseudo-Euclidean vector space of signature
(𝑝, 𝑞) is isomorphic to O(𝑝, 𝑞).

Remark 3.80. In 𝑉 = R𝑝,𝑞 , we have a canonical orthonormal basis, therefore O(R𝑝,𝑞) is
canonically identified toO(𝑝, 𝑞). Thus  Proposition 3.79 can also be derived from  Theorem 3.29 .

Example 3.81. The group of linear isometries of a Minkowski space of dimension 𝑛 + 1 is

isomorphic to O(𝑛, 1), called the Lorentz group.

Of course, if 𝐸 is a pseudo-Euclidean affine space, the affine isometries of 𝐸 also form

a group, the affine isometry group Isom(𝐸). By  Theorem 3.75 , this is also the group of

pseudo-Riemannian isometries of 𝐸.

There is a simple relation between Isom(𝐸) andO(𝑉 ) where𝑉 = ®𝐸: essentially, any affine
isometry is the composition of a linear isometry by a translation. More precisely:

• Any translation 𝑡𝑣 : 𝐴 ↦→ 𝐴 + 𝑣 (with 𝑣 ∈ 𝑉 ) is an affine isometry, since ®𝑡𝑣 = id𝑉 .

Translations form a subgroup of Isom(𝑉 ), canonically isomorphic to 𝑉 (via 𝑣 ↦→ 𝑡𝑣 ).

• Choose𝑂 ∈ 𝐸. Any affine isometry is written 𝑓 = 𝑡𝑣 ◦𝑔 where 𝑣 = 𝑓 (𝑂) −𝑂 and 𝑔 fixes

𝑂 . Isometries fixing𝑂 form a subgroup Isom𝑂 (𝐸) isomorphic to O(𝑉 ) (via 𝑓 ↦→ ®𝑓 ).
For readers familiar with abstract group theory, Isom(𝐸) is an extension of O(𝐸) by 𝑉 : we
have a short exact sequence

1 → 𝑉 → Isom(𝐸) → O(𝑉 ) → 1

where the second arrow is 𝑣 ↦→ 𝑡𝑣 and the third 𝑓 ↦→ ®𝑓 . Choosing𝑂 ∈ 𝐸 defines a splitting via
O(𝑉 ) ∼−→ Isom𝑂 (𝐸), hence an identification of Isom(𝐸) with the semidirect product𝑉 oO(𝑉 ).
In particular, if 𝐸 = 𝑉 is a vector space, Isom(𝑉 ) is canonically isomorphic to 𝑉 o O(𝑉 ).
Example 3.82. The group of affine isometries of a Minkowski space of dimension 𝑛 + 1 is

(isomorphic to) Isom(R𝑛,1) = R𝑛,1 o O(𝑛, 1), called the Poincaré group.

3.7.4 Preserving space and time orientation

Let𝑉 be a pseudo-Euclidean vector space and 𝑓 ∈ O(𝑉 ). The image of any maximal positive

subspace𝑊 ⊆ 𝑉 by 𝑓 is another maximal positive subspace, and by  Proposition 3.56 it makes

sense to ask whether the restriction 𝑓𝑊 :𝑊 → 𝑓 (𝑊 ) is orientation-preserving.

Definition 3.83. A linear isometry 𝑓 ∈ O(𝑉 ) is space [resp. time] orientation-preserving
if, for some (equivalently any) maximal positive [resp. negative] subspace𝑊 , the restriction

𝑓 :𝑊 → 𝑓 (𝑊 ) is orientation-preserving.

Remark 3.84. The adjective orthochronous is also used in lieu of time orientation-preserving.

Remark 3.85. Concretely, 𝑓 is space [resp. time] orientation-preserving if 𝑝 𝑓 (𝑊 ),𝑊 ◦ 𝑓�𝑊 is

orientation-preserving for some (equivalently any) maximal subspace𝑊 . The equivalence of

some and any is proven similarly to  Proposition 3.56 .
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Proposition 3.86. A linear isometry 𝑓 ∈ O(𝑉 ) is orientation-preserving if and only if it
preserves the orientation of both space and time, or reverses both.

Proof. Let𝑊 be a maximal positive subspace, then𝑊 ⊥
is maximal negative and𝑉 =𝑊 ⊕𝑊 ⊥

.

The conclusion quickly follows. Alternatively, it derives immediately from  Theorem 3.87 . �

Theorem 3.87. Let 𝑓 ∈ O(𝑉 ). Choose any orthonormal basis (𝑒1, . . . , 𝑒𝑝+𝑞) of𝑉 and write the
matrix representation of 𝑓 as a block matrix:

𝑀 =

[
𝐴 𝐵

𝐶 𝐷

]
𝐴 ∈ M(𝑝,R) 𝐷 ∈ M(𝑞,R)

𝑓 is space [resp. time] orientation-preserving if and only if det𝐴 > 0 [resp. det𝐷 > 0].

Remark 3.88. It is not obvious that the sign of det𝐴 and det𝐷 are independent of the basis!

Remark 3.89. We will see in the next section that moreover, det𝑀 = det𝐴(det𝐷)−1 = ±1.

Proof. Let𝑊+ and𝑊− denote the linear spans of (𝑒1, . . . , 𝑒𝑝) and (𝑒𝑝+1, . . . , 𝑒𝑝+𝑞) respectively.
Then𝑊+ is maximal positive,𝑊− is maximal negative, and𝑉 =𝑊+ ⊕⊥𝑊−. It follows that𝐴 is

the matrix representation of 𝑝 𝑓 (𝑊+),𝑊+ ◦ 𝑓�𝑊+ and 𝐷 is the matrix representation of 𝑝 𝑓 (𝑊−),𝑊− ◦
𝑓�𝑊− . Conclude with  Remark 3.85 . �

We denote O
++(𝑉 ), O+−(𝑉 ), O−+(𝑉 ), O−−(𝑉 ) the subsets of O(𝑉 ) where the first [resp.

second] ± indicates whether isometries are space [resp. time] orientation-preserving. We

also put O
+(𝑉 ) B O

++(𝑉 ) ∪ O
−+(𝑉 ), the orthochronous orthogonal group. We will prove

in  § 3.8 that the four O
±±(𝑉 ) are all connected. Admitting this for the moment, we obtain:

Theorem 3.90. Let 𝑉 be a pseudo-Euclidean space of mixed signature (𝑝, 𝑞).
(i) O

±±(𝑉 ) are the four connected components of O(𝑉 ).
(ii) O

++(𝑉 ) C O0(𝑉 ) is a subgroup of index 4 and the identity component of O(𝑉 ).
(iii) O

+(𝑉 ) = O
++(𝑉 ) ∪ O

−+(𝑉 ) is a subgroup of index 2 of O(𝑉 ).
(iv) SO(𝑉 ) = O

++(𝑉 ) ∪ O
−−(𝑉 ) is a subgroup of index 2 of O(𝑉 ).

Remark 3.91. O++(𝑉 ) = SO
+(𝑉 ) is an index 2 subgroup of both O

+(𝑉 ) and SO(𝑉 ).
Remark 3.92. Denote𝐾4 = {±1,±1} theKlein four-group . There is an obviousmapO(𝑉 ) →
𝐾4 consistent with the notation O

±±(𝑉 ), which is a continuous group homomorphism. If

an orthonormal basis is chosen as in  Theorem 3.87 , that is 𝑀 ↦→ (sign(det𝐴), sign(det𝐷)).
Pedantically speaking, this map descends to a group isomorphism 𝜋0

(
O(𝑉 )

) ∼−→ 𝐾4, where

𝜋0
(
O(𝑉 )

)
= {O++(𝑉 ),O+−(𝑉 ),O−+(𝑉 ),O−−(𝑉 )} is the group of connected components.
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3.7.5 Reflections and the Cartan–Dieudonné theorem

Let𝑉 be a pseudo-Euclidean vector space. If𝑢 ∈ 𝑉 is anisotropic, then𝐻 = 𝑢⊥ is a hyperplane

and 𝑉 = 𝐻 ⊕ R𝑢 by  Proposition 3.10 . In any vector space 𝑉 , a decomposition 𝑉 =𝑊1 ⊕𝑊2

allows one to define the reflection through𝑊1 along𝑊2 by 𝑟 (𝑤) = 𝑤1 −𝑤2 (see  § A.1.2 for

details). When𝑊2 =𝑊
⊥
1
, we call 𝑟𝑊1

B 𝑟 the orthogonal reflection through𝑊1.

Proposition 3.93. 𝑟 ∈ O(𝑉 ) ⇔ 𝑊2 =𝑊
⊥
1
. In words: a reflection is an orthogonal automor-

phism if and only if it is an orthogonal reflection.

Proof. Elementary exercise (nonetheless a treat, see for yourself). �

It is common to say reflection as a shorthand for orthogonal reflection through a hyper-
plane; let us also adopt this convention. By the previous discussion, any anisotropic vector 𝑢

defines a reflection 𝑟𝐻 where 𝐻 = 𝑢⊥. We can find an explicit expression of 𝑟𝐻 : first decom-

pose any vector as 𝑣 = 𝑣1 + 𝑣2 where 𝑣2 = 𝜆𝑢 ∈ R𝑢 and 𝑣1 = 𝑣 − 𝑣2 ∈ 𝐻 . One finds 𝜆 =
〈𝑣,𝑢〉
〈𝑢,𝑢〉

by enforcing 〈𝑣1, 𝑢〉 = 0. The reflection is then given by 𝑟 (𝑣) = 𝑣1 − 𝑣2 = 𝑣 − 2𝜆𝑢, that is:

𝑟𝑢⊥ (𝑣) = 𝑣 − 2

〈𝑣,𝑢〉
〈𝑢,𝑢〉𝑢 . (3.2)

Lemma 3.94. If 〈𝑣, 𝑣〉 = 〈𝑤,𝑤〉 and 𝑢 B 𝑤 − 𝑣 is anisotropic, then 𝑟𝑢⊥ (𝑣) = 𝑤 .

Proof. Compute 𝑟𝑢⊥ (𝑣) with ( 3.2 ). Alternatively, notice that the decomposition of 𝑣 on𝑢⊥⊕R𝑢
is 𝑣 = 𝑣1 + 𝑣2 with 𝑣1 = 𝑣+𝑤

2
and 𝑣2 =

𝑣−𝑤
2
, conclude that 𝑟 (𝑣) = 𝑣1 − 𝑣2 = 𝑤 . �

Theorem 3.95 (Cartan–Dieudonné). Let𝑉 be a pseudo-Euclidean vector space of dimension 𝑛.
Any linear isometry 𝑓 ∈ O(𝑉 ) can be written as the product of at most 𝑛 reflections.

Proof. We prove the theorem by induction on 𝑛. If there exists an anisotropic vector 𝑣 fixed

by 𝑓 , one can apply the induction hypothesis to (𝐻 = 𝑣⊥, 𝑓�𝐻 ), and conclude by observing

that any reflection of 𝐻 extends to a reflection of 𝑉 .

If there exists an anisotropic vector 𝑣 such that 𝑓 (𝑣) = −𝑣 , or more generally such that

𝑢 B 𝑣 − 𝑓 (𝑣) is anisotropic, the we can apply the previous argument to 𝑟𝑢⊥ ◦ 𝑓 by  Lemma 3.94 .

If 𝑉 is Euclidean, we are done: any 𝑣 ≠ 𝑓 (𝑣) does the job. If 𝑉 is Minkowski, we also win:

take any timelike 𝑣 such that 𝑓 (𝑣) ≠ 𝑣 , then 𝑣 − 𝑓 (𝑣) is anisotropic by  Lemma 3.98 .

If 𝑝 and 𝑞 are > 1, it is unfortunately possible that 𝑣 − 𝑓 (𝑣) is always isotropic, although
this situation is quite special: it implies that 𝑝 = 𝑞 and there is a 𝑝-dimensional isotropic

subspace fixed by 𝑓 . Since we are primarily interested in Minkowski spaces, let us save some

space and refer to [ Ber2 , p. 13.7.12] for the details of how to treat this case. �

Remark 3.96. The proof is easier if we do not care about the bound on the number of reflections:

Take any anisotropic 𝑣 ∈ 𝑉 . If 𝑓 (𝑣)−𝑣 is anisotropic, wewin as before. Otherwise,𝑢 B 𝑓 (𝑣)+𝑣
is anisotropic. Composing 𝑓 with 𝑟𝑢⊥ brings us back to the case 𝑓 (𝑣) = −𝑣 . [ Bou2 , §6].

Remark 3.97. The Cartan–Dieudonné theorem holds over any base field K of characteristic

≠ 2, with a similar proof: see [ Lam ].
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3.7.6 Action in spheres and in the light cone

Let 𝑉 be a pseudo-Euclidean vector space of signature (𝑝, 𝑞). Let𝑚 ∈ R and denote 𝑆 = 𝑆𝑚
the sphere of square radius𝑚, characterized by 〈𝑣, 𝑣〉 =𝑚. It is clear that any linear isometry

𝑓 preserves 𝑆 : write 〈𝑓 (𝑣), 𝑓 (𝑣)〉 = 〈𝑣, 𝑣〉 =𝑚 (we saw this in  Theorem 3.35 ).

Let us show that the action of O(𝑉 ) in 𝑆 is transitive. Since we are most interested in the

case 𝑞 = 1 (Minkowski space) and𝑚 < 0 (𝑆 is a two-sheeted hyperboloid) or𝑚 = 0 (𝑆 is the

light cone), and it happens to make the proof easier, we primarily examine this case.

Lemma 3.98. Let𝑉 be aMinkowski vector space and let 𝑣 ≠ 𝑤 ∈ 𝑉 such that 〈𝑣, 𝑣〉 = 〈𝑤,𝑤〉 B
𝑚. If𝑚 < 0 or (𝑚 = 0 and 𝑣,𝑤 are linearly independent), then 𝑣 −𝑤 is anisotropic.

Proof. Let 𝑎 = 〈𝑣, 𝑣 −𝑤〉 and 𝑏 = 〈𝑤, 𝑣 −𝑤〉. Then 𝑎 +𝑏 = 〈𝑣 +𝑤, 𝑣 −𝑤〉 = 〈𝑣, 𝑣〉 − 〈𝑤,𝑤〉 = 0.

On the other hand, 𝑎−𝑏 = 〈𝑣 −𝑤, 𝑣 −𝑤〉 = 0 if 𝑣 −𝑤 is isotropic, therefore 𝑎 = 𝑏 = 0: 𝑣 −𝑤 is

orthogonal to 𝑣 and𝑤 . If𝑚 < 0, i.e. 𝑣 and𝑤 are timelike, this is excluded by  Proposition 3.20 

(more specifically  Proposition 4.1 ): any vector orthogonal to 𝑣 (or to𝑤 ) must be spacelike.

If𝑚 = 0 and 𝑣 −𝑤 is isotropic, then the linear span of 𝑣 and𝑤 is isotropic. The maximal

dimension of an isotropic subspace is max(𝑝, 𝑞) (I leave this claim as an exercise), therefore

if 𝑞 = 1, an isotropic subspace are at most 1-dimensional. The conclusion follows. �

Proposition 3.99. Let𝑉 be a Minkowski space and 𝑆 = 𝑆𝑚 the sphere of square radius𝑚 ∈ R.
• If𝑚 < 0, for any 𝑣 ≠ 𝑤 ∈ 𝑆 there exists a reflection sending 𝑣 to𝑤 .
• If𝑚 = 0, the same conclusion holds if 𝑣 and𝑤 are linearly independent.

Proof. Follows instantly from  Lemma 3.98 and  Lemma 3.94 . �

Theorem 3.100. Let𝑉 be a Minkowski space. The action of O(𝑉 ) in any sphere 𝑆𝑚 with𝑚 < 0

is transitive, as is its action in 𝑆0 − {0} (the light cone minus the origin).

Proof. If 𝑚 < 0 or (𝑚 = 0 and 𝑣,𝑤 are linearly independent), a reflection takes 𝑣 to 𝑤 by

 Proposition 3.99 , and reflections are orthogonal endomorphisms.

Annoyingly, it remains to examine the case where𝑚 = 0 and𝑤 = 𝜆𝑣 ≠ 0. Without loss

of generality, we can take 𝑉 = R1,1 and 𝑣 = (1, 1). Indeed, let 𝑒2 be any unit timelike vector.

Then 〈𝑒2, 𝑣〉 ≠ 0 (any vector orthogonal to 𝑒2 is spacelike) and we can put 〈𝑒2, 𝑣〉 = −1 by

scaling 𝑣 . Let 𝑒1 = 𝑣 − 𝑒2, then 〈𝑒1, 𝑒1〉 = 1 and 𝑣 = 𝑒1 + 𝑒2. Then 𝑃 = span(𝑒1, 𝑒2) ≈ R1,1. It is
enough to find 𝑓 ∈ O(1, 1) that sends 𝑣 = (1, 1) to 𝑤 = (𝜆, 𝜆), since we can extend 𝑓 to an

isometry of 𝑉 = 𝑃 ⊕ 𝑃⊥ by 𝑓 = id on 𝑃⊥. To conclude, we look for 𝑀 ∈ O(1, 1) such that

𝑀

[
1

1

]
=

[
𝜆

𝜆

]
. It is nice and relaxing to check that𝑀 =

1

2

[
𝜆 + 1

𝜆
𝜆 − 1

𝜆

𝜆 − 1

𝜆
𝜆 + 1

𝜆

]
does the job. �

Remark 3.101.  Theorem 3.100 actually holds in any pseudo-Euclidean space 𝑉 and also if

𝑚 > 0, but not  Proposition 3.99 . In other words, for 𝑣,𝑤 ∈ 𝑆 , more than one reflection may

be needed to send 𝑣 to 𝑤 . I leave it to the most resolute readers to prove this and find the

maximal number of reflections needed (I think it is two if𝑚 ≠ 0 and three if𝑚 = 0).
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3.8. THE PSEUDO-ORTHOGONAL GROUP

3.8 The pseudo-orthogonal group

3.8.1 Introduction

Let 𝑝 and 𝑞 be positive integers and 𝑛 = 𝑝 +𝑞. We introduced the pseudo-orthogonal group
O(𝑝, 𝑞) (also called indefinite orthogonal group) in the previous section. It is the subgroup

of invertible matrices defined by:

O(𝑝, 𝑞) B
{
𝑀 ∈ GL(𝑛,R) | 𝑀T 𝐼𝑝,𝑞𝑀 = 𝐼𝑝,𝑞

}
where 𝐼𝑝,𝑞 =

[
𝐼𝑝 0

0 −𝐼𝑞

]
.

It is naturally identified to the group of linear isometries of the pseudo-Euclidean space R𝑝,𝑞 .

Remark 3.102. The orthogonal group O(𝑛,R) B
{
𝑀 ∈ GL(𝑛,R) | 𝑀T𝑀 = 𝐼𝑛

}
, also de-

noted O(𝑛), can be seen as the special case 𝑞 = 0. That being said, we now assume 𝑝, 𝑞 > 0.

Remark 3.103. Denote𝑀∗ B 𝐼𝑝,𝑞𝑀
T 𝐼𝑝,𝑞 . This represents the adjoint endomorphism of R𝑝,𝑞 .

Observe that𝑀 ∈ O(𝑝, 𝑞) if and only if𝑀∗𝑀 = 𝐼𝑛.

In the remainder of this section, we further analyze the algebraic and topological structure

of this matrix group. A nice complementary reference is [ MT , Chap. 4] (in French). Readers

may also find [ Ser2 , Chap. 10] 

4
 and [ GQ , Chap. 6, 7] useful. More advanced textbooks on the

structure of Lie groups and symmetric spaces include [ Hel ] and [ Ebe ].

3.8.2 Block description and determinant

Let us write𝑀 ∈ M(𝑛,R) as a block matrix𝑀 =

[
𝐴 𝐵

𝐶 𝐷

]
according to the splitting𝑛 = 𝑝+𝑞.

Proposition 3.104. Let𝑀 ∈ M(𝑛,R) as above.

𝑀 ∈ O(𝑝, 𝑞) ⇔

𝐴T𝐴 = 𝐼𝑝 +𝐶T𝐶

𝐷T𝐷 = 𝐼𝑞 + 𝐵T 𝐵
𝐴T 𝐵 = 𝐶T𝐷 .

Proof. Just compute the product of block matrices:

𝑀T 𝐼𝑝,𝑞𝑀 =

[
𝐴T 𝐶T

𝐵T 𝐷T

] [
𝐼𝑝 0

0 −𝐼𝑞

] [
𝐴 𝐵

𝐶 𝐷

]
=

[
𝐴T𝐴 −𝐶T𝐶 𝐴T 𝐵 −𝐶T𝐷

𝐴𝐵T − 𝐷T𝐶 𝐵T 𝐵 − 𝐷T𝐷

]
and equate this to 𝐼𝑝,𝑞 . �

4
Original French edition: [ Ser1 ].
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Proposition 3.105. Let𝑀 =

[
𝐴 𝐵

𝐶 𝐷

]
. If𝑀 ∈ O(𝑝, 𝑞), then det𝑀 = (det𝐴) (det𝐷)−1 = ±1,

and |det𝐴| = |det𝐷 |−1 > 1.

Proof. Since 𝑀T 𝐼𝑝,𝑞𝑀 = 𝐼𝑝,𝑞 , we get (det𝑀)2 = 1, therefore det𝑀 = ±1. To prove that

det𝑀 = (det𝐴) (det𝐷)−1, observe that[
𝐴T

0

𝐵T −𝐷T

] [
𝐴 𝐵

𝐶 𝐷

]
=

[
𝐴T𝐴 𝐴T 𝐵

0 −𝐼𝑞

]
where we used 𝐵T𝐴 − 𝐷T𝐶 = 0 and 𝐵T 𝐵 − 𝐷T𝐷 = −𝐼𝑞 ( Proposition 3.104 ). Taking the

determinant, we obtain det𝐴 (−1)𝑞 det𝐷 det𝑀 = (det𝐴)2 (−1)𝑞 , i.e. det𝐷 det𝑀 = det𝐴.

It remains to prove that |det𝐴| > 1. This quickly follows from 𝐴T𝐴 = 𝐼𝑝 +𝐶T𝐶 , which

implies that𝐴T𝐴 > 𝐼𝑝 as a symmetric matrix. (Prove that that all the eigenvalues of 𝑆 = 𝐴T𝐴

are real and > 1 and conclude.) �

We denoteO
±±(𝑝, 𝑞) the four subsets (in fact, connected components, see  Corollary 3.125 )

ofO(𝑝, 𝑞) that describe whether isometries ofR𝑝,𝑞 preserve or reverse the orientation of space

and time (see  § 3.7.4 ). We also denoteO
+(𝑝, 𝑞) = O

++(𝑝, 𝑞) ∪O
−+(𝑝, 𝑞) (orthochronous pseudo-

orthogonal group) and SO(𝑝, 𝑞) = O(𝑝, 𝑞) ∩ SL(𝑛,R) (special pseudo-orthogonal group).

Corollary 3.106. Let 𝑀 =

[
𝐴 𝐵

𝐶 𝐷

]
∈ O(𝑝, 𝑞). Write 𝑀 ∈ O

𝑠𝑡 (𝑝, 𝑞) where 𝑠, 𝑡 ∈ {+,−}.

Then 𝑠 = sign(det𝐴) and 𝑡 = sign(det𝐷). Furthermore,𝑀 ∈ SO(𝑝, 𝑞) if and only if 𝑠 = 𝑡 .

3.8.3 Lie algebra

Let us denote𝐺 = O(𝑝, 𝑞). The Lie algebra 𝔤 = 𝔬(𝑝, 𝑞) is obtained by linearizing the equation
𝑀T 𝐼𝑝,𝑞𝑀 = 𝐼𝑝,𝑞 defining𝐺 :

Definition 3.107. The Lie algebra of O(𝑝, 𝑞) is the linear subspace ofM(𝑛,R) defined by:

𝔬(𝑝, 𝑞) =
{
𝑋 ∈ M(𝑛,R) | 𝑋T 𝐼𝑝,𝑞 + 𝐼𝑝,𝑞 𝑋 = 0

}
.

Remark 3.108. Recall that 𝑋 ∗ B 𝐼𝑝,𝑞 𝑋
T 𝐼𝑝,𝑞 . Then 𝑋 ∈ 𝔤 if and only if 𝑋 ∗ = −𝑋 , i.e. 𝑋 is

anti-self-adjoint. If one denotes 𝔮 = {𝑋 ∈ M(𝑛,R) | 𝑋 ∗ = 𝑋 } the subspace of self-adjoint
matrices, it is elementary to check thatM(𝑛,R) = 𝔤 ⊕ 𝔮.

Remark 3.109. It is clear that 𝔤 is a linear subspace of M(𝑛,R), it is also a Lie subalgebra in

the sense that it is closed under the Lie bracket [𝑋,𝑌 ] = 𝑋𝑌 − 𝑌𝑋 (check this).

Informally speaking, 𝔤 comprises all infinitesimal deformations of the identity in 𝐺 , in

other words tangent vectors to𝐺 at 𝐼𝑛. More precisely:

Theorem 3.110. The following are equivalent:
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(i) 𝑋 ∈ 𝔤.
(ii) There exists a C1 curve 𝛾 : R→ 𝐺 such that 𝛾 (0) = 𝐼𝑛 and 𝛾 ′(0) = 𝑋 .
(iii) exp(𝑡𝑋 ) ∈ 𝐺 for all 𝑡 ∈ R (where exp is the matrix exponential).

Proof. Let us prove that  (iii) ⇒  (ii) ⇒  (i) ⇒  (iii) .

 (iii) ⇒  (ii) : trivial.

 (ii) ⇒  (i) : if 𝛾 (𝑡) ∈ 𝐺 , then 𝛾 (𝑡)∗ 𝛾 (𝑡) = 𝐼𝑛. Differentiating this identity, we obtain

𝛾 ′(𝑡)∗𝛾 (𝑡) + 𝛾 ′(𝑡)∗𝛾 (𝑡) = 0. Putting 𝑡 = 0 yields 𝑋 ∗ + 𝑋 = 0.

 (i) ⇒  (iii) : Assume𝑋 ∈ 𝔤. It is enough to show that exp(𝑋 ) ∈ 𝐺 (replace𝑋 by 𝑡𝑋 ). Observe

that for any matrix 𝑋 , exp(𝑋 )∗ = exp(𝑋 ∗): this follows from the definition of exp(𝑋 ) =∑+∞
𝑘=0

𝑋𝑘

𝑘!
and the fact that (𝑋𝑘)∗ = (𝑋 ∗)𝑘 . Since 𝑋 ∗ = −𝑋 , we get exp(𝑋 )∗ = exp(−𝑋 ),

therefore exp(𝑋 )∗ exp(𝑋 ) = 𝐼𝑛. This proves that exp(𝑋 ) ∈ 𝐺 (see  Remark 3.103 ). �

Remark 3.111. It is not true that 𝑋 ∈ 𝔤 ⇔ exp(𝑋 ) ∈ 𝐺 : see  Exercise 3.6 .

Let us write 𝑋 =

[
𝐴 𝐵

𝐶 𝐷

]
according to the splitting 𝑛 = 𝑝 + 𝑞. It is quickly checked

that 𝑋 ∗ =

[
𝐴T −𝐶T

−𝐵T 𝐷T

]
, therefore 𝑋 ∈ 𝔤 if and only if 𝐴T = −𝐴, 𝐷T = −𝐷 , and 𝐵T = 𝐶 . We

introduce the two following subspaces of 𝔤:

𝔨 =

{[
𝐴 0

0 𝐷

]
∈ M(𝑝 + 𝑞,R) | 𝐴T = −𝐴 and 𝐷T = −𝐷

}
(3.3)

𝔭 =

{[
0 𝐵

𝐵T 0

]
∈ M(𝑝 + 𝑞,R)

}
(3.4)

Theorem 3.112 (Cartan decomposition of the Lie algebra). As a vector space, 𝔤 = 𝔨 ⊕ 𝔭.
Moreover, [𝔨, 𝔨] ⊆ 𝔨, [𝔭,𝔭] ⊆ 𝔨, and [𝔭, 𝔨] ⊆ 𝔨. (That is: 𝑋𝑌 − 𝑌𝑋 ∈ 𝔨 for all 𝑋,𝑌 ∈ 𝔨, etc.)

Proof. The first claim is clear from our previous discussion. For [𝔨, 𝔨] ⊆ 𝔨 etc., first observe

that 𝔨 and𝔭 are characterized by𝑋T = −𝑋 and𝑋T = 𝑋 respectively. Since [𝑋,𝑌 ]T = −[𝑋T, 𝑌T],
the conclusion quickly ensues. �

Remark 3.113. The subspace 𝔨 ⊆ 𝔤 is the Lie algebra of the maximal compact subgroup

O(𝑝) × O(𝑞) ( Theorem 3.119 ), and 𝔭 is the orthogonal of 𝔨 for the Killing form 𝐵(𝑋,𝑌 ) =

(𝑛 − 2) tr(𝑋𝑌 ). This decomposition holds similarly in any semisimple Lie algebra, see [ Hel ].

Remark 3.114. A surprising fact about the Lie algebra of O(𝑝, 𝑞), in contrast with O(𝑛),
is that it contains nilpotent elements as soon as 𝑝 + 𝑞 > 3 (and 𝑝, 𝑞 > 1). For instance,

𝑋 =


0 1 −1
−1 0 0

−1 0 0

 is in 𝔬(2, 1) and 𝑋 3 = 0.
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Remark 3.115. The exponential map exp: M(𝑛,R) → GL(𝑛,R) is real analytic and restricts
to exp: 𝔤 → 𝐺 by  Theorem 3.110 . It is a diffeomorphism near 0 ∈ 𝔤 since its differential at 0

is the identity. However it is neither injective nor surjective in general. For 𝐺 = O(𝑝, 𝑞), it
is not injective as soon as 𝑝 > 2 or 𝑞 > 2 ( Exercise 3.6 ). As for surjectivity, first observe that

the image of exp is at most𝐺0 = O0(𝑝, 𝑞), the identity component of𝐺 . Is it onto𝐺0?

• For 𝑞 = 0, i.e.𝐺 = O(𝑛), it is a nice exercise to derive from the normal form mentioned

in  § 3.8.4 that the exponential map is indeed onto𝐺0 = SO(𝑛) ( Exercise 3.6 ).

• For 𝑞 = 1, i.e. 𝐺 is the Lorentz group O(𝑝, 1), it is also true that exp is onto 𝐺0 =

O
++(𝑝, 1). This is however a more difficult result. Its history is discussed in the book

of Gallier and Quaintance [ GQ , §6.3] 

5
 . In  Chapter 12 , we will offer an alternative proof

based on the classification of isometries of hyperbolic space ( Exercise 12.6 ).

• For 𝑝, 𝑞 > 2, the exponential map is not onto O0(𝑝, 𝑞) [ Nis ] 

6
 .

3.8.4 Normal form?

We first recall the normal form for elements of the orthogonal group O(𝑛). Any matrix

𝑄 ∈ O(𝑛) is semisimple, i.e. diagonalizable over C. This is easily proved by induction: 𝑄 has

at least one eigenspace like any complex endomorphism, moreover it preserves the orthogonal

complement. It soon follows that 𝑄 is conjugate in O(𝑛) to a block diagonal matrix

𝑃 𝑄 𝑃−1 =


𝑄1

. . .

𝑄𝑘


where each block 𝑄 𝑗 is of size 1 × 1 or 2 × 2; the former are in O(1) (that is 𝑄 𝑗 = [±1]), and

the latter in SO(2) (i.e. 𝑄 𝑗 =

[
cos𝜃 − sin𝜃

sin𝜃 cos𝜃

]
for some 𝜃 ∈ R).

Remark 3.116. When 𝑄 ∈ SO(𝑛), the [−1] blocks can be paired, so that all blocks 𝑄 𝑗 are in

SO(2). Since SO(2) ≈ 𝑆1 is connected, one quickly concludes that SO(𝑛) is connected. As for
O(𝑛), being isomorphic to SO(𝑛) o {±1}, it has two connected components.

One could expect a similar normal form when 𝑄 ∈ O(𝑝, 𝑞), where each 2 × 2 block 𝑄 𝑗 is

either in SO(2) as before, or in SO(1, 1). Unfortunately, this is not always true. The issue is
that some 𝑄 ∈ O(𝑝, 𝑞) are not semisimple. (If we try to replicate the argument for 𝑄 ∈ O(𝑛),
we run into the problem that not every subspace of R𝑝,𝑞 admits an orthogonal complement.)

Remark 3.117. The existence of non-semisimple elements in𝐺 = O(𝑝, 𝑞) can be detected al-

gebraically by observing that 𝔤 = 𝔬(𝑝, 𝑞) contains nonzero nilpotent elements ( Remark 3.114 ).

5
They explain that the result has been proved by Mitsuru Nishikawa [ Nis ], based on results of Burgoyne

and Cushman [ BC ] and Djoković [ Djo ]; and independently by Marcel Riesz [ Rie2 ]. They also prove the special

case 𝑝 = 3, which is easier thanks to the isomorphism O
++ (3, 1) ≈ PSL(2,C).

6
Nishikawa gives an example of a matrix in O0(2, 2) that is not exponential. On the other hand, it was

proven by Sibuya [ Sib ] that the square of any element of O(𝑝, 𝑞) is in the image of exp.
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A nilpotent 𝑋 ∈ 𝔤 exponentiates to some 𝑀 = exp(𝑋 ) ∈ 𝐺 that is unipotent, i.e. such that

(𝑀 − 𝐼𝑛) is nilpotent. No matrix𝑀 ≠ 𝐼𝑛 can be both semisimple and unipotent (check this).

That being said, semisimple elements of O(𝑝, 𝑞) do admit a normal form as described

above: the proof for O(𝑛) is readily adapted to this setting.

Remark 3.118. The Jordan–Chevalley decomposition says that any𝑀 ∈ GL(𝑛,R) can uniquely

be written as the product of a semisimple and a unipotent matrices that commute. Moreover,

if 𝑀 belongs to an algebraic group 𝐺 ⊆ GL(𝑛,R) such as 𝐺 = O(𝑝, 𝑞), then its semisimple

and unipotent parts both remain in𝐺 . We will further discuss this decomposition in  § 12.2 .

3.8.5 Polar decomposition?

Recall that 𝑆 ∈ M(𝑛,R) is called symmetric if 𝑆T = 𝑆 . It is positive definite if 𝑋T 𝑆 𝑋 > 0

for any nonzero column vector 𝑋 . We denote Sym
+(𝑛,R) ⊆ M(𝑛,R) the set of all positive

definite matrices. The spectral theorem says that any symmetric matrix is diagonalizable

in an orthonormal basis. It follows that 𝑆 is positive definite if and only if all its eigenvalues

are positive. A key consequence is that any 𝑆 ∈ Sym
+(𝑛,R) has a unique square root in

Sym
+(𝑛,R), denoted

√
𝑆 . Using this, one shows that any matrix𝑀 ∈ GL(𝑛,R) has a unique

polar decomposition 𝑀 = 𝑄𝑆 where 𝑄 ∈ O(𝑛) and 𝑆 ∈ Sym
+(𝑛,R). Indeed, one must have

𝑀T𝑀 = 𝑆2, therefore 𝑆 =
√
𝑀T𝑀 and 𝑄 = 𝑀𝑆−1.

Unfortunately, the pseudo-Euclidean version of the spectral theorem and polar decompo-

sition do not quite work. In fact, there exist matrices𝑀 ∈ GL(𝑝 +𝑞,R) that cannot be written
𝑀 = 𝑄𝑆 with 𝑄 ∈ O(𝑝, 𝑞) and 𝐼𝑝,𝑞 𝑆T = 𝐼𝑝,𝑞 𝑆 (i.e. 𝑆∗ = 𝑆). For more details, see  Exercise 3.7 .

On the other hand, we can always apply the Euclidean polar decomposition to 𝑀 ∈
O(𝑝, 𝑞): write 𝑀 = 𝑄𝑆 with 𝑄 ∈ O(𝑛) and 𝑆 ∈ Sym

+(𝑛,R). It is true, albeit not trivial, that
𝑄 and 𝑆 are both still in O(𝑝, 𝑞). More precisely:

Theorem 3.119 (Cartan decomposition of O(𝑝, 𝑞)). Any matrix 𝑀 ∈ 𝐺 = O(𝑝, 𝑞) can
uniquely be written𝑀 = 𝑄𝑆 with 𝑄 ∈ 𝐾 B 𝐺 ∩ O(𝑛) and 𝑆 ∈ 𝐺 ∩ Sym

+(𝑛,R). Furthermore:

• 𝐾 = O(𝑝) × O(𝑞): it is the group of matrices of the form 𝑄 =

[
𝐴 0

0 𝐷

]
with 𝐴 ∈ O(𝑝)

and 𝐷 ∈ O(𝑞). Moreover 𝐾0 = SO(𝑝) × SO(𝑞) = exp(𝔨) where 𝔨 is defined in ( 3.3 ).

• 𝐺 ∩ Sym
+(𝑛,R) = exp(𝔭) where 𝔭 is defined in ( 3.4 ). Its elements are of the form:

𝑆 = exp

( [
0 𝐵

𝐵T 0

] )
=

[
cosh

(√
𝐵𝐵T

)
sinhc

(√
𝐵𝐵T

)
𝐵

sinhc

(√
𝐵T𝐵

)
𝐵T cosh

(√
𝐵T𝐵

) ]
(3.5)

where sinhc(𝑥) B ∑+∞
𝑘=0

𝑥2𝑘

(2𝑘+1)! =
sinh𝑥
𝑥

.

Proof. Let us denote 𝐽 = 𝐼𝑝,𝑞 in this proof. Recall that elements of𝐺 = O(𝑝, 𝑞) are character-
ized by𝑀∗ = 𝑀−1

where𝑀∗ = 𝐽−1𝑀T𝐽 . Since 𝐽T = 𝐽−1 = 𝐽 , we have (𝑀∗)T = 𝐽𝑀𝐽 = (𝑀T)∗.
It follows that𝑀 ∈ 𝐺 if and only if𝑀T ∈ 𝐺 .
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Let 𝑀 ∈ GL(𝑛,R). Denote 𝑇 = 𝑀T𝑀 . Clearly 𝑇 ∈ Sym
+(𝑛,R), therefore there exists

𝑃 ∈ O(𝑛) and 𝐷 = diag(𝜆1, . . . , 𝜆𝑛) with 𝜆𝑖 > 0 such that 𝑇 = 𝑃𝐷𝑃−1. If 𝑀 = 𝑄𝑆 with

𝑄 ∈ O(𝑛) and 𝑆 symmetric, then we must have 𝑀T𝑀 = 𝑆T𝑄T𝑄𝑆 i.e. 𝑇 = 𝑆2. The unique

square root of 𝑇 in Sym
+(𝑛,R) is 𝑆 =

√
𝑇 = 𝑃

√
𝐷𝑃−1 where

√
𝐷 = diag(

√
𝜆1, . . . ,

√
𝜆𝑛).

Putting 𝑄 = 𝑀𝑆−1, we have 𝑀 = 𝑄𝑆 and 𝑄T𝑄 = 𝑆−1𝑇𝑆−1 = 𝐼𝑛, therefore 𝑄 ∈ O(𝑛). We can

also (uniquely) write 𝑆 = exp(𝑌 ) with 𝑌 symmetric: 𝑌 = 𝑃 diag

(
log

√
𝜆1, . . . , log

√
𝜆𝑛

)
𝑃−1.

In the previous paragraph, we simply re-proved the Euclidean polar decomposition. Let

us now prove that 𝑆 ∈ 𝐺 and 𝑌 ∈ 𝔤 if 𝑀 ∈ 𝐺 . Since 𝐺 is stable by transposition and

multiplication, we have 𝑇 = 𝑀T𝑀 ∈ 𝐺 , which we can write 𝑇T𝐽 = 𝐽𝑇 −1
i.e. 𝑇 𝐽 = 𝐽𝑇 −1

.

By immediate induction, 𝑇 𝑘 𝐽 = 𝐽𝑇 −𝑘
for all 𝑘 ∈ N. Taking linear combinations, we obtain

𝑝 (𝑇 ) 𝐽 = 𝐽𝑝 (𝑇 −1) for any polynomial 𝑝 with real coefficients. Let 𝑝 be any polynomial which

coincides with the function 𝑥 ↦→
√
𝑥 on the finite set Λ B

{
𝜆1, . . . , 𝜆𝑛

}
∪

{
𝜆−1
1
, . . . , 𝜆−1𝑛

}
⊆ R.

Then 𝑝 (𝑇 ) = 𝑆 and 𝑝 (𝑇 −1) = 𝑆−1, therefore the identity 𝑝 (𝑇 ) 𝐽 = 𝐽𝑝 (𝑇 −1) translates to
𝑆 𝐽 = 𝐽𝑆−1, i.e. 𝑆 ∈ 𝐺 . Similarly, let 𝑞 be any polynomial function that coincides with

𝑥 ↦→ log

√
𝑥 on Λ. Then 𝑞(𝑇 ) = 𝑌 and 𝑞(𝑇 −1) = −𝑌 , therefore the identity 𝑞(𝑇 ) 𝐽 = 𝐽𝑞(𝑇 −1)

translates to 𝑌 𝐽 = −𝐽𝑌 , moreover 𝑌 is symmetric so we obtain 𝑌T𝐽 = −𝐽𝑌 i.e. 𝑌 ∈ 𝔤.

The identity O(𝑛) ∩ 𝐺 = O(𝑝) × O(𝑞) is elementary and left as exercise. Since O(𝑚)
has two connected components and O0(𝑚) = SO(𝑚) ( Remark 3.116 ), 𝐾 has four connected

components and 𝐾0 = SO(𝑝) × SO(𝑞). The fact that 𝐾 = exp(𝔨) follows directly from

O(𝑚) = exp(𝔬(𝑚)) applied to 𝑚 = 𝑝 and 𝑚 = 𝑞, where 𝔬(𝑚) is the set of antisymmetric

matrices (𝑋T = −𝑋 ) of size𝑚 ×𝑚. The fact exp(𝔬(𝑚)) ⊆ O(𝑚) is easy; the reverse inclusion
can be derived from the normal form of elements of O(𝑚) (see  § 3.8.4 ).

It is immediate that Sym(𝑛,R) ∩ 𝔤 = 𝔭. Finally, the identity ( 3.5 ) is a straightforward

calculation: denote 𝑌 =

[
0 𝐵

𝐵T 0

]
. Prove by induction that 𝑌 2𝑘 =

[
(𝐵𝐵T)𝑘 0

0 (𝐵T𝐵)𝑘
]
and

𝑌 2𝑘+1 =

[
0 (𝐵𝐵T)𝑘 𝐵

(𝐵T𝐵)𝑘 𝐵T 0

]
. Finish the job. �

Remark 3.120. A similar Cartan decomposition holds in any semisimple Lie group such as

SL(𝑛,R), Sp(2𝑛,R), SU(𝑝, 𝑞), etc. Also see  Remark 3.113 .

Remark 3.121. One can show that 𝐾 is a maximal compact subgroup of 𝐺 in the (strong!)

sense that any compact subgroup 𝐻 ⊆ 𝐺 is conjugate to a subgroup of 𝐾 . The proof is very

elegant: the result is rephrased the action of𝐻 on𝐺/𝐾 admits a fixed point, and Cartan’s fixed
point theorem says that any compact group acting isometrically on a Hadamard space admits
a fixed point. See e.g. [ Hel ] for the details, which are beyond our scope.

Remark 3.122. Be wary that the two maps 𝔤 = 𝔨 ⊕ 𝔭 → 𝐺 defined by (𝑋,𝑌 ) ↦→ 𝑒𝑋𝑒𝑌 and

(𝑋,𝑌 ) ↦→ 𝑒𝑋+𝑌 do not coincide! It follows from the previous theorem that the first is onto

O0(𝑝, 𝑞), while the second is not if 𝑝, 𝑞 > 2 ( Remark 3.115 ).

Corollary 3.123. The map (𝑄,𝑌 ) ↦→ 𝑄 exp(𝑌 ) is a real analytic diffeomorphism 𝐾 × 𝔭 → 𝐺 .

Proof. The map is clearly well-defined and real analytic. Let𝑀 ∈ 𝐺 . By  Theorem 3.119 , there
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exists a unique𝑄 ∈ 𝐾 and 𝑆 ∈ 𝐺 ∩ Sym
+(𝑛,R) such that𝑀 = 𝑄𝑆 . We have seen in the proof

that 𝑌 ∈ 𝔭 such that 𝑆 = exp(𝑌 ) exists and is unique. This shows that the map is bijective. By

the inverse function theorem for analytic functions, it is enough to show that its differential

at any point is injective (i.e. the map is an immersion) to conclude that the reciprocal map is

real analytic. We leave the proof of this last point as an exercise. �

Remark 3.124.  Corollary 3.123 may be seen as the Cartan–Hadamard theorem for 𝐺/𝐾 : the
exponential map at any point in a Hadamard manifold is a diffeomorphism (see e.g. [ Lee3 ]).

Corollary 3.125. O++(𝑝, 𝑞) is connected, and O(𝑝, 𝑞) has four connected components, namely
O
𝑠𝑡 (𝑝, 𝑞) with 𝑠, 𝑡 ∈ {+,−}.

Proof.  Corollary 3.123 shows that O(𝑝, 𝑞) is homeomorphic to O(𝑝) × O(𝑞) × R𝑝𝑞 . Since
O(𝑚) has two connected components, the identity component being O0(𝑚) = SO(𝑚) (see

 Remark 3.116 ), O(𝑝, 𝑞) has four connected components and O0(𝑝, 𝑞) = O
++(𝑝, 𝑞) is the com-

ponent corresponding to SO(𝑝) × SO(𝑞) by  Corollary 3.106 . �

Remark 3.126. For readers who are familiar with algebraic topology: since 𝔭 ≈ R𝑝𝑞 is con-
tractible,  Corollary 3.123 shows that𝐺0 = O0(𝑝, 𝑞) (like any semisimple Lie group) is homo-

topy equivalent to its maximal compact𝐾0 = SO(𝑝) ×SO(𝑞). This allows one to further study
its topology, for instance its fundamental group 𝜋1(O0(𝑝, 𝑞)) ≈ 𝜋1(SO(𝑝)) × 𝜋1(SO(𝑞)).

3.8.6 Other properties

Let us mention some further features of O(𝑝, 𝑞) that we will not expand on in this chapter:

Simplicity

Iwasawa decomposition

Topology

Sporadic isogenies
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3.9 Exercises

Exercise 3.1. Bilinear forms and duality

Let 𝑉 be a vector space and denote 𝑉 ∗
its dual space. Recall that one can associate to any

bilinear form 𝑏 two linear maps 𝑏L, 𝑏R : 𝑉 → 𝑉 ∗
defined by 𝑏L(𝑢) = 𝑏 (𝑢, ·) and 𝑏R(𝑣) = 𝑏 (·, 𝑣).

(1) Show that 𝑏 is symmetric if and only if 𝑏L = 𝑏R.

(2) Assume 𝑉 is finite-dimensional and equipped with a basis. Denote by 𝐵 the matrix

representation of 𝑏, and denote 𝐵L and 𝐵R the matrix representations of 𝑏L and 𝑏R using

the basis of 𝑉 and the dual basis of 𝑉 ∗
. Show that 𝐵 = 𝐵L = 𝐵R

T
.

(3) Denote 𝑗 : 𝑉 → 𝑉 ∗∗
the natural map of 𝑉 into its bidual (or double dual) defined

by 𝑗 (𝑥) (𝜑) = 𝜑 (𝑥). Check that 𝑗 is an injective linear map, and is an isomorphism if

(Optional: and only if) 𝑉 is finite-dimensional.

(4) We recall that the dual (or transpose) of a linear map 𝑓 : 𝑉 →𝑊 is themap 𝑓 ∗ :𝑊 ∗ →
𝑉 ∗

defined by 𝑓 ∗(𝜓 ) = 𝜓 ◦ 𝑓 . Show that 𝑏R = 𝑏∗
L
◦ 𝑗 . Recover  (2) .

(5) Recall why any perfect pairing is nondegenerate, and the converse is true if𝑉 is finite-

dimensional. What if 𝑉 is infinite-dimensional?

Exercise 3.2. Cone vs radical and definiteness

Let 𝑉 be a vector space and let 𝑏 a symmetric bilinear form.

(1) Show that 𝑏 is definite (has trivial isotropic cone) if and only if the restriction of 𝑏 to

any subspace is nondegenerate.

(2) Assume K = R. Show that the isotropic cone of 𝑏 is equal to its radical if and only if 𝑏

is positive [or negative] semidefinite.

(3) Characterize definite symmetric bilinear forms when K = R and K = C.

Exercise 3.3. Pullback and equivalence of symmetric bilinear forms

If 𝑓 : 𝑉 → 𝑊 is a linear map and 𝑏 is a bilinear form on𝑊 , the pullback of 𝑏 by 𝑓 is the

bilinear form on 𝑉 defined by 𝑓 ∗𝑏 (𝑣1, 𝑣2) = 𝑏 (𝑓 (𝑣1), 𝑓 (𝑣2)).
(1) Show that in terms of quadratic forms, the pullback is 𝑓 ∗𝑞 = 𝑞 ◦ 𝑓 .
(2) Describe the pullback in terms of matrix representations.

(3) Let 𝑊 = 𝑉 . Show that pullback defines a right action of GL(𝑉 ) on the set of all

symmetric bilinear forms on 𝑉 .

(4) Two symmetric bilinear forms are called equivalent when they lie in the same GL(𝑉 )-
orbit. Show that this amounts to their matrix representations being congruent.

(5) Characterize the equivalence classes when K = C and K = R.
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3.9. EXERCISES

Exercise 3.4. Length minimizing curves

Let 𝐸 be a pseudo-Euclidean space and let 𝐴, 𝐵 ∈ 𝐸. Is it true that a C1 curve 𝛾 from 𝐴 to 𝐵 is

a geodesic if and only if it is length minimizing?

Exercise 3.5. Pseudo-Euclidean similarities

Let 𝑉 be a pseudo-Euclidean vector space of mixed signature and let 𝑓 ∈ GL(𝑉 ). Prove that
the following are equivalent:

(i) There exists 𝜆 > 0 and 𝑔 ∈ O(𝐸) such that 𝑓 = 𝜆𝑔.

(ii) 𝑓 preserves causal characters.

(iii) 𝑓 preserves angles.

Is it also equivalent to: There exists 𝜆 > 0 such that ‖ 𝑓 (𝑣)‖ = 𝜆‖𝑣 ‖ for all 𝑣 ∈ 𝑉 ?
It is natural to call a map satisfying  (i) – (iii) a pseudo-Euclidean (linear) similarity.

Exercise 3.6. Lie algebra and exponential

Denote𝐺 = O(𝑝, 𝑞) ⊆ GL(𝑛,R) and 𝔤 = 𝔬(𝑝, 𝑞) its Lie algebra, defined by 𝑋T 𝐼𝑝,𝑞 + 𝐼𝑝,𝑞 𝑋 = 0.

(1) Recall why

𝑋 ∈ 𝔤 ⇔ ∀𝑡 ∈ R exp(𝑡𝑋 ) ∈ 𝐺 . (3.6)

(2) (*) (Optional.) Let𝐺 be any closed subgroup of GL(𝑛,R). Define 𝔤 by ( 3.6 ). Show that

𝔤 is a linear subspace ofM(𝑛,R). Hint: Prove that 𝑒𝑋+𝑌 = lim𝑘→+∞
(
𝑒𝑋/𝑘𝑒𝑌/𝑘

)𝑘
.

Note: It quickly follows that exp: 𝔤 → 𝐺 is an immersion near 0, and that𝐺 is an analytic
submanifold ofM(𝑛,R). This is the famous closed subgroup theorem.

(3) Let 𝑋 =

[
0 −2𝜋
2𝜋 0

]
. Compute exp(𝑡𝑋 ) =

[
cos(2𝜋𝑡) sin(2𝜋𝑡)
− sin(2𝜋𝑡) cos(2𝜋𝑡)

]
.

(4) Is it true that 𝑋 ∈ 𝔤 if and only if exp(𝑋 ) ∈ 𝐺?
(5) Show that exp: 𝔤 → 𝐺 is injective if and only if 𝑝, 𝑞 6 1.

(6) Show that exp: 𝔤 → 𝐺 is onto the identity component of𝐺 if 𝑞 = 0.

Note: The result is also true for 𝑞 = 1, and false for 𝑞 > 2. See  Remark 3.115 .

Exercise 3.7. Self-adjoint maps and polar decomposition 

7
 

Let 𝑉 be a pseudo-Euclidean vector space.

(1) Show that for any 𝑓 ∈ End(𝑉 ), there is a unique 𝑓 ∗ ∈ End(𝑉 ), called the adjoint of 𝑓 ,
such that 〈𝑓 (𝑢), 𝑣〉 = 〈𝑢, 𝑓 ∗(𝑣)〉 for all 𝑢, 𝑣 ∈ 𝑉 . (Can you relate the adjoint map to the

dual map 𝑓 ∗ : 𝑉 ∗ → 𝑉 ∗
?)

(2) Check that 𝑓 is unitary (isometric) if and only if 𝑓 ∗𝑓 = id𝑉 .

7
I am very grateful to Max Riestenberg for helping me figure out the mathematics behind this exercise.
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CHAPTER 3. PSEUDO-EUCLIDEAN SPACES

(3) 𝑓 is called self-adjoint if 𝑓 ∗ = 𝑓 . Check that 𝑓 is self-adjoint if and only if the bilinear

form 𝑏 𝑓 (𝑢, 𝑣) B 〈𝑓 𝑢, 𝑣〉 is symmetric. Say that 𝑓 is positive when 𝑏 𝑓 is.

(4) Assume𝑉 is Euclidean. The spectral theorem says that if 𝑓 is self-adjoint, there exists

a orthogonal basis of 𝑉 consisting of eigenvectors for 𝑓 . Prove it by induction.

(5) A polar decomposition is a factorization 𝑓 = 𝑢ℎ with 𝑢 unitary and ℎ self-adjoint

positive. Show that if𝑉 is Euclidean, any 𝑓 ∈ GL(𝑉 ) has a unique polar decomposition.

Hint: Show that 𝑓 ∗𝑓 is positive and use the spectral theorem to find a square root ℎ.

(6) In 𝑉 = R1,1, let 𝑓 , 𝑔 ∈ End(𝑉 ) be the endomorphisms with matrix representations

1

2

[
−1 −1
1 −3

]
and

1

4

[
−1 5

3 1

]
respectively. Check that 𝑓 is self-adjoint and𝑔∗𝑔 = 𝑓 . Check

that the spectral theorem fails for 𝑓 . Check that 𝑓 does not have a square root in End(𝑉 ).
Conclude that a pseudo-Euclidean polar decomposition is hopeless.

(7) Optional: Look for a restriction on 𝑓 and a variation of the condition “ℎ is positive

definite” so that 𝑓 admits a unique polar decomposition 𝑓 = 𝑢ℎ.

Exercise 3.8. Normal form for semisimple elements of O(𝑝, 𝑞)

We recall that an endomorphism 𝑓 ∈ EndK(𝑉 ) is called semisimple of every invariant subspace
has an invariant complement, and unipotent if (𝑓 − id𝑉 )𝑁 = 0 for some 𝑁 ∈ N. The Cartan–
Chevalley decomposition (multiplicative version) says that any 𝑓 ∈ GL(𝑉 ) can uniquely be

factorized as 𝑓 = 𝑠𝑢 where 𝑠 is semisimple, 𝑢 nilpotent, and 𝑠𝑢 = 𝑢𝑠 .

(1) Henceforth K = R. Show that 𝑓 is semisimple if and only if it is diagonalizable over C.

(2) Show that if 𝑀 ∈ GL(𝑛,R) is semisimple, it is conjugate to a block diagonal matrix,

with blocks of size 1 × 1 or 2 × 2. Converse?

(3) Prove the normal form for𝑀 ∈ O(𝑛,R): show that𝑀 is conjugate inO(𝑛,R) to a block
diagonal matrix, with blocks of size 1 × 1 or 2 × 2, and the 2 × 2 blocks are in SO(2,R).

(4) Prove the same normal form for semisimple elements of O(𝑝, 𝑞).
(5) Show that 𝑓 ∈ O(𝑝, 1) is semisimple if and only if it preserves a 1- or 2-dimensional

timelike subspace.
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CHAPTER 4

Minkowski space and the Lorentz group

Disclaimer: This chapter is a draft.
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CHAPTER 4. MINKOWSKI SPACE AND THE LORENTZ GROUP

4.1 Definition

4.2 Spheres

Proposition 4.1. Let𝑉 be a Minkowski vector space. If 𝑣 ∈ 𝑉 is timelike, then 𝑣⊥ is a spacelike
hyperplane and 𝑉 = R𝑣 ⊕ 𝑣⊥.

4.3 Timelike angles

4.4 Time orientation

4.5 The Minkowski plane

4.6 Lorentz group
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4.7. EXERCISES

4.7 Exercises

Exercise 4.1. Orthogonal subspace to a timelike vector

Prove  Proposition 4.1 (copied below) directly, without using the results of  § 3.1 .

Proposition . Let 𝑉 be a Minkowski vector space. If 𝑣 ∈ 𝑉 is timelike, then 𝑣⊥ is a spacelike
hyperplane and 𝑉 = R𝑣 ⊕ 𝑣⊥.
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CHAPTER 5

The hyperboloid model

Disclaimer: This chapter is a draft.

In this chapter, we introduce our first model of hyperbolic space, namely the hyperboloid

model. The hyperboloid is a pseudo-Euclidean sphere: it is the unit “sphere” of negative

square radius in Minkowski space.

This model is much analogous to the sphere in Euclidean geometry: the hyperboloid, a

pseudosphere in Minkowski space, plays the role of the sphere in Euclidean space.

For many purposes, the hyperboloid is the best model of hyperbolic space: we shall see in

particular that it is fairly easy and elegant to derive all the relevant geometric properties: the

Riemannian metric, group of isometries, geodesics, distance function, and sectional curvature.

Historically, the idea of an imaginary sphere goes back to Lambert in 1766, and in 1826

Taurinus performs trigonometry calculations on a “sphere of imaginary radius”. The con-

nection with hyperbolic geometry and the other models was established by Poincaré in the

1880s, and the relation to Minkowski space followed the development of special relativity in

the early 20th century. We refer to [ Rey , §14] for a more detailed historical account.

5.1 Description of the hyperboloid

Other pseudo-Euclidean spheres are also interesting pseudo-Riemannian manifolds. Exercise:

the hyperboloid is the only Riemannian pseudo-Euclidean sphere. The pseudo-Lorentzian

spheres are dS and AdS.
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5.1. DESCRIPTION OF THE HYPERBOLOID

5.1.1 Hyperboloid of dimension 2

Let𝑀 = R𝑛,1 be Minkowski space. For the moment, let us take 𝑛 = 2.

Consider the set

H B {𝑣 ∈ 𝑀 : 〈𝑣, 𝑣〉 = −1} .

By definition, this is a pseudosphere: it is a level set of the quadratic form in the pseudo-

Euclidean space𝑀 . In other words, abusing notations, this is the “sphere” {‖𝑣 ‖2 = 𝑅2} in𝑀 ,

with 𝑅 =
√
−1.

Let us use coordinates 𝑣 = (𝑥,𝑦, 𝑧) on𝑀 , so that the quadratic form of Minkowski space

is 〈𝑣, 𝑣〉 = 𝑥2 + 𝑦2 − 𝑧2. In these coordinates,H is the quadric defined by the equation

𝑥2 + 𝑦2 − 𝑧2 + 1 = 0 .

Such a surface is called a hyperboloid of two sheets.
It is easy to check that H is invariant by rotations around the 𝑧-axis and by reflections

through vertical planes through the origin. (Note that this is a particular case of  Theorem 5.7 ).

The intersection of H with horizontal planes {𝑧 = 𝑧0} is empty for |𝑧0 | < 1, and is

the circle 𝑥2 + 𝑦2 = 𝑧2
0
− 1 for |𝑧0 | > 1. In particular, it is clear that H has two connected

componentsH+
andH−

, called upper and lower sheets. On the other hand, its intersection

with a vertical plane is a hyperbola. Indeed, by rotational symmetry, it is enough to consider

the plane 𝑦 = 0; it intersects the hyperboloid is the hyperbola 𝑧2 − 𝑥2 = 1.

Note that the upper arc of this hyperbola can be parametrized using the hyperbolic trig
functions: (𝑥 = sinh 𝑡, 𝑧 = cosh 𝑡) (this is the explanation for the name of these functions).

We shall see in  § 5.4 that this parametrized curve is a geodesic. The hyperbola is asymptotic

to its axes with equation 𝑧2 − 𝑥2 = 0, i.e. 𝑧 = ±𝑥 . The hyperboloid H itself is asymptotic to

the cone 𝑥2 + 𝑦2 − 𝑧2 = 0 (which can be obtained by rotating the hyperbola’s axes), in other

words to the light cone 〈𝑣, 𝑣〉 = 0. See  Figure 5.1 for an illustration.

In this chapter, we are interested in the upper sheetH+
of the hyperboloid.

5.1.2 Hyperboloid of dimension 𝑛

The previous story naturally generalizes to an arbitrary dimension 𝑛 > 1. The (unit) hyper-

boloid of two sheetsH ⊆ R𝑛,1 is still defined by

H B {𝑣 ∈ 𝑀 : 〈𝑣, 𝑣〉 = −1} .

In coordinates 𝑣 = (𝑥1, . . . , 𝑥𝑛+1) onMinkowski space,H is the quadric defined by the equation

𝑥2
1
+ · · · + 𝑥2𝑛 − 𝑥𝑛+12 + 1 = 0 .

This quadric is invariant by rotations around the 𝑥𝑛+1-axis and by reflections through vertical

planes through the origin. The intersection ofH with horizontal hyperplanes {𝑥𝑛+1 = 𝑧0} is
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CHAPTER 5. THE HYPERBOLOID MODEL

Figure 5.1: The hyperboloidH in R𝑛,1.

empty for |𝑧0 | < 1, and is the sphere 𝑥2 + · · · + 𝑥2𝑛 = 𝑧2
0
− 1 for |𝑧0 | > 1. Again, H has two

connected components (sheets)H+
andH−

, distinguished by the sign of 𝑥𝑛+1.

It is interesting to note that intersecting H with subspaces of 𝑀 intersecting it yields

lower dimensional hyperboloids:

Proposition 5.1. Let𝑊 be a subspace of𝑀 intersectingH. Then𝑊 is a Minkowski space, and
𝑊 ∩H is the unit hyperboloid in𝑊 .

Proof. Elementary: left as exercise. �

Again, the hyperboloidH is asymptotic to the light cone, which is the isotropic cone in

Minkowski space. In coordinates:

𝑥2
1
+ · · · + 𝑥2𝑛 − 𝑥𝑛+12 = 0 .

In the rest of this chapter, we use the notationH+
or H𝑛 indistinctly to refer to the upper

sheet of the hyperboloid equipped with the Riemannian metric defined below.

5.2 Riemannian metric

First we identify the tangent space:
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5.2. RIEMANNIAN METRIC

Proposition 5.2. The hyperboloidH is a smooth embedded surface in R𝑛,1. Its linear tangent
space T𝑝 H at a point 𝑝 ∈ H ⊆ R𝑛,1 is the plane 𝑝⊥.

Remark 5.3. A couple of clarifications:

• Note that when we write 𝑝⊥, we think of 𝑝 as a vector in R𝑛,1.

• We use the phrase linear tangent space to make it clear that it is a vector space. The

affine tangent space at 𝑝 is the affine plane through 𝑝 in R𝑛,1 with underlying vector

space T𝑝 H. See  Figure 5.2 .

Proof. The hyperboloid is defined by the equation 𝑞(𝑝) = −1, where 𝑞(𝑝) = 〈𝑝, 𝑝〉. The
function 𝑞 is C∞

(it is a degree 2 polynomial), with derivative given by d𝑞𝑝 (ℎ) = 〈𝑝, ℎ〉.
For any 𝑝 , the derivative d𝑞𝑝 is not the zero linear form, since d𝑞𝑝 (𝑝) = −1. The map 𝑞 is

therefore a submersion, and it is a classical fact of differential geometry that any level set

such as 𝑞−1(−1) is a smooth hypersurface. Moreover, the tangent space at 𝑝 is the kernel of

d𝑞𝑝 , which is precisely 𝑝⊥. �

Figure 5.2: The affine tangent space to the hyperboloid at a point.

We can apply  Proposition 4.1 to see that T𝑣 = 𝑝⊥ is spacelike. In other words, the

restriction on the inner product of R𝑛,1 is positive definite. We thus get:

Proposition 5.4. The restriction of the inner product of R𝑛,1 toH is a Riemannian metric.

We now have a precise definition of the hyperboloid model:
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CHAPTER 5. THE HYPERBOLOID MODEL

Definition 5.5. The hyperboloid model of the hyperbolic plane is the upper sheet H+

equipped with the Riemannian metric induced from the Minkowski inner product.

Let us looks at the case 𝑛 = 2 with coordinates (𝑥,𝑦, 𝑧) on R2,1: H+
is defined implicitly

by the equation 𝑥2 +𝑦2 − 𝑧2 = −1 with 𝑧 > 0, and the Riemannian metric is the restriction to

H+
of the Minkowski metric

d𝑠2 = d𝑥2 + d𝑦2 − d𝑧2 .

5.3 Isometries

We have seen in  § 4.6 that the group of linear isometries of Minkowski space is O(𝑛, 1). It
is clear that these preserve the quadratic form 𝑞(𝑣) = 〈𝑣, 𝑣〉, therefore it preserves its level
sets. In particular, H is invariant under the action of O(𝑛, 1). Since the action of O(𝑛, 1)
on R𝑛,1 is linear and preserves the inner product, its induced action onH is by Riemannian

isometries. Of course, the action of an element 𝑓 ∈ O(𝑛, 1) is orientation-preserving if and

only if 𝑓 ∈ SO(𝑛, 1). It is not hard to see that an element of O(𝑛, 1) preservesH+
andH−

if

it is time-orientation preserving, and exchanges them otherwise.

Theorem 5.6. The groups O+(𝑛, 1) and SO+(𝑛, 1) act isometrically onH+. Moreover:
(i) The action of O+(𝑛, 1) and SO+(𝑛, 1) onH+ is transitive.
(ii) For any 𝑝 ∈ H+, the stabilizer 𝐾𝑝 ⊆ O

+(𝑛, 1) [resp. 𝐾𝑝 ⊆ SO
+(𝑛, 1)] acts transitively on

the set of [positive] orthonormal bases of T𝑝 H+. In particular, the action of 𝐾𝑝 in T𝑝 H+

is transitive.

By definition,  Theorem 5.6 shows thatH+
is homogeneous and isotropic. In particular,

it satisfies Euclid’s fourth postulate  (E4) .

Loosely speaking,  Theorem 5.6 saysH+
has a very big group of isometries. More precisely,

it contains a very big group of isometries, namely O
+(𝑛, 1); but in fact the full group of

isometries cannot be bigger:

Theorem 5.7. The group of isometries of H+ is O+(𝑛, 1), and the subgroup of orientation-
preserving isometries is SO+(𝑛, 1).

The proof of  Theorem 5.6 and  Theorem 5.7 , as well as an expansion of the discussion

preceding it, are treated in  Exercise 5.1 .

5.4 Geodesics

Recall that the hyperboloid is the analog of a sphere in Minkowski space ( § 5.1 ). In order to

find the geodesics of the hyperboloid, we are going to follow the same strategy that we used

to describe the geodesics on the sphere ( Exercise 2.5 ).
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5.4. GEODESICS

Let 𝑝 ∈ H+ ⊆ R𝑛,1 and 𝑣 ∈ T𝑝 H+
, i.e. 𝑣 ⊥ 𝑝 . Let us determine the geodesic 𝛾𝑣 . Denote by

𝑃 the 2-plane inR𝑛,1 containing 𝑝 and 𝑣 . Note that 𝑃 has signature (1, 1) so it is nondegenerate,
therefore the reflection 𝑟 through 𝑃 is a well-defined element of O(𝑛, 1), moreover it fixes 𝑝

so it must be in O
+(𝑛, 1). Call 𝑓 the induced isometry of H+

. The set of fixed points of 𝑓 is

the one-dimensional hyperboloidH+ ∩ 𝑃 , which is an arc of hyperbola (see  Figure 5.3 ). Since

𝑣 ∈ 𝑃 , the geodesic 𝛾𝑣 must be contained inH+ ∩ 𝑃 by  Proposition 2.10 . Given thatH+ ∩ 𝑃 is

1-dimensional, 𝛾𝑣 is just the constant speed parametrization of it. This parametrization has a

nice closed expression:

Theorem 5.8. The geodesic 𝛾𝑣 inH with initial velocity 𝑣 ∈ T𝑝 H+ is given by:

𝛾𝑣 (𝑡) = cosh(‖𝑣 ‖𝑡)𝑝 + sinh(‖𝑣 ‖𝑡) 𝑣

‖𝑣 ‖ . (5.1)

Proof. By the previous discussion, it is enough to check that 𝛾 (0) = 𝑝 , 𝛾 ′(0) = 𝑣 , 𝛾 has

constant speed, and 𝛾 is contained inH+ ∩ 𝑃 . All these verifications are immediate. �

Remark 5.9. To be perfectly rigorous, the previous argument only shows that 𝛾𝑣 is contained
in H+ ∩ 𝑃 , not equal to it. Therefore we only proved that the expression ( 5.1 ), call it 𝛾 (𝑡),
coincides with 𝛾𝑣 (𝑡) for 𝑡 in some interval containing 0. However, by repeating the argument

at another point 𝑝1 = 𝛾 (𝑡1) with 𝑣1 = 𝛾 ′(𝑡1), we see that the curve 𝛾 must also be the geodesic

with these initial conditions. This proves that 𝛾 is a geodesic for all 𝑡 , hence it is a maximal

geodesic.

Corollary 5.10. The hyperboloid modelH+ is complete.

Proof.  Theorem 5.8 shows that geodesics are defined for all time, i.e. H+
is geodesically

complete. By the Hopf–Rinow theorem, this is equivalent to any of the well-known charac-

terizations of complete Riemannian manifolds. �

Corollary 5.11. Any two distinct points 𝑝 and 𝑞 inH+ are joined by a unique geodesic segment
𝛾 (up to parametrization), moreover 𝛾 is length-minimizing: 𝑑 (𝑝, 𝑞) = 𝐿(𝛾).

Proof. The discussion above shows that any geodesic through 𝑝 and 𝑞 must be contained in a

2-dimensional subspace 𝑃 ⊆ R𝑛,1. There is only one choice: it is the space spanned by 𝑝 and

𝑞. This yields both existence and uniqueness of the geodesic, up to parametrization.

The fact that 𝛾 is length-minimizing is an immediate consequence of the standard fact

in Riemannian geometry that there exists a length-minimizing geodesic between any two

points in a complete Riemannian manifold: see [ Lee3 , Cor. 6.21]. �

Notice that  Corollary 5.11 shows that the hyperboloid model satisfies Euclid’s first postu-

late  (E1) , in its strictest interpretation, while  Corollary 5.10 shows that it satisfies the second

postulate  (E2) .
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Figure 5.3: Geodesic on the hyperboloid.

5.5 Distance

Theorem 5.12. The distance between any two points 𝑝 and 𝑞 inH+ is given by

𝑑 (𝑝, 𝑞) = ](𝑝, 𝑞) = arcosh(−〈𝑝, 𝑞〉)

where ](𝑝, 𝑞) is the hyperbolic angle in R𝑛,1.

Proof. By  Corollary 5.11 , it is enough to show that 𝑑 (𝑝, 𝑞) = ](𝑝, 𝑞) when 𝑝 = 𝛾 (𝑡0) and
𝑞 = 𝛾 (𝑡1) where 𝛾 is any geodesic. After reparametrizing, we can assume that 𝑡0 = 0,

𝑡1 > 0, and 𝛾 has unit speed. On the one hand, 𝑑 (𝑝, 𝑞) is the length of 𝛾 between 𝑡0 and

𝑡1 since 𝛾 is the unique geodesic, that is 𝑑 (𝑝, 𝑞) = 𝑡1. On the other hand, by  Theorem 5.8 ,

𝛾 (𝑡) = cosh(𝑡)𝑝 + sinh(𝑡)𝑣 for some unit vector 𝑣 , so we have 𝑞 = cosh(𝑡1)𝑝 + sinh(𝑡1)𝑣 .
Recall that the hyperbolic angle ](𝑝, 𝑞) is given by

〈𝑝, 𝑞〉2 = 〈𝑝, 𝑝〉 〈𝑞, 𝑞〉 cosh2 ](𝑝, 𝑞) .
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Here 〈𝑝, 𝑝〉 = 〈𝑞, 𝑞〉 = −1 and 〈𝑝, 𝑞〉 = − cosh 𝑡1, so we find 𝑑 (𝑝, 𝑞) = 𝑡1 = arcosh(−〈𝑞, 𝑞〉),
and cosh

2 𝑡1 = cosh
2 ](𝑝, 𝑞) yields ](𝑝, 𝑞) = 𝑡1. �

5.6 Curvature

The goal of this section is to prove:

Theorem 5.13. H+ ⊆ R𝑛,1 has constant curvature sectional curvature −1.

This result holds in any dimension 𝑛 > 2. Note that for 𝑛 = 1, the hyperboloid H+

is still well-defined (it is an arc of hyperbola in R1,1), but the notion of sectional curvature

is irrelevant for one-dimensional manifolds. First let us argue that it is enough to prove

 Theorem 5.13 in the case 𝑛 = 2.

Consider a 2-plane 𝑃 ⊆ T𝑝 H+
. By definition, the sectional curvature 𝐾𝑝 (𝑃) of H+

at

𝑝 in the direction 𝑃 is the Gaussian curvature at 𝑝 of the surface 𝑆𝑃 ⊆ H+
is the union of

all geodesics whose initial tangent vector is in 𝑃 (in the language of Riemannian geometry,

𝑆𝑃 = exp𝑝 (𝑃)). We know from  Theorem 5.8 that the geodesic with initial tangent vector 𝑣 is

H+ ∩ 𝑃𝑣 , where we have denoted 𝑃𝑣 the 2-plane spanned by 𝑝 and 𝑣 . It follows that

𝑆𝑃 =
⋃
𝑣∈𝑃

H+ ∩ 𝑃𝑣

= H+ ∩𝑊

where𝑊 ⊆ R𝑛,1 is the 3-dimensional subspace spanned by 𝑝 and 𝑃 . Now, by  Proposition 5.1 ,

𝑆𝑃 = H+ ∩𝑊 is the unit hyperboloid in the Minkowski space𝑊 , which has signature (2, 1).
Thus it is enough to show that 𝑐𝐻+

has sectional (i.e. Gaussian) curvature in the 𝑛 = 2 case:

Theorem 5.14. H+ ⊆ R2,1 has constant Gaussian curvature −1.

In order to prove  Theorem 5.14 , we would like to use the fact that for surfaces in R3, the

Gaussian curvature is equal to the product of the principal curvatures (i.e. the determinant

of the second fundamental form in an orthonormal basis). For surfaces in Minkowski space

R2,1, this result is still true, but with the opposite sign:

Lemma 5.15. The Gaussian curvature of a surface 𝑆 ⊆ R2,1 is equal to minus the product
of the principal curvatures, i.e. minus the determinant of the second fundamental form in an
orthonormal basis.

The proof of this lemma requires some knowledge of Riemannian geometry, readers who

have not taken a course in Riemannian geometry may skip what follows.  Lemma 5.15 is a

special case of the modified Gauss equation:
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Theorem 5.16. Let 𝑆 be a spacelike hypersurface in a Lorentzian manifold 𝑀 . The sectional
curvature 𝐾 of𝑀 and the sectional curvature 𝐾 of 𝑆 are related by:

𝐾 = 𝐾 + det𝐵 . (5.2)

Remark 5.17. More precisely, ( 5.2 ) means that for any orthonormal pair {𝑋,𝑌 } ⊆ T𝑆 :

𝐾 (𝑋,𝑌 ) = 𝐾 (𝑋,𝑌 ) + 𝐵(𝑋,𝑋 )𝐵(𝑌,𝑌 ) − 𝐵(𝑋,𝑌 )2 .

We recall that in the Riemannian case, the Gauss equation is instead 𝐾 = 𝐾 − det𝐵.

Proof. Choose a local unit normal 𝑁 to 𝑆 . Note that since 𝑆 is a spacelike hypersurface, 𝑁

must be timelike: 〈𝑁, 𝑁 〉 = −1. As in the Riemannian case, the second fundamental form 𝐵

may be defined by the formula

¯∇𝑋𝑌 = ∇𝑋𝑌 + 𝐵(𝑋,𝑌 )𝑁 (5.3)

where
¯∇ [resp. ∇] denotes the Levi-Civita connection of 𝑀 [resp. 𝑆]. It is an elementary

exercise which we leave to the reader to check that while this gives the formula

𝐵(𝑋,𝑌 ) = +〈∇𝑋𝑁,𝑌 〉

(instead of 𝐵(𝑋,𝑌 ) = −〈∇𝑋𝑁,𝑌 〉), and that ( 5.3 ) and ( 5.6 ) yield the modified Gauss equation

( 5.2 ) (use the definition of sectional curvature with the Riemann curvature tensor). �

We can now prove  Theorem 5.14 :

Proof of  Theorem 5.14 with extrinsic curvatures. By  Lemma 5.15 , we would like to show that

the determinant of the second fundamental form of H+ ⊆ R2,1 is equal to 1 at any point 𝑝 .

Clearly, it is enough to show that the extrinsic curvature 𝜌𝑝 (𝑣) = 〈𝛾 ′′𝑣 (0), 𝑁 〉 (which coincides
with 𝐵(𝑣, 𝑣)) is equal to 1 (or −1, depending on the choice of unit normal) for every unit vector

𝑣 ∈ T𝑝 𝑀 . This is immediate to check with the explicit expression of 𝛾𝑣 given in ( 5.1 ). �

In the exercises, we will give two other nice proofs of the fact that H+
has constant

sectional curvature −1:
• A classical proof using the Riemannian geometry notion of Jacobi fields is proposed in

 Exercise 5.3 .

• A proof using distance between geodesics is proposed in  Exercise 5.2 .

5.7 Hyperbolic space of radius 𝑅

Instead of considering the “unit” hyperboloid H ⊆ R𝑛,1, we could instead have defined the

hyperboloidH “of radius 𝑅 > 0” by:

H𝑅 B {𝑣 ∈ 𝑀 : 〈𝑣, 𝑣〉 = −𝑅2} .
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Figure 5.4: Hyperboloids of radii 𝑅 = 1

2
, 𝑅 = 1, and 𝑅 = 2.

 Figure 5.4 shows hyperboloids of different radii.

Everything we have seen about the unit hyperboloid H = H1 works the same for H𝑅 ,

with some minor differences:

Riemannian metric.We still equipH+
𝑅
with the metric induced fromMinkowski space R𝑛,1,

which is positive definite.

Isometries. It is still the case that the group of isometries ofH+
𝑅
is the orthochronous Lorentz

groupO
+(𝑛, 1) and its group of orientation-preserving isometries is the special orthochronous

Lorentz group SO
+(𝑛, 1).

Geodesics. Geodesics in H+
𝑅
are still intersections on H+

𝑅
with 2-planes in R𝑛,1, but now

the parametrization of the geodesic has to be written:

𝛾𝑣 (𝑡) = cosh

(
‖𝑣 ‖
𝑅
𝑡

)
𝑝 + 𝑅 sinh

(
‖𝑣 ‖
𝑅
𝑡

)
𝑣

‖𝑣 ‖ .

Distance. For the distance onH+
𝑅
, we now have

𝑑 (𝑝, 𝑞) = 𝑅](𝑝, 𝑞)
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where ](𝑝, 𝑞) is the hyperbolic angle in R𝑛,1. This amounts to

𝑑 (𝑝, 𝑞) = 𝑅 arcosh
(
−〈𝑝, 𝑞〉
𝑅2

)
.

Curvature. Following the same proof as before, the modified expression of geodesics leads

to finding thatH+
𝑅
has constant sectional curvature 𝑘 = − 1

𝑅2
. Let us recap the most important

information:

Theorem 5.18. The upper sheetH+
𝑅
of the hyperboloid of radius 𝑅 is a complete and uniquely

geodesic Riemannian manifold of constant sectional curvature 𝑘 = − 1

𝑅2
.

We recall that in Riemannian geometry, one shows that such a model for the space form of
curvature𝑘 < 0 is essentially unique: see the discussion of  § 2.4 and in particular  Theorem 2.21 .
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5.8 Exercises

Exercise 5.1. Isometries of the hyperboloid

The goal of this exercise is to determine the group of isometries of hyperbolic space in the

hyperboloid model, in particular to write a careful proof of  Theorem 5.7 .

LetH = {𝑣 ∈ 𝑀 : 〈𝑣, 𝑣〉 = −1} denote the hyperboloid of two sheets in Minkowski space

𝑀 = R𝑛,1 and letH+
indicate the upper sheet (with 𝑥𝑛+1 > 0).

(1) Let us prove that O
+(𝑛, 1) acts by isometries onH+

.

(a) Show that the linear action of O(𝑛, 1) on𝑀 preservesH.

(b) Show that O(𝑛, 1) acts onH by Riemannian isometries.

(c) Show that 𝑓 ∈ O(𝑛, 1) preserves H+
if and only if 𝑓 ∈ O

+(𝑛, 1). Conclude that
O
+(𝑛, 1) ⊆ Isom(H+).

(d) Optional. Show that 𝑓 ∈ O
+(𝑛, 1) is orientation-preserving on H+

if and only if

𝑓 ∈ SO
+(𝑛, 1). Conclude that SO+(𝑛, 1) ⊆ Isom

+(H+).
(2) Let us prove that, conversely, any isometry ofH+

is induced by an element of O
+(𝑛, 1).

(a) Show that the action of O
+(𝑛, 1) onH+

is transitive.

(b) Derive from the previous question that it is enough to show that any isometry of

H+
fixing some point is induced by some element of O(𝑛, 1) fixing that point.

(c) Identify the subgroup 𝐾 of O(𝑛, 1) fixing 𝑣0 = (0, . . . , 0, 1). Show that the induced

action of 𝐾 in T𝑣0 H+
is transitive on the set of orthonormal bases of T𝑣0 H+

.

(d) Let 𝑓 be an isometry of H+
fixing 𝑣0. Show that 𝑓 is completely determined by

its derivative at 𝑣0.

(e) Conclude that Isom(H+) = O
+(𝑛, 1) and Isom+(H+) = SO

+(𝑛, 1).

Exercise 5.2. Geodesic deviation on the hyperboloid

We denote as usual H+ ⊆ R𝑛,1 the upper sheet of the hyperboloid in Minkowski space. Let

𝑝 ∈ H+
and let 𝑣,𝑤 ∈ T𝑝 H+

be an orthonormal pair of tangent vectors. It is a general fact of

Riemannian geometry that the distance between the geodesics 𝛾𝑣 (𝑡) and 𝛾𝑤 (𝑡) satisfies

𝑑 (𝛾𝑣 (𝑡), 𝛾𝑤 (𝑡))2 = 2𝑡2 − 1

3

𝐾 𝑡4 +𝑂 (𝑡5)

as 𝑡 → 0, where 𝐾 denotes the sectional curvature of the plane spanned by 𝑣 and𝑤 . (This is

discussed in  § 2.3.3 .)

(1) Show that 𝑑 (𝛾𝑣 (𝑡), 𝛾𝑤 (𝑡)) = arcosh

(
cosh

2 𝑡
)
.

(2) Find the Taylor expansion of arcosh(cosh2 𝑥) to order 3 as 𝑥 → 0.

(3) Conclude that 𝐾 = −1.
(4) Show likewise thatH+

𝑅
has constant sectional curvature − 1

𝑅2
.
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Exercise 5.3. Jacobi fields on the hyperboloid

We denote as usualH+ ⊆ R𝑛,1 the upper sheet of the hyperboloid in Minkowski space.

(1) Let 𝑣,𝑤 ∈ T𝑝 H+
be an orthonormal pair. Let us define 𝛾 : R × R→ H+

by

𝛾 (𝑠, 𝑡) = cosh(𝑡)𝑝 + sinh(𝑡) [cos(𝑠)𝑣 + sin(𝑠)𝑤] .

Show that:

(i) 𝛾 (𝑠, ·) is a unit geodesic for all 𝑠 ∈ R,
(ii) 𝛾 (0, ·) = 𝛾𝑣 .

Such a family 𝛾 is called a variation of geodesics.

(2) Let 𝐽 (𝑡) = 𝜕
𝜕𝑠 |𝑠=0𝛾 (𝑠, 𝑡). Check that 𝐽 (0) = 0 and 𝐽 ′(0) = 𝑤 . This is called a normal

Jacobi field.

(3) We admit the fact: if 𝐽 (𝑡) is a normal Jacobi field along a unit geodesic and 𝐽 ′′(𝑡) +
𝑘 (𝑡) 𝐽 (𝑡) = 0, then the sectional curvature of the plane spanned by 𝛾 ′(𝑡) and 𝐽 (𝑡) is
equal to 𝑘 (𝑡) for all 𝑡 > 0 

1
 . Show that the plane spanned by 𝑣 and𝑤 has curvature −1.

(4) Conclude thatH+
has constant sectional curvature −1.

(5) Show similarly that the hyperboloid of radius 𝑅 has constant sectional curvature − 1

𝑅2
.

Exercise 5.4. Horocycles on the hyperboloid

Let 𝑃 be an affine plane in Minkowski space R2,1 whose underlying vector space ®𝑃 is the

orthogonal of an isotropic vector 𝑛. The curveH+ ∩ 𝑃 is called a horocycle  

2
 .

(1) Show that 𝑃 = {𝑝 ∈ R2,1 : 〈𝑝, 𝑛〉 = 𝑐} where 𝑐 is a constant.
(2) Optional. Show that any two horocycles are congruent, i.e. differ by an isometry of

H+
.

(3) Show that any horocycle is a parabola.

(4) (*) Show that all the geodesics inH+
perpendicular to a given horocycle are asymptotic.

Exercise 5.5. Comparing hyperboloids

We denote (H+
𝑅
, 𝑔𝑅) the upper sheet of the hyperboloid of radius 𝑅 in R𝑛,1 equipped with its

Riemannian metric,

(1) Find a natural map 𝑓 : H+
𝑅
→ H+

1
.

(2) Compare 𝑔𝑅 and 𝑓
∗𝑔1. Recover the results of  § 5.7 .

1
Students who know Riemannian geometry should recall why this is true. It follows from the Jacobi

equation 𝐽 ′′(𝑡) + 𝑅(𝐽 (𝑡), 𝛾 ′(𝑡))𝛾 ′(𝑡) = 0.

2
Horocycles will be more naturally defined and studied in  Chapter 11 .
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Exercise 5.6. Euclid’s fifth postulate for the hyperboloid

Does Euclid’s fifth postulate hold for the hyperboloid model? Compute the angle of paral-

lelism as a function of the distance 𝑎 (see  Figure 1.3 ).

Exercise 5.7. Curvature of the hyperboloid in R3 (*)

(1) Compute the Gaussian curvature of the hyperboloid in R3. Extend the result to R𝑛.

(2) Observe that the hyperboloid has positive Gaussian curvature everywhere. Recover

this result without any computations after doing  Exercise 7.17 .
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CHAPTER 6

Relativity theory

Disclaimer: This chapter is a draft.

6.1 Relativistic addition of velocities
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Part III

Projective geometry and the Klein model

Projective geometry is all geometry.

– Arthur Cayley 

1
 

Projective geometry has opened up for us with the greatest facility new territories
in our science, and has rightly been called the royal road to our particular field of
knowledge.

– Felix Klein 

2
 

1
Quoted from [ New ].

2
Quoted from [ Bel1 ].



CHAPTER 7

Projective geometry

This chapter is an introduction to projective spaces and projective geometry. I initially planned

to make it shorter but ended up expanding it in order to give a fair overview of the subject.

As a result, it contains more information than what is strictly needed in subsequent chapters;

in particular the last section ( § 7.6 ) can safely be skipped, as well as  § 7.1.4 ,  § 7.3.4 ,  § 7.3.5 .

The main prerequisite for this chapter is a good understanding of the basics of abstract

linear algebra. Knowledge of general topology is necessary to understand a few points (espe-

cially  § 7.1.2 ), but they are not critical.

∗ ∗ ∗

Intuitively, a projective space is an affine space, such as the Euclidean plane, that has

been augmented with a hyperplane at infinity, the “horizon”. Points at infinity represent

directions, i.e. equivalence classes of parallel lines (in perspective drawing, they are called

vanishing points). Although this point of view is heuristically useful, it does not provide a very

satisfactory mathematical definition of a projective space for several reasons, firstly because

it breaks the symmetry: points at infinity should not be special.

The synthetic approach consists in defining projective spaces axiomatically, à la Euclid,
starting with the primitive notions of points, lines, and incidence. For instance, a possible

definition of the projective plane uses the three axioms: Any two points lie on a unique line;

Any two lines meet at a unique point; There exists four points, no three of which are collinear.

(We shall see a slightly different axiomatization in  § 7.1.4 .)

In this book, we favor instead the modern (now standard) approach according to which

a projective space is, by definition, the set of vector lines in a vector space. This somewhat

formal viewpoint is very effective because it enables one to study projective geometry with

all the might of linear algebra. As an example, any projective transformation is just a lin-

ear transformation of the associated vector space. Another example: projective conics and

quadrics are defined by symmetric bilinear forms and easily classified with linear algebra.

The reader may legitimately wonder what a chapter on projective geometry is doing

in a book on hyperbolic geometry. While these are two different subjects, they are in fact

deeply related. We shall see in the next chapter that projective geometry offers the most

elegant model of hyperbolic space, called the Cayley–Klein model (and its affine version,
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the Beltrami–Klein model). More generally, the realization that projective geometry offers a

unifying frame for both Euclidean and non-Euclidean geometries led Felix Klein to offer his

famous Erlangen program in 1872 [ Kle3 ].

Beside the Klein models of hyperbolic space, there is another concrete reason that hyper-

bolic geometry appeals to projective geometry. It is almost by accident that, in dimensions

2 and 3, the Poincaré models introduced in  Chapter 10 are best described in terms of (one-

dimensional) complex projective geometry. This coincidence has to do with the conformal

nature of the Poincaré models and the fact that conformal transformations are the same as

complex automorphisms in dimension 2. In particular, the group of orientation-preserving

isometries of H2
[resp. H3

] will be identified to PSL(2,R) [resp. PGL(2,C)]. (Not to worry, all
of this will be explained in  Part IV !) This association with complex numbers is very useful and

one of the reasons that the Poincaré models are often favored for H2
and H3

. It is therefore

essential to understand projective linear transformations, cross-ratios, and other fundamental

concepts of real and complex projective geometry.

For more background on projective geometry, its history, the classical approach, the

connection to hyperbolic geometry, and more; some great references are the books of Bruce

Meserve [ Mes ], Harold Coxeter [ Cox1 ;  Cox2 ], Albrecht Beutelspacher and Ute Rosenbaum

[ BR1 ], John Stillwell [ Sti2 , Chap. 8], Jürgen Richter-Gebert [ Ric ], and Christopher Baltus [ Bal ].

For a more in-depth treatment of the modern approach to projective geometry, I recommend

the wonderful book of Pierre Samuel [ Sam1 ;  Sam2 ], the relevant chapters of Marcel Berger’s

Geometry I and II [ Ber1 ;  Ber2 ], or the more student-oriented books of Jean-Claude Sidler

[ Sid ] (in French) and Michèle Audin [ Aud1 ;  Aud2 ].

7.1 Projective spaces

7.1.1 Definition

Let K = R or K = C be the field of real or complex numbers.

Remark 7.1. There is nothing wrong with projective spaces over any field K, but for our

purposes we shall only be interested in real and complex projective geometry.

Let 𝑉 be a vector space over K. We recall that a vector line in 𝑉 is a one-dimensional

subspace of 𝑉 (i.e. a line through the origin).

Definition 7.2. The projective space of 𝑉 or projectivization of 𝑉 , denoted P(𝑉 ), is the
set of vector lines in 𝑉 .

If 𝑉 is finite-dimensional, the dimension of P(𝑉 ) is defined as dim𝑉 − 1.

Example 7.3. Let us look at the lowest dimensions:

• If dim𝑉 = 0, then P(𝑉 ) is empty (and has dimension −1 or undefined).
• If dim𝑉 = 1, then P(𝑉 ) contains one single point (and has dimension 0).
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• If dim𝑉 = 2, then P(𝑉 ) is called a projective line over K (and has dimension 1).

• If dim𝑉 = 3, then P(𝑉 ) is called a projective plane over K (and has dimension 2).

Example 7.4. The projective space P(K𝑛+1) is the standard projective space of dimension 𝑛

and is denoted KP𝑛 (other common notations are P𝑛K, P
𝑛 K, etc.). For instance, the standard

real projective plane is RP2 B P(R3).

For 𝑥 ∈ 𝑉 −{0}, we denote [𝑥] (= K𝑥) the vector line containing 𝑥 . Thus [𝑥] is an element

of P(𝑉 ); in fact, P(𝑉 ) = {[𝑥], 𝑥 ∈ 𝑉 − {0}}. The vector line [𝑥] is also the equivalence class
of 𝑥 ∈ 𝑉 −{0} for the equivalence relation defined by 𝑥 ∼ 𝑦 if and only if 𝑥 and𝑦 are collinear
(i.e., if and only if [𝑥] = [𝑦]). Therefore the next definition is equivalent to the previous one:

Definition 7.5. The projective space of 𝑉 is the quotient set P(𝑉 ) B (𝑉 − {0}) /∼ .

Remark 7.6. To be precise, the line [𝑥] ⊆ 𝑉 contains 0 whereas the equivalence class of 𝑥

does not, therefore the sets P(𝑉 ) in  Definition 7.2 and  Definition 7.5 are technically not the

same. But there is an obvious identification between the two: add 0 to each equivalence class.

7.1.2 Topology

Assume that K = R or C and𝑉 is finite-dimensional. There is a canonical topology on𝑉 : the

topology induced by any norm, since any two norms are equivalent.  Definition 7.5 allows us

to equip P(𝑉 ) with the quotient topology (see  § A.3.2 ). In order to understand this topology,

it helps to identify P(𝑉 ) as a quotient of a smaller set:

Proposition 7.7. Equip 𝑉 with any norm and let 𝑆 ⊆ 𝑉 denote the unit sphere. The inclusion
𝑆 ↩→ 𝑉 induces a homeomorphism 𝑆/U ∼−→ P(𝑉 ) where U = O(1) = {±1} [resp. U = U(1) =
{|𝑧 | = 1}] is the subgroup of K× of scalars of unit norm.

Proof. This is an elementary exercise of general topology; I encourage you to not keep reading

and try to write your own proof for practice.

Let 𝐹 : 𝑆 → P(𝑉 ) denote the composition of the inclusion 𝑆 ↩→ 𝑉 − {0} by the quotient

map 𝑉 − {0} → P(𝑉 ). The action of U on 𝑉 by scalar multiplication preserves 𝑆 , moreover

𝐹 is constant on each orbit, therefore it induces a quotient map 𝑓 : 𝑆/U → P(𝑉 ). The line
[𝑥] ∈ P(𝑉 ) intersects 𝑆 exactly along the U-orbit of 𝑥 , which proves that 𝑓 is injective. It is

also clearly surjective, since any line [𝑥] intersects the sphere (at 𝑥
‖𝑥 ‖ ).

Since 𝑓 : 𝑆/U→ P(𝑉 ) is bijective and 𝑆/U is compact (see below), it is enough to show

that 𝑓 is continuous. This is a general fact: see  § A.3.2 . The compactness of 𝑆/U derives from

that of 𝑆 by continuity of the projection 𝑆 → 𝑆/U. Finally, the continuity of 𝑓 is just a matter

of unraveling definitions: let 𝑈 ⊆ P(𝑉 ) be an open set; meaning that 𝑈 B
⋃

[𝑥]∈𝑈 [𝑥] is an
open subset of 𝑉 − {0}. We want to show that the preimage of𝑈 by 𝑓 is open in 𝑆/U, i.e. its
preimage in 𝑆 is open. But the subset of 𝑆 we are talking about is just𝑈 ∩ 𝑆 , which is open

in 𝑆 by definition of the subspace topology. �
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Corollary 7.8. If𝑉 is a finite-dimensional vector space overK = R or C, then P(𝑉 ) is a compact
Hausdorff topological space.

Proof. By  Proposition 7.7 , it is enough to show that 𝑆/U is compact and Hausdorff. The

compactness of 𝑆/U is immediately derived from that of 𝑆 , as we already explained in the

proof of  Proposition 7.7 . The separation (“Hausdorffness”) of 𝑆/U is also derived from that of 𝑆 ,

but that is less immediate; the reader may either try to prove it manually or accept it without

proof. The general argument is: a continuous action of a compact Hausdorff topological

group is always proper ([ Bou1 , TG III.28, Prop. 2]), and the quotient of a topological space by

a proper group action is always Hausdorff ([ Bou1 , TG III.29, Prop. 3]). �

Example 7.9. The real projective plane RP2 is homeomorphic to 𝑆2/{±1}. This is a compact

non-orientable surface, which is not easy to visualize. Like other non-orientable surfaces, it

cannot be embedded inR3, but it can be immersed. An immersion ofRP2 inR3 can be realized
by sewing a Möbius strip to the edge of a disk. Depending on the gluing, the resulting surface

is homeomorphic to either a (sphere with a) cross-cap, Boy’s surface, or Roman’s surface. (I
encourage curious readers to look these up for pictures and further description).

Example 7.10. The complex projective line CP1 is homeomorphic to 𝑆3/U(1). It turns out that
this is homeomorphic to the 2-sphere 𝑆2. This is known as the Hopf fibration, which is the

subject of  Exercise 7.5 .

7.1.3 Projective subspaces and projective duality

Let P = P(𝑉 ) be a finite-dimensional projective space.

Definition 7.11. A projective subspace of P is a subset of the form P(𝑊 ) where𝑊 is a

subspace of 𝑉 .

Example 7.12. When dim𝑊 = 1, P(𝑊 ) contains just one point. When dim𝑊 = 2, P(𝑊 ) is
called a (projective) line in P ; when dim𝑊 = 3, P(𝑊 ) is a (projective) plane, etc. When𝑊

is a hyperplane (has codimension 1), P(𝑊 ) is called a (projective) hyperplane in P .

Recall that 𝑉 ∗
denotes the dual space of 𝑉 , i.e. the space of linear forms 𝑉 → K.

Definition 7.13. The projective space P(𝑉 ∗) is called dual projective space of P B P(𝑉 )
and denoted P∗

.

Points of P∗
correspond to hyperplanes of P : one can associate to any [𝜑] ∈ P∗

the

projective hyperplane P(ker𝜑) ⊆ P . Conversely, if P(𝐻 ) ⊆ P is a hyperplane, then the set

of linear forms that vanish on 𝐻 is 1-dimensional, therefore it defines a point in P∗
.

More generally, for a subspace𝑊 ⊆ 𝑉 , denote𝑊 ◦ ⊆ 𝑉 ∗
the annihilator (or polar)

of𝑊 : by definition, it consists of all the linear forms 𝜑 : 𝑉 → K that vanish on𝑊 . (The

notation𝑊 ⊥
is also sometimes used.) Taking the annihilator is a decreasing map with respect

to inclusion: if𝑊1 ⊂ 𝑊2 then𝑊
◦
2
⊂ 𝑊 ◦

1
. Moreover, it is an basic exercise of linear algebra
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that dim𝑊 ◦ = codim𝑊 . Taking annihilators of subspaces induces a map between projective

subspaces of 𝑉 and projective subspaces of 𝑉 ∗
, namely

Q = P(𝑊 ) ↦→ Q◦ B P(𝑊 ◦) .

This map is called projective duality.

Proposition 7.14. LetP be a finite-dimensional projective space. Projective duality is a bijective
correspondence between projective subspaces of P and projective subspaces of P∗, and it is
decreasing with respect to inclusion. Moreover, projective duality is involutive in the sense that
Q◦◦ = Q under the identification 𝑃∗∗ ≈ 𝑃 .

The proof of  Proposition 7.14 is elementary and left to the reader ( Exercise 7.1 ).

Example 7.15. Let P be a projective plane. Projective duality defines a bijective correspon-

dence between points [resp. lines] of P and lines [resp. points] of P∗
.

Projective duality is a beautiful and powerful tool; readers should further their under-

standing of it by working on  Exercise 7.1 and  Exercise 7.16 .

7.1.4 Axioms of projective geometry

It is possible to develop projective geometry axiomatically, in the spirit of Euclid, starting

with the primitive notions of points, lines, and incidence. This approach is sometimes called

synthetic, especially to emphasize that it avoids the use of coordinates. Despite its historical

importance, the synthetic approach fell out of fashion for obvious reasons: the power of

analytic and algebraic techniques, and the unification of (almost) all modern mathematics in

the language of set theory and algebraic structures.

Out of interest, let us give an example of axiomatization of projective geometry. Many

choices are possible for the axioms, not always giving exactly the same theory. The follow-

ing axioms, suggested by Veblen and Young 

1
 [ VY1 ], are remarkable for their simplicity: A

projective space is a set P (the set of points), together with a set L of subsets of P (the set

of lines), satisfying the axioms:

(P1) There exists a unique line through any two points.

(P2) If 𝐴, 𝐵,𝐶 , 𝐷 are distinct points and the lines 𝐴𝐵 and𝐶𝐷 meet, then so do 𝐴𝐶 and 𝐵𝐷 .

(P3) Any line has at least three points.

Starting with these axioms, one can define, for instance, a projective subspace by requiring
that it contains each line through any two of its points; a collineation as a map that preserves

alignment, etc.

Remark 7.16. The axiom  (P2) is sometimes called Veblen’s axiom. It is a clever way of saying

that any two coplanar lines must intersect.

1
The mathematician and philosopher Alfred Whitehead had suggested a similar system of axioms in 1906

[ Whi ]. The great David Hilbert had proposed a more general axiomatization of geometry in the famous Grund-
lagen der Geometrie [ Hil ] in 1899.
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Veblen and Young ([ VY1 ], see also [ VY2 ;  VY3 ]) proved that this axiomatic definition of

projective geometry is equivalent to  Definition 7.2 for dimensions > 2:

Theorem 7.17. If P is a projective space in the sense above, and has dimension at least 3 (i.e.
there exists two non-intersecting lines), then it is isomorphic to some projective space P(𝑉 ) over
a division ring K.

Remark 7.18. The more precise theorem is that a projective space P is isomorphic to some

P(𝑉 ) if and only if Desargues’s theorem holds (see  Exercise 7.9 ), which is always the case

if dimP > 3; furthermore K is commutative if and only if Pappus’s theorem holds (see

 Exercise 7.8 ). This beautiful result was proven by David Hilbert in the Grundlagen [ Hil ]

(with a different axiomatization). Hilbert also exposed many examples of “non-Desarguesian

planes”. For the proof, I recommend [ BR1 , §2.2.2, §3.4.2]

For readers interested in learning projective geometry via the synthetic approach, I rec-

ommend [ Cox1 ;  Cox2 ] and [ BR1 ] (or the German edition [ BR2 ]).

7.1.5 Affine charts and hyperplane at infinity

Let P = P(𝑉 ) be a projective space. Choose an affine hyperplane 𝐻 ⊆ 𝑉 not containing the

origin, and denote by ®𝐻 vector hyperplane in𝑉 parallel to𝐻 (i.e. the vector space underlying

𝐻 ). Every vector line in 𝑉 intersects 𝐻 (once) except the lines contained in ®𝐻 : see  Figure 7.1 .

By the previous observation, taking the intersection of every line not in ®𝐻 with 𝐻 defines

a bijection 𝜑𝐻 : P − H → 𝐻 where H = P
( ®𝐻 )

. The map 𝜑𝐻 thus identifies P minus a

projective hyperplane to an affine space, and is called an affine chart (or affine patch). We

leave it to the reader to check that it is a homeomorphism. When an affine chart 𝜑𝐻 as above

is chosen, the projective hyperplaneH is called hyperplane at infinity (the term horizon
would also make sense).

Conversely, starting with any affine space 𝐻 , one can reconstruct the projective space P :

first introduce the underlying vector space ®𝐻 , then the “hyperplane at infinity” H = P
( ®𝐻 )

.

Geometrically, the points at infinity (the elements ofH) can be described as “directions”, i.e.

equivalence classes of parallel lines in 𝐻 . This corresponds to the intuition that parallel lines

meet at a single point of the horizon. It remains to identify𝐻 ∪H as a projective space, which

is achieved by tracing the previous paragraph backwards. More precisely, embed 𝐻 as an

affine hyperplane in a vector space 𝑉 : for instance, put 𝑉 = ®𝐻 × K and fix an identification

of 𝐻 with ®𝐻 × {1}. Then P(𝑉 ) ≈ 𝐻 ∪H.

The extension of an affine space 𝐻 to a projective space P = 𝐻 ∪H described above (or,

more precisely, the embedding 𝜑−1
𝐻

: 𝐻 → P) is called the projective completion of 𝐻 . The

projective completion of 𝐻 is in particular a nice compactification: P is Hausdorff and is a

smooth manifold (see  § 7.2.2 ).

Example 7.19. Let 𝐸 be an affine space of dimension 1. Show that the projective completion of

𝐸 is topologically the same as its one-point compactification. Argue that it is homeomorphic

to 𝑆1 for K = R and 𝑆2 for K = C.
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Figure 7.1: Every vector line, unless contained in ®𝐻 , intersects the affine hyperplane 𝐻 .

Example 7.20. Let 𝐸 be a real affine space of dimension 2. The projective completion of 𝐸,

obtained by adding the “horizon”, is topologically a closed disk with diametrically opposed

points identified. This is a well-known topological description of the projective plane.

Remark 7.21. In an affine space 𝐸, a central projection from a point𝑂 to an affine plane𝐻 not

containing𝑂 sends each point𝑀 to the intersection of the line𝑂𝑀 with 𝐻 . The projection

is not defined for points of the plane through 𝑂 parallel to 𝐻 . With our setup, when 𝐸 = 𝑉

is a vector space and𝑂 is the origin, the central projection is the map 𝑉 − ®𝐻 → 𝐻 obtained

by composition of the quotient map𝑉 − ®𝐻 → P −H with the affine chart 𝜑𝐻 : P −H → 𝐻 .

We shall see in  § 7.3.4 that central projections are more elegantly defined as projective maps.

We shall further discuss affine charts in  § 7.2.2 and show that they define an atlas on P
in the sense of differential geometry, giving it the structure of a manifold.
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7.2 Coordinates

There are three ways that one can talk about coordinates on a projective space P = P(𝑉 ):
homogeneous coordinates, affine coordinate charts, and projective frames. These are not

independent concepts; on the contrary, they are easily related, and can all be derived from a

choice of basis for the vector space 𝑉 .

For the remainder of this section, let 𝑉 be a vector space over K of dimension 𝑛 + 1

and let P = P(𝑉 ) be its projectivization. We typically denote (𝑒1, . . . , 𝑒𝑛+1) a basis of 𝑉 and

𝑥 = (𝑥1, . . . , 𝑥𝑛+1) the associated system of coordinates, meaning that 𝑥 =
∑𝑛+1
𝑘=1

𝑥𝑖𝑒𝑖 .

Remark 7.22. From the viewpoint of “coordinate charts”, a system of coordinates on 𝑉 is a

linear isomorphism 𝜑 : 𝑉 → K𝑛+1. Of course, this amounts to the choice of a basis.

7.2.1 Homogeneous coordinates

Recall that we denote [𝑥] ∈ P the vector line through 𝑥 . When using coordinates, we

abbreviate [𝑥] = [(𝑥1, . . . , 𝑥𝑛+1)] to the notation [𝑥] = [𝑥1 : . . . : 𝑥𝑛+1]. This notation is

called homogeneous coordinates.
Homogeneous coordinates were introduced by the German mathematician August Ferdi-

nand Möbius in 1827 [ Möb ]. (Möbius actually introduced barycentric coordinates, but these
are essentially the same thing: understand this by working on  Exercise 7.4 .)

Homogeneous coordinates are not coordinates in the usual sense. Indeed, they are not

unique: [𝑥1 : . . . : 𝑥𝑛+1] = [𝑦1 : . . . : 𝑦𝑛+1] whenever there exists 𝜆 ∈ K×
such that 𝑦𝑘 = 𝜆𝑥𝑘

for all 𝑘 ∈ {1, . . . , 𝑛 + 1}. Also, mind that [0: . . . : 0] is not allowed, because [0] is not
well-defined.

Example 7.23. The standard basis (𝑒1, 𝑒2, 𝑒3) of R3 gives linear coordinates (𝑥,𝑦, 𝑧) on R3 and
homogeneous coordinates [𝑥 : 𝑦 : 𝑧] on RP2. The equation of a generic vector plane 𝑃 ⊆ R3
is 𝑎𝑥 +𝑏𝑦 +𝑐𝑧 = 0with 𝑎, 𝑏, 𝑐 not all zero. This is also the equation of a generic projective line

ℓ = P(𝑃) in RP2 in homogeneous coordinates. Prove as an exercise that [𝑎 : 𝑏 : 𝑐] represent
the point in (RP2)∗ dual to ℓ .

Some elementary properties of homogeneous coordinates are discussed in  Exercise 7.3 .

7.2.2 Affine coordinate charts

Let P = P(𝑉 ) be a projective space of dimension 𝑛. We have seen in  § 7.1.5 that any choice of

an affine hyperplane𝐻 ⊆ 𝑉 not containing the origin yields an identification𝜑𝐻 : P−H ∼−→ 𝐻

(whereH = P
( ®𝐻 )

) which we called an affine chart.
Suppose that we have chosen a basis of 𝑉 such that in the associated coordinate system

(𝑋1, . . . , 𝑋𝑛+1), the equation of 𝐻 is 𝑋𝑛+1 = 1. Such a choice of basis is always possible: just

take any basis (𝑒1, . . . , 𝑒𝑛) of 𝐻 and complete it by taking any 𝑒𝑛+1 ∈ 𝐻 . (We are now using

uppercase letters 𝑋𝑘 for the coordinates on𝑉 , to distinguish it from the affine coordinates on
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𝐻 that we are about to introduce.) The equation of ®𝐻 in these coordinates is 𝑋𝑛+1 = 0, which

is also the equation ofH in homogeneous coordinates.

There is an obvious choice of coordinates (𝑥1, . . . , 𝑥𝑛) on 𝐻 , which we call affine coordi-
nates: the point with coordinates (𝑥1, . . . , 𝑥𝑛) in𝐻 is the point with coordinates (𝑥1, . . . , 𝑥𝑛, 1)
in 𝑉 . It is easy to compute the expression of 𝜑𝐻 in these coordinates:

Proposition 7.24. The affine chart𝜑𝐻 : P−H ∼−→ 𝐻 is given by 𝑥𝑘 =
𝑋𝑘

𝑋𝑛+1
for all𝑘 ∈ {1, . . . , 𝑛}.

Proof. Let 𝑝 = [𝑋1 : . . . : 𝑋𝑛+1] ∈ P −H, i.e. 𝑋𝑛+1 ≠ 0. To determine 𝜑𝐻 (𝑝), we are looking
for 𝜆 ∈ K×

such that 𝜆(𝑋1, . . . , 𝑋𝑛+1) ∈ 𝐻 . Since the equation of 𝐻 is 𝑋𝑛+1 = 1, the unique

solution is 𝜆 = 1

𝑋𝑛+1
. The conclusion follows. �

Let us now show that such affine charts 𝜑𝐻 give us a coordinate atlas on P in the sense

of differential geometry (manifolds). Instead of considering all possible hyperplanes 𝐻 , we

choose 𝑛+1 such that the open setsP−H coverP . Fix a coordinate system (𝑋1, . . . , 𝑋𝑛) on𝑉 ,
and take for 𝐻𝑖 the hyperplane with equation 𝑋𝑖 = 1. The open sets𝑈𝑖 B P −H𝑘 = {𝑋𝑖 ≠ 0}
coverP , since a point [𝑋1 : . . . : 𝑋𝑛+1] being in the complement of all would mean that𝑋𝑖 = 0

for all 𝑘 , which is not allowed.

There is a natural choice of coordinates on 𝐻𝑖 , which we denote (𝑥1, . . . , 𝑥𝑖, . . . 𝑥𝑛+1),
where 𝑥𝑖 means that the 𝑖-th entry of (𝑥1, . . . , 𝑥𝑛+1) is omitted (for instance, (𝑥,𝑦, 𝑧) = (𝑥, 𝑧)).
As in  Proposition 7.24 , the map 𝜑𝑖 : 𝑈𝑖 → K𝑛 is written 𝑥𝑘 = 𝑋𝑘

𝑋𝑖
for all 𝑘 ≠ 𝑖.

At this point we have: a Hausdorff topological space P covered by open sets 𝑈𝑖 , and

homeomorphisms 𝜑𝑖 : 𝑈𝑖 → K𝑛. By definition, this shows that P is a topological manifold.
Each 𝜑𝑖 is called a coordinate chart, and the collection of all charts is a coordinate atlas.

Remark 7.25. Topological manifolds are often required to be secound-countable, i.e. have
a countable basis of open sets. For P this follows easily from the fact that it has a finite

atlas. More generally, second-countability is equivalent to paracompactness for Hausdorff

and locally Euclidean space, and the paracompactness of P is trivial because it is compact.

For more details, refer to [ Lee1 ] and [ Noi ].

We can further show that the atlas {𝜑𝑖} defines a differential structure onP by proving

that any two charts 𝜑𝑖 and 𝜑 𝑗 are compatible. By definition, this means that the transition
function (change of coordinates) 𝜑 𝑗 ◦𝜑−1

𝑖 is smooth. Our previous computation shows that it

is written 𝑥′
𝑘
=

𝑥𝑘
𝑥 𝑗

for all 𝑘 ≠ 𝑗 , with the exception 𝑥′𝑖 =
1

𝑥 𝑗
. This map is smooth, even analytic:

it is a rational fraction. In conclusion, we proved that P is a smooth manifold, and even an

analytic manifold (real analytic when K = R, and even complex analytic when K = C).

Remark 7.26. As an exercise, the reader may show more generally that any two charts 𝜑𝐻 are

compatible. This amounts to showing the analyticity of any perspectivity (see  § 7.3.4 ).

For the basics and more on manifolds, I recommend [ Lee2 ] or [ Laf ]. Both cover the

example of a projective space, unsurprisingly: it is a great example of manifold.
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7.2.3 Projective frames

Projective frames allow the definition of homogeneous coordinates on a projective space P
without referring to the vector space 𝑉 such that P = P(𝑉 ).

Definition 7.27. Let P be a projective space of dimension 𝑛. A projective frame is a (𝑛 +2)-
tuple of points (𝑝1, . . . , 𝑝𝑛+2) such that no projective hyperplane contains 𝑛 + 1 of them.

Example 7.28. Here are some fundamental examples of projective frames:

• A frame for a projective line is a triple of distinct points.

• A frame for a projective plane is a quadruple of points such that no three are collinear.

• The standard frame of P = KP𝑛 is ( [𝑒1], . . . , [𝑒𝑛+2]), where (𝑒1, . . . , 𝑒𝑛+1) is the stan-
dard basis of K𝑛+1 and 𝑒𝑛+2 =

∑𝑛+1
𝑘=1

𝑒𝑘 .

Lemma 7.29. LetP = P(𝑉 ) be a projective space of dimension𝑛. If (𝑝1, . . . , 𝑝𝑛+2) is a projective
frame, there exists 𝑒1, . . . , 𝑒𝑛+2 ∈ 𝑉 , unique unique up to multiplication by the same 𝜆 ∈ K×,
such that 𝑝𝑘 = [𝑒𝑘] and

∑𝑛+2
𝑘=1

𝑒𝑘 = 0. Moreover, (𝑒1, . . . , 𝑒𝑛+1) is a basis of 𝑉 .

Proof. This is an excellent elementary exercise of linear algebra, try to write the proof yourself

without reading further! You can also show that the converse is true.

Existence: let 𝑣1, . . . , 𝑣𝑛+2 ∈ 𝑉 − {0} such that 𝑝𝑘 = [𝑣𝑘]. Since dim𝑉 = 𝑛 + 1, the

vectors 𝑣1, . . . , 𝑣𝑛+2 cannot be linearly independent: there exists 𝜆1, . . . , 𝜆𝑛+2 ∈ K such that∑𝑛+2
𝑘=1

𝜆𝑘𝑣𝑘 = 0. Observe that none of the 𝜆𝑘 can be zero: for if 𝜆 𝑗 = 0, then the vectors 𝑣𝑘
for 𝑘 ≠ 𝑗 would lie on a vector hyperplane, so that the points 𝑝𝑘 for 𝑘 ≠ 𝑗 would lie on

a projective hyperplane. For the same reason, (𝑣1, . . . , 𝑣𝑛+1) must be linearly independent,

hence a basis of 𝑉 . Set 𝑒𝑘 = 𝜆𝑘𝑣𝑘 . Since all 𝜆𝑘 ’s are ≠ 0, (𝑒1, . . . , 𝑒𝑛+1) is still a basis of 𝑉 ,

𝑝𝑘 = [𝑒𝑘], and the relation
∑𝑛+2
𝑘=1

𝜆𝑘𝑣𝑘 = 0 is rewritten

∑𝑛+2
𝑘=1

𝑒𝑘 = 0.

Uniqueness: assume (𝑒1, . . . , 𝑒𝑛+2) and (𝑒′
1
, . . . , 𝑒′𝑛+2) are two solutions. Since [𝑒′

𝑘
] = [𝑒𝑘],

there exists 𝜆𝑘 ∈ K×
such that 𝑒′

𝑘
= 𝜆𝑘𝑒𝑘 . In particular, we have 𝑒′𝑛+2 = 𝜆𝑒𝑛+2 = 𝜆

∑𝑛+1
𝑘=1

𝑒𝑘

where 𝜆 B 𝜆𝑛+2; on the other hand 𝑒′𝑛+2 =
∑𝑛+1
𝑘=1

𝑒′
𝑘
=

∑𝑛+1
𝑘=1

𝜆𝑘𝑒𝑘 . Equating the two expres-

sions yields

∑𝑛+1
𝑘=1

(𝜆 − 𝜆𝑘)𝑒𝑘 = 0. Since (𝑒1, . . . , 𝑒𝑛+1) is a basis of 𝑉 (otherwise 𝑝1, . . . , 𝑝𝑛 are

contained in a hyperplane), it follows that 𝜆𝑘 = 𝜆 for all 𝑘 ∈ {1, . . . , 𝑛+1}, hence 𝑒′
𝑘
= 𝜆𝑒𝑘 . �

Since the basis (𝑒1, . . . , 𝑒𝑛+1) of  Lemma 7.29 is unique up to scalar multiplication, the

homogeneous coordinates [𝑥1 : . . . : 𝑥𝑛+1] of a point 𝑝 ∈ P in this basis are well-defined. By

definition, these are the homogeneous coordinates of 𝑝 in the frame (𝑝1, . . . , 𝑝𝑛+2).
Example 7.30. In P = KP𝑛, one can take 𝑝𝑘 = [𝑒𝑘] where (𝑒1, . . . , 𝑒𝑛+1) is the canonical basis
of K𝑛+1 and 𝑒𝑛+2 = −∑𝑛+1

𝑘=1
𝑒𝑘 . In that case, the homogeneous coordinates of [𝑣] in the frame

(𝑝1, . . . , 𝑝𝑛+2) are just [𝑣1 : . . . : 𝑣𝑛+1].

If an affine chart 𝐻 ⊆ 𝑉 is chosen, one can choose a collection of affinely independent

points 𝑝1, . . . , 𝑝𝑛+1 ∈ 𝐻 , i.e. a basis of 𝑉 consisting of elements of 𝐻 . Homogeneous coor-

dinates in P relative to that basis are the same thing as barycentric coordinates in 𝐻 : see
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 Exercise 7.4 for details. Such homogeneous coordinates correspond to the projective frame

(𝑝1, . . . , 𝑝𝑛+2) where 𝑝𝑛+2 =
[∑𝑛+1

𝑘=1
𝑝𝑘

]
, i.e. 𝑝𝑛+2 is the isobarycenter of {𝑝1, . . . , 𝑝𝑛+1} in 𝐻 .

An important property of projective frames is that a projective transformation is uniquely

determined by the image of any projective frame: see  Theorem 7.39 .

7.3 Projective transformations

Projective transformations can be defined in several ways: as transformations that lift to linear

transformations of the associated vector space, or as products of elementary transformations

called perspectivities, or as (maybe a subclass of) maps that preserve alignment (known as

collineations). We favor the “projective linear” point of view, but shall also briefly discuss the

others for completeness.

7.3.1 Projective linear maps

Let P = P(𝑉 ) and P′ = P(𝑉 ′) be two projective spaces (we are especially interested in

P′ = P). Any linear map 𝐹 : 𝑉 → 𝑉 ′
sends a vector line in 𝑉 to a vector line in 𝑉 ′

, unless it

is contained in ker 𝐹 . Therefore 𝐹 induces a map 𝑓 = [𝐹 ] : P −Q → P′
, whereQ = P(ker 𝐹 ).

Note 𝑓 = [𝐹 ] can be described as a quotient map, defined by [𝐹 ] ( [𝑥]) = [𝐹 (𝑥)]. We call 𝑓

the projectivization of 𝐹 , and 𝐹 a lift of 𝑓 .

Definition 7.31. Amap 𝑓 : P → P′
, possibly only defined in the complement of a projective

subspace, is called projective linear (or simply projective) if it has a linear lift 𝐹 : 𝑉 → 𝑉 ′
.

Example 7.32. Consider the central projection 𝑓 : R3 − (R2 × {0}) → R2 × {1} defined by

𝑓 (𝑥,𝑦, 𝑧) = (𝑥/𝑧,𝑦/𝑧, 1) (see  Remark 7.21 ). This map extends to the projective completions

RP3 → RP2 by 𝑓 ( [𝑥 : 𝑦 : 𝑧 : 𝑡]) = [𝑥 : 𝑦 : 𝑧]. 𝑓 is projective linear since it lifts to 𝐹 : R4 → R3,
(𝑥,𝑦, 𝑧, 𝑡) ↦→ (𝑥,𝑦, 𝑧) (observe how 𝐹 looks nicer than the initial map 𝑓 !). The kernel of 𝐹 is

R𝑒4 where 𝑒4 = (0, 0, 0, 1), hence 𝑓 is defined outside of 𝑂 = [𝑒4], which is the origin of our

original R3. More generally, any central projection 𝐸 − ®𝐻 → 𝐻 extends everywhere outside

of the origin when taking the projective completions.

If 𝑓 : P → P′
is a projective linear map, then its linear lift 𝐹 : 𝑉 → 𝑉 ′

(i.e. 𝑓 = [𝐹 ]) is
unique up to a scalar factor 𝜆 ∈ K×

by the next proposition:

Proposition 7.33. If 𝐹,𝐺 : 𝑉 → 𝑉 ′ are linear maps such that [𝐹 ] = [𝐺], then there exists
𝜆 ∈ K× such that 𝐹 = 𝜆𝐺 .

Proof. By definition, if [𝐹 ] = [𝐺], then 𝐹 and 𝐺 have same kernel𝑊 ⊆ 𝑉 , and for every

𝑥 ∈ 𝑉 −𝑊 , [𝐹 (𝑥)] = [𝐺 (𝑥)]. In other words, there exists 𝜆𝑥 ∈ K×
such that𝐺 (𝑥) = 𝜆𝑥𝐹 (𝑥).

Using the linearity of 𝐹 and𝐺 , it is readily checked that 𝜆𝑥 must be independent of 𝑥 . �
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Remark 7.34. Given a projective linear map 𝑓 : P → P′
, “the” linear lift 𝐹 of 𝑓 is also called

the homogenization of 𝑓 .

A projective linear map 𝑓 : P → P′
is defined everywhere if and only if its linear lift

𝐹 : 𝑉 → 𝑉 ′
has trivial kernel, i.e. is injective, in which case 𝑓 is also injective. When P and

P′
(hence 𝑉 and 𝑉 ′

) have the same dimension, 𝐹 is injective if and only if it is bijective, in

which case 𝑓 is also bijective. In particular, when P = P′
, we have:

Proposition 7.35. A projective linear map 𝑓 : P → P is well-defined everywhere if and only
if its linear lift 𝐹 : 𝑉 → 𝑉 is an element of GL(𝑉 ), in which case 𝑓 is bijective.

Henceforth we assume that a projective linear map 𝑓 : P → P is well-defined every-

where, hence bijective; such a map is called projective (linear) transformations (or auto-
morphisms) of P . The terms homography and projectivity (see  § 7.3.4 ) are also synonyms,

as is collineation under suitable assumptions (see  § 7.3.5 ).

An elementary property of projective transformations is that they preserve subspaces:

Proposition 7.36. Let 𝑓 : P → P be a projective transformation. The image 𝑓 (Q) of any
projective subspaceQ ⊆ P is a projective subspace of the same dimension.

Proof. This is almost trivial: write Q = P(𝑊 ) and 𝑓 = [𝐹 ]. Since 𝐹 ∈ GL(𝑉 ), 𝐹 (𝑊 ) is a
subspace of 𝑉 of the same dimension as𝑊 . The conclusion quickly follows. �

7.3.2 Projective transformations in coordinates

A projective transformation in homogeneous coordinates is simply represented by the matrix

of its linear lift. To make this precise, suppose that we have homogeneous coordinates

[𝑥1, : . . . : 𝑥𝑛+1] on P . This means that we have chosen a basis (𝑒1, . . . , 𝑒𝑛+1) of 𝑉 up to

a scalar factor 𝜆 ∈ K×
, or equivalently a projective frame (𝑝1, . . . , 𝑝𝑛+2) of P : see  § 7.2 . Let

𝑝 ∈ P and let 𝑋 = [𝑥𝑘] ∈ R𝑛+1 [resp. 𝑌 = [𝑦𝑘] ∈ R𝑛+1] denote the column vector of the

homogeneous coordinates of 𝑝 [resp. 𝑓 (𝑝)]. Note that each of𝑀 ,𝑋 , and𝑌 are all only defined

up to a scalar 𝜆 ∈ K×
.

Proposition 7.37. Let 𝑓 : P → P be a projective transformation. Let 𝑀 ∈ GL(𝑛 + 1,K)
denote the matrix of a linear lift 𝐹 : 𝑉 → 𝑉 in the basis (𝑒1, . . . , 𝑒𝑛+1). Then 𝑀 is uniquely
defined up to 𝜆 ∈ K×, and 𝑓 is given in homogeneous coordinates by 𝑌 = 𝑀𝑋 , in the sense that
𝑓 (𝑝) = [𝑦1 : . . . : 𝑦𝑛+1] if 𝑝 = [𝑥1 : . . . : 𝑥𝑛+1].

Proof. This is trivial: 𝐹 is given in the basis (𝑒1, . . . , 𝑒𝑛+1) by 𝑌 = 𝑀𝑋 , therefore so is 𝑓 after

passing to the quotient. �

Remark 7.38. In homogeneous coordinates, the components of 𝑓 , equivalently 𝐹 , are homo-

geneous polynomials of degree 1 in the variables (𝑥1, . . . , 𝑥𝑛) (in contrast to rational fractions

in an affine chart, see  Example 7.32 ). This explains the term homogenization.
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A projective transformation is uniquely determined by the image of a projective frame:

Theorem 7.39. The image of a projective frame by a projective transformation is a projec-
tive frame. Given two projective frames (𝑝𝑘) and (𝑞𝑘) for P , there exists a unique projective
transformation 𝑓 : P → P such that 𝑓 (𝑝𝑘) = 𝑞𝑘 for all 𝑘 .

Proof. Let (𝑝1, . . . , 𝑝𝑛+2) be a projective frame and let 𝑞1, . . . , 𝑞𝑛+2 ∈ P . We want to exam-

ine the existence and uniqueness of a projective transformation such that 𝑞𝑘 = 𝑓 (𝑝𝑘). Let
𝑒1, . . . , 𝑒𝑛+2 ∈ 𝑉 such that 𝑝𝑘 = [𝑒𝑘] as in  Lemma 7.29 . If a hyperplane of P contained 𝑛 + 1 of
the 𝑞𝑘 , then a hyperplane of𝑉 would contain the corresponding 𝐹 (𝑒𝑘). Since any 𝑛 + 1 of the
𝑒𝑘 form a basis of𝑉 (otherwise a hyperplane would contain the corresponding 𝑝𝑘 ), the range

of 𝐹 would be contained in a hyperplane of 𝑉 , which contradicts 𝐹 ∈ GL(𝑉 ). This proves
that (𝑞1, . . . , 𝑞𝑛+2) must be a projective hyperplane for 𝑓 to exist.

The existence and uniqueness of 𝑓 derives from the existence and uniqueness of a linear

map when prescribing the image of a basis. Indeed, assuming (𝑞𝑘) is also a projective frame,

let 𝑒′
𝑘
∈ 𝑉 such that 𝑞𝑘 = [𝑒′

𝑘
] as in  Lemma 7.29 . A linear lift 𝐹 of 𝑓 must satisfy 𝑓 (𝑒𝑘) = 𝜆𝑘 𝑓𝑘

for some 𝜆𝑘 ∈ K×
for all 𝑘 ∈ {1, . . . 𝑛 + 2}. Since 𝑒𝑛+2 = −∑𝑛+1

𝑘=1
𝑒𝑘 and 𝐹 is linear, we

have 𝜆𝑛+2𝑒′𝑛+2 = −∑𝑛+1
𝑘=1

𝜆𝑘𝑒
′
𝑘
. On the other hand, 𝑒′𝑛+2 = −∑𝑛+1

𝑘=1
𝑒′
𝑘
, therefore we obtain∑𝑛+1

𝑘=1
(𝜆𝑛+2 − 𝜆𝑘)𝑒′𝑘 = 0. In conclusion we must have 𝜆𝑘 = 𝜆𝑛+2 C 𝜆 for all 𝑘 . This proves that

𝐹 is uniquely determined up to 𝜆 ∈ K×
, hence 𝑓 is unique. We also obtain existence: setting

𝐹 (𝑒𝑘) = 𝑒′𝑘 for all 𝑘 ∈ {1, . . . 𝑛 + 1} uniquely defines an element of GL(𝑉 ), which moreover

satisfies 𝐹 (𝑒𝑛+2) = 𝑒′𝑛+2, so that the quotient map 𝑓 verifies 𝑓 (𝑝𝑘) = 𝑞𝑘 for all 𝑘 . �

Remark 7.40.  Theorem 7.39 , or the slight generalization that a projectivemap between projective
spaces of the same dimension is uniquely determined by the image of a projective frame, is
sometimes referred to as the first fundamental theorem of projective geometry.

7.3.3 The projective linear group

Projective transformations of P = P(𝑉 ) form a group Aut(P) under composition, which

can be identified as the quotient of GL(𝑉 ) by the subgroup of homotheties K×
id𝑉 ; called

projective linear group PGL(𝑉 ). We explain this in what follows.

The map GL(𝑉 ) → Aut(P) which assigns to any 𝐹 ∈ GL(𝑉 ) the quotient map [𝐹 ] ∈
Aut(P) is a group homomorphism, in other words it defines a group action of GL(𝑉 ) on P .

The image of this homomorphism is Aut(P) by definition, and by the next proposition its

kernel is composed of the homotheties of𝑉 , i.e. the nonzero scalar multiples of the identity:

Proposition 7.41. The kernel of GL(𝑉 ) → AutP(𝑉 ) is the group K×
id𝑉 of homotheties. More

generally, for any subgroup𝐺 < GL(𝑉 ), the kernel of𝐺 → AutP(𝑉 ) is𝐺 ∩ K×
id𝑉 .

Proof. Immediate consequence of  Proposition 7.33 . �
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For any subgroup 𝐺 6 GL(𝑉 ), it is clear 𝐺 ∩ K×
id𝑉 is a normal subgroup of 𝐺 , and we

shall call the quotient group P(𝐺) B 𝐺
/
(𝐺 ∩ K×

id𝑉 ) the projective group of𝐺 . Note that
P(𝐺) is the quotient of 𝐺 by the equivalence relation 𝐹 ∼ 𝐺 if and only if 𝐹 = 𝜆𝐺 for some

𝜆 ∈ K×
, similarly to the definition of P(𝑉 ). By  Proposition 7.41 , P(𝐺) is the largest quotient

of𝐺 that acts faithfully on P . In particular, the projective group of GL(𝑉 ), denoted PGL(𝑉 ),
is called the projective linear group. Our discussion leads to:

Proposition 7.42. The group Aut(P) of projective transformations of P = P(𝑉 ) is canonically
isomorphic to PGL(𝑉 ).

Remark 7.43. It is classical fact that for𝐺 = GL(𝑉 ), the subgroup𝐺∩K×
id𝑉 coincideswith the

centerZ(𝐺). In general,𝐺∩K×
id𝑉 is only a proper subgroup ofZ(𝐺): consider for instance an

abelian group𝐺 6 GL(𝑉 ) (e.g. diagonal matrices). There is nothing wrong with the quotient

group𝐺/Z(𝐺), but it should not be confused with the projective group of𝐺 . One could call it

instead the inner group of𝐺 , since the action of𝐺 on itself by inner automorphisms yields

an isomorphism between𝐺/Z(𝐺) and the group of inner automorphisms Inn𝐺  

2
 .

7.3.4 Central projections, perspectivities, central projective maps

Central projections, perspectivities, and central projective transformations are fundamental

examples of projective maps, and are instrumental in many classical theorems of projective

geometry. That being said, we shall not need them in other chapters of the book.

Central projections

Let P be a projective space. LetH ⊆ P be a hyperplane and let𝐶 ∈ P be a point not onH.

Lemma 7.44. Any line ℓ through𝐶 intersectsH exactly once.

Proof. Write P = P(𝑉 ), H = P(𝐻 ), ℓ = P(𝑃), and 𝐶 = [𝑐]. Grassmann’s formula says that

dim(𝐻 ∪ 𝑃) = dim𝐻 + dim𝑃 − dim(𝐻 ∩ 𝑃). Writing dim𝐻 = dim𝑉 − 1, and dim𝑃 = 2,

we obtain dim(𝐻 ∪ 𝑃) = dim𝑉 + 1 − dim(𝐻 ∩ 𝑃). A priori dim(𝐻 ∩ 𝑃) ∈ {0, 1, 2}, but 0 is
excluded because it would imply dim(𝐻 ∪ 𝑃) > dim𝑉 . Also, dim(𝐻 ∩ 𝑃) = 2 is excluded

because 𝑃 ( 𝐻 , since 𝑐 is in 𝑃 but not in 𝐻 . We conclude that dim(𝐻 ∩ 𝑃) = 1, which proves

thatH ∩ ℓ = P(𝐻 ∩ 𝑃) is a point. �

Definition 7.45. The central projection 𝑝H,𝐶 : P − {𝐶} → H is the map which assigns to

any point𝑀 ≠ 𝐶 the intersection of the line𝐶𝑀 withH.

Remark 7.46. The affine notion of central projection seen in  Remark 7.21 is extended by

 Definition 7.45 : the latter restricts to the former in any affine chart; conversely, the former

extends to the latter in the projective completion.

2
I thank Andy Sanders for helping me figure this out.
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The next proposition guarantees that central projections are projective linear maps:

Proposition 7.47. LetP = P(𝑉 ) be a projective space,H = P(𝐻 ) be a hyperplane, and𝐶 = [𝑐]
a point not onH. The central projection 𝑝H,𝐶 : P − {𝐶} → H is the projectivization of the linear
projection 𝑝𝐻,[𝑐] : 𝑉 → 𝐻 on 𝐻 parallel to [𝑐].

Proof. WriteP = P(𝑉 ),𝐻 = P(𝐻 ),𝐶 = [𝑐]. Since dim𝑉 = dim𝐻 +dim[𝑐] and𝐻 ∩ [𝑐] = {0},
we have 𝑉 = 𝐻 ⊕ [𝑐]. This shows that the projection 𝑝𝐻,[𝑐] : 𝑉 → 𝐻 is well-defined: any

vector 𝑣 ∈ 𝑉 is uniquely written as 𝑣 = 𝑣𝐻 + 𝜆𝑐 , with 𝑝𝐻,[𝑐] (𝑣) =B 𝑣𝐻 ∈ 𝐻 .
Let 𝑀 = [𝑣] ∈ P be any point. The line ℓ = 𝐶𝑀 is the projectivization of the plane

𝑃 = [𝑣] + [𝑐]. Writing 𝑣 = 𝑣𝐻 + 𝜆𝑐 , we have 𝑃 = [𝑣𝐻 ] + [𝑐]. It follows that the intersection of

𝑃 with 𝐻 is [𝑣𝐻 ], in other words 𝑝H,𝐶 (𝑀) =
[
𝑝𝐻,[𝑐] (𝑣)

]
. �

Perspectivities

Let P = P(𝑉 ) be a projective space and letH1,H2 ⊆ P be two hyperplanes.

Definition 7.48. A perspectivity 𝑓 : H1 → H2 is the restriction toH1 of a central projection

P → H2.

Remark 7.49. It is implicitly assumed in the definition above that the center of the projection

does not lie on H1, otherwise 𝑓 would not be well-defined on all H1. The center cannot lie

onH2 either by definition of a central projection.

Proposition 7.50. Perspectivities are projective linear isomorphisms.

Proof. The restriction of a projective linear map to a projective subspace is projective linear.

SinceH1 andH2 have same dimension, it remains to show that 𝑓 is well-defined everywhere

onH1, which is the case by assumption. �

 Figure 7.2 can be interpreted as an illustration of a perspectivity (from the line ℓ to ℓ′).

Central projective transformations

Let P = P(𝑉 ) be a projective space and 𝑓 : P → P be a projective transformation.

Theorem 7.51. Assume 𝑓 is not the identity. The following are equivalent:
(i) 𝑓 admits a center, i.e. a point𝐶 ∈ P such that any line through𝐶 is preserved by 𝑓 .
(ii) 𝑓 admits an axis, i.e. a hyperplaneH ⊆ P fixed pointwise by 𝑓 .

Moreover, when a center and axis exist, they are both unique (if dimP > 1 for the center).

Proof. Assume that 𝑓 has a center 𝐶 = [𝑐]. Let 𝐹 denote a linear lift of 𝑓 . The fact that 𝑓

preserves any line through𝐶 means that for any 𝑣 ∈ 𝑉 , the plane (or line) spanned by 𝑣 and
𝑐 is preserved by 𝐹 . In particular there exists 𝜆𝑣 , 𝜇𝑣 ∈ K such that 𝐹 (𝑣) = 𝜆𝑣𝑣 + 𝜇𝑣𝑐 . For 𝑣 not
on [𝑐], 𝜆𝑣 and 𝜇𝑣 are uniquely determined; and by considering 𝐹 (𝑣 +𝑤), it is not too hard to
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Figure 7.2: Two sets of points in perspectivity.

argue that 𝜆𝑣 C 𝜆 must be constant and 𝜇𝑣 C 𝜑 (𝑣) is a linear function of 𝑣 . Note that 𝜑 is

not zero, otherwise 𝑓 would be the identity, therefore its kernel is a hyperplane 𝐻 ⊆ 𝑉 , and
is the 𝜆-eigenspace of 𝐹 . Its projectivizationH is fixed by 𝑓 .

Conversely, assume 𝑓 admits an axisH = P(𝐻 ). Denote 𝐹 a linear lift of 𝑓 , then 𝐻 is the

𝜆-eigenspace of 𝐹 for some 𝜆 ∈ K×
. If 𝐹 has an eigenvector 𝑐 ∉ 𝐻 , then 𝑉 = 𝐻 ⊕ K𝑐 and

one quickly checks that 𝑐 is a center. Otherwise, 𝜆 is the only eigenvalue of 𝐹 , and any 𝑣 ∉ 𝐻

satisfies 𝐹 (𝑣) = 𝜆𝑣 + 𝑐 for some 𝑐 ∈ 𝐻 . With the decomposition 𝑉 = 𝐻 ⊕ K𝑐 , one quickly
checks that [𝑐] is a center of 𝑓 .

Uniqueness of the axis is easily proved with linear algebra, bearing in mind that two

distinct vector hyperplanes span the whole vector space. Assume dimP > 2 and 𝑓 admits

two distinct centers 𝐶1,𝐶2. Let 𝑀 ∈ P be any point not on the line 𝐶1𝐶2, so that the lines

𝐶1𝑀 and 𝐶2𝑀 are well-defined and distinct. Since both are preserved by 𝑓 , we must have

𝑓 (𝑀) = 𝑀 . It quickly follows that 𝑓 is the identity, contrary to the assumption. �

Remark 7.52. If dimP > 2, the center 𝐶 must be fixed by 𝑓 , since any two distinct lines

through𝐶 are preserved and 𝑓 preserves incidence.

Definition 7.53. A projective transformation 𝑓 : P → P having a center (equivalently, an

axis) is called a central projective transformation.

Remark 7.54. A central projective transformation is not to be confused with a central pro-

jection ( Definition 7.45 ) nor a perspectivity ( Definition 7.48 ). Traditionally, they are called

central collineations, but we emphasize that they are projective linear maps rather than
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the weaker notion of collineation (see  § 7.3.5 ). The two notions coincide in this case: any

collineation with a center is projective linear [ BR1 , Thm. 3.6.1].

Remark 7.55. The center of a central projective transformation 𝑓 may or may not lie on the

axis: 𝑓 is called an elation if it does and a homology otherwise.

If P is (embedded as) a hyperplane in an another projective space P′
, then central projec-

tive transformations of P admit the further classical characterization:

Theorem 7.56. Let P be a hyperplane in a projective space P′. A map 𝑓 ≠ id : P → P is a
central projective transformation if and only if 𝑓 = ℎ ◦𝑔 is the composition of two perspectivities
𝑔 : P → Q and ℎ : Q → P .

Proof. The composition 𝑓 = ℎ ◦ 𝑔 of two perspectivities P → Q → P fixes P ∩Q, which is

a hyperplane of P . This shows that 𝑓 is central by  Theorem 7.51 .

Conversely, let 𝑓 : P → P be a central projective map with center 𝐶 and axis H. Let

Q ≠ P be another hyperplane containing H and take any perspectivity 𝑔 : P → Q. Let

𝐶′ = 𝑔(𝐶). Let 𝐷 be any point on the line 𝐶𝐶′
distinct from 𝐶 and 𝐶′

, and let ℎ : Q → P be

the perspectivity with center 𝐷 . Then ℎ ◦ 𝑔 is a central projective transformation of P with

center 𝐶 and axisH. Central projective transformations with a given center and axis form a

one-parameter family, see  Exercise 7.7 . Consequently, while ℎ ◦ 𝑔 and 𝑓 are not necessarily
equal on the nose, 𝐷 can be adjusted on the line𝐶𝐶′

so that ℎ ◦𝑔 and 𝑓 coincide. A few more

explanations are needed to make this argument rigorous but we spare the details. �

The next result is sometimes known as the third fundamental theorem of projective
geometry:

Theorem 7.57. Let P = P(𝑉 ) be a projective space. Any projective transformation 𝑓 : P → P
is a finite product of central projective transformations.

Proof. Let 𝐹 ∈ 𝐺𝐿(𝑉 ) be a linear lift of 𝑓 . Choose a basis of 𝑉 so that 𝐹 is represented by a

matrix𝑀 ∈ GL(𝑛 + 1,K). It is a standard theorem of linear algebra that any invertible matrix

is a finite product of elementary matrices. By definition, an elementary matrix is either:

• A transvection matrix (also called shear matrix), i.e. a matrix obtained from the

identity matrix by replacing a 0 entry by some 𝜆 ∈ K×
.

• A dilation matrix, i.e. a matrix obtained from the identity matrix by replacing a 1

entry by some 𝜆 ≠ 1 ∈ K×
.

• A transposition matrix, i.e. a matrix obtained from the identity matrix by switching

two rows.

(Even if you are not aware of this theorem, you apply it constructively every time you solve

a linear system!)

It is easy to see that all elementary matrices have a +1-eigenspace of codimension 1, in

other words they fix a hyperplane. It follows that the corresponding projective transforma-

tions have an axis, therefore are central by  Theorem 7.51 . �
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In view of  Theorem 7.56 , if P is embedded as a hyperplane in another projective space,

we further obtain:

Corollary 7.58. Any projective transformation of P is a finite product of perspectivities.

Remark 7.59. Traditionally, a projectivity is defined as a finite product of perspectivities. The

previous result says that projectivity is a perfect synonym of projective transformation.

7.3.5 Collineations

By definition, a collineation is a bijective map that preserves alignment of points:

Definition 7.60. Let P,P′
be projective spaces. A map 𝑓 : P → P′

is called a collineation
if 𝑓 is bijective and 𝑓 (ℓ) is a line whenever ℓ is a line.

Remark 7.61. Collineations are well-suited to the synthetic (or axiomatic) approach to projec-

tive geometry: the definition above immediately makes sense, whereas defining projective

linear maps is difficult without referring to a vector space.

Let us focus on P′ = P and denote P = P(𝑉 ). Clearly, any projective transformation of

P is a collineation: this is an immediate consequence of  Proposition 7.36 . The converse is not

true, as show the following counter-examples:

• If dimP = 1, any bijective map 𝑓 : P → P is a collineation.

• Let𝑉 be a C-vector space and assume 𝐹 : 𝑉 → 𝑉 is antilinear: 𝐹 (𝑣 +𝑤) = 𝐹 (𝑣) + 𝐹 (𝑤)
and 𝐹 (𝜆𝑣) = ¯𝜆𝐹 (𝑣) for all 𝜆 ∈ C, 𝑣,𝑤 ∈ 𝑉 . (Equivalently, 𝐹 is the composition of a

linear map with complex conjugation.) Then 𝑓 = [𝐹 ] preserves alignment.

Remark 7.62. The second example may be generalized for a projective space P = P(𝑉 ) over
any field: Assume 𝐹 : 𝑉 → 𝑉 satisfies 𝐹 (𝑣 +𝑤) = 𝐹 (𝑣) + 𝐹 (𝑤) and 𝐹 (𝜆𝑣) = 𝜎 (𝜆)𝐹 (𝑣) for all
𝜆 ∈ C and 𝑣,𝑤 ∈ 𝑉 , where 𝜎 : K → K is a nontrivial field automorphism. Such a map 𝐹 is

called semilinear, and its projectivization 𝑓 = [𝐹 ] : P → P is called projective semilinear.

The next theorem, known as the (second) fundamental theorem of real projective geometry,
guarantees that there are no other counter-examples:

Theorem 7.63. Let P be a projective space of dimension > 1. A bijective map 𝑓 : P → P is a
collineation if and only if it is projective semilinear.

As can be expected, the proof of  Theorem 7.63 is not trivial. The curious readers can read

it in the excellent [ BR1 ], although it is far from necessary as far as this book is concerned.

Corollary 7.64. Let P be a real projective space of dimension > 1. In this setting, the terms
“collineation” and “projective transformation” are perfect synonyms.

Proof. Recall or prove as an exercise thatK = R has no nontrivial field automorphisms. (Hint:

prove that a field automorphism 𝜎 is the identity on Q and is increasing.) Conclude. �
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Remark 7.65.  Theorem 7.63 implies that the group of collineations of P = P(𝑉 ) is isomorphic

to the projective semilinear group PΓL(𝑉 ), i.e. the projective group of the group ΓL(𝑉 )
of semilinear automorphisms of 𝑉 . Those of you who like algebra will promptly agree that

ΓL(𝑉 ) is a split extension of GL(𝑉 ) by the group of field automorphisms of K (i.e. the Galois

group Gal(K/𝑘) where 𝑘 is the prime subfield of K), although this extension is not canonical

(for K = C, it amounts to the choice of a real structure on 𝑉 ).

7.4 The projective line

Let us take a closer look at the 1-dimensional case: let P be a projective line, in other words

P = P(𝑉 ) where 𝑉 is a 2-dimensional vector space over a field K.

7.4.1 Coordinates

Let us review  § 7.2 in the case of the projective line P = P(𝑉 ).
Choosing a basis of 𝑉 amounts to choosing an isomorphism 𝑉 ≈ K2

, which induces an

identification P ≈ KP1. A point of P is represented by homogeneous coordinates [𝑋 : 𝑌 ],
where 𝑋 and 𝑌 are elements of K that are not simultaneously 0.

Choose the “hyperplane at infinity” 𝑌 = 0: it contains a single point [1: 0], which we

denote ∞. Following  § 7.2.2 , we get an affine chart 𝜑 = 𝑧 : KP1 −{∞} → K defined by

[𝑋 : 𝑌 ] ↦→ 𝑋
𝑌
. We call this the standard affine chart (or standard affine coordinate) on

KP1. This allows us to identify the projective line KP1 with the extended line ˆK B K∪ {∞}.
In homogeneous coordinates, this identification is given by [𝑋 : 𝑌 ] ↦→ 𝑧 = 𝑋

𝑌
, with the

convention that that
𝑋
0
= ∞ for 𝑋 ≠ 0. Let us record this:

Proposition 7.66. The standard affine chart [𝑋 : 𝑌 ] ↦→ 𝑧 = 𝑋
𝑌
, extended by 1

0
= ∞, induces an

identification KP1 ≈ ˆK between the projective line KP1 and the extended line ˆK = K ∪ {∞}.

When K = R or C, the extended line ˆK can be given the topology of the one-point com-

pactification of K, and it is an elementary exercise of topology to show that the identification

KP1 ≈ ˆK is a homeomorphism. For K = R, the extended line
ˆR is a topological circle. For

K = C, the extended line ˆC is a topological 2-sphere. By the discussion of  § 7.2.2 , CP1 ≈ ˆC is a

complex-analytic manifold, known as the Riemann sphere. The identification CP1 ≈ ˆC ≈ 𝑆2
and its relation to the Hopf fibration is further discussed in  Exercise 7.5 .

By definition, a projective frame of a projective line consists of 3 distinct points. For

P = KP1, the standard projective frame is the triple of points [1: 0], [0: 1], [1: 1]. In the

standard affine coordinate 𝑧, this is the triple of points∞, 0, 1. Let us put this on the record:

Proposition 7.67. The standard projective frame of P = KP1, in the standard affine chart
𝑧 = 𝑋

𝑌
, is the triple of points (∞, 0, 1).
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7.4.2 Projective transformations

Assume P = KP1. Following  § 7.3 , a projective transformation 𝑓 : P → P coincides with an

element of PGL(2,K). In other words, it is given by a matrix𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
in GL(2,K), unique

up to scalar multiplication.

In homogeneous coordinates, 𝑓 is given by 𝑓 ( [𝑋 : 𝑌 ]) = [𝑎𝑋 + 𝑏𝑌 : 𝑐𝑋 + 𝑑𝑌 ]. In the

standard affine chart 𝑧 described above, this is rewritten:

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 . (7.1)

Note that we could have defined a map 𝑓 from the extended line
ˆK to itself by the expression

( 7.1 ) above, without any knowledge of projective transformations. Such maps are called

linear fractional. We have thus established that:

Proposition 7.68. Under the identification KP1 ≈ ˆK1 provided by the standard affine chart,
projective transformations of KP1 correspond to fractional linear transformations of ˆK.

Remark 7.69. For any𝑀 ∈ GL(2,K), denote 𝑓𝑀 the fractional linear transformation as above.

It is an elementary exercise, which does not require knowledge of projective spaces, to check

that𝑀 ↦→ 𝑓𝑀 is a group homomorphism. However, the “deep” reason is  Proposition 7.68 .

Since a projective frame of KP1 is a triple of 3 distinct points,  Theorem 7.39 says that for

any triples of distinct points (𝑝1, 𝑝2, 𝑝3) and (𝑞1, 𝑞2, 𝑞3) in KP1, there is a unique projective
transformation such that 𝑓 (𝑝 𝑗 ) = 𝑞 𝑗 . There is a special terminology for this property:

Theorem 7.70. The action of PGL(2,K) on KP1 is simply 3-transitive.

Remark 7.71. It is worth noting once again that while  Theorem 7.70 can be checked by direct

computation, we proved it more elegantly with projective geometry.

7.4.3 Cross-ratios

Let P be a projective line and let 𝑎, 𝑏, 𝑐 , 𝑑 be four distinct points on P . By  Theorem 7.39 ,

there exists a unique projective linear map 𝑓 : P → KP1 ≈ ˆK which sends the triple (𝑎, 𝑏, 𝑐)
to the standard projective frame (∞, 0, 1).

Definition 7.72. The cross-ratio of four distinct points 𝑎, 𝑏, 𝑐, 𝑑 on a projective line P is

the “number” [𝑎, 𝑏, 𝑐, 𝑑] ∈ ˆK equal to the image of 𝑑 by the unique projective linear map

P → KP1 ≈ ˆK which maps (𝑎, 𝑏, 𝑐) to (∞, 0, 1).

Remark 7.73. When P = KP1, an equivalent definition is that [𝑎, 𝑏, 𝑐, 𝑑] ∈ KP1 is the point
whose homogeneous coordinates relative to the standard projective frame (∞, 0, 1) are equal
to the homogeneous coordinates of 𝑑 relative to the projective frame (𝑎, 𝑏, 𝑐).
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Proposition 7.74. Under the identification KP1 ≈ ˆK given by the standard affine chart, the
cross-ratio of four distinct points is given by:

[𝑧1, 𝑧2, 𝑧3, 𝑧4] =
(𝑧3 − 𝑧1) (𝑧4 − 𝑧2)
(𝑧3 − 𝑧2) (𝑧4 − 𝑧1)

.

Proof. It is easy to prove the formula by guessing the right fractional linear transformation: see

 Exercise 7.10 . However, let us be stubborn andwrite a “projective” proof based on  Remark 7.73 .

Denote 𝑎, 𝑏, 𝑐 , 𝑑 the points of KP1 corresponding to 𝑧1, 𝑧2, 𝑧3, 𝑧4, so that if we have

homogeneous coordinates 𝑎 = [𝑎1 : 𝑎2], etc, then 𝑧1 = 𝑎1
𝑎2
, etc.

In order to work in the frame (𝑎, 𝑏, 𝑐), we remember that up to a multiplicative scalar,

there exists a unique choice of 𝜆1, 𝜆2, 𝜆3 such that 𝜆1(𝑎1, 𝑎2) + 𝜆2(𝑏1, 𝑏2) = 𝜆3(𝑐1, 𝑐2). We can

solve this for 𝜆1 and 𝜆2, this is a 2 × 2 linear system which admits the unique solution

𝜆1 =
𝑐1𝑏2 − 𝑐2𝑏1
𝑎1𝑏2 − 𝑎2𝑏1

𝜆3 𝜆2 =
𝑎1𝑐2 − 𝑎2𝑐1
𝑎1𝑏2 − 𝑎2𝑏1

𝜆3 . (7.2)

Call 𝑒1 = 𝜆1(𝑎1, 𝑎2) and 𝑒2 = 𝜆2(𝑏1, 𝑏2). By definition, 𝑑 has homogeneous coordinates

[𝑘1 : 𝑘2] relative to the frame (𝑎, 𝑏, 𝑐) means that

𝜆(𝑑1, 𝑑2) = 𝑘1𝑒1 + 𝑘2𝑒2 (7.3)

for some scalar 𝜆, which can be chosen equal to 1 by scaling (𝑘1, 𝑘2). Again, ( 7.3 ) can be

solved for 𝑘1 and 𝑘2:

𝑘1 =
𝑑1𝑏2 − 𝑑2𝑏1
𝑎1𝑏2 − 𝑎2𝑏1

𝜆3

𝜆1
𝑘2 =

𝑎1𝑑2 − 𝑎2𝑑1
𝑎1𝑏2 − 𝑏1𝑎2

𝜆3

𝜆2
. (7.4)

 Remark 7.73 says that [𝑧1, 𝑧2, 𝑧3, 𝑧4] = 𝑘1
𝑘2
. With ( 7.4 ) and ( 7.2 ) we find

[𝑧1, 𝑧2, 𝑧3, 𝑧4] =
𝑑1𝑏2 − 𝑑2𝑏1
𝑎1𝑑2 − 𝑎2𝑑1

𝜆2

𝜆1
=

(𝑑1𝑏2 − 𝑑2𝑏1) (𝑎1𝑐2 − 𝑎2𝑐1)
(𝑎1𝑑2 − 𝑎2𝑑1) (𝑐1𝑏2 − 𝑐2𝑏1)

.

Dividing the numerator and denominator by 𝑎2𝑏2𝑐2𝑑2 yields the result. �

A fundamental property of cross-ratios is their invariance under projective maps:

Theorem 7.75. Let P be a projective line. For any four distinct points 𝑎, 𝑏, 𝑐, 𝑑 ∈ P and for any
projective map 𝑓 : P → P′,

[𝑓 (𝑎), 𝑓 (𝑏), 𝑓 (𝑐), 𝑓 (𝑑)] = [𝑎, 𝑏, 𝑐, 𝑑] .

Proof. We can safely assume that P′
is a projective line and 𝑓 is bijective: just put P′ = 𝑓 (P).

Let 𝑓0 : P → KP1 be the unique projective map that sends (𝑎, 𝑏, 𝑐) to (∞, 0, 1). By definition

of the cross-ratio, [𝑎, 𝑏, 𝑐, 𝑑] = 𝑓0(𝑑). Define 𝑓1 : P′ → KP1 by 𝑓1 = 𝑓0◦ 𝑓 −1 and observe that 𝑓1
sends (𝑓 (𝑎), 𝑓 (𝑏), 𝑓 (𝑐)) to (∞, 0, 1). By definition of the cross-ratio, [𝑓 (𝑎), 𝑓 (𝑏), 𝑓 (𝑐), 𝑓 (𝑑)] =
𝑓1(𝑓 (𝑑)). Since 𝑓1(𝑓 (𝑑)) = 𝑓0(𝑑) = [𝑎, 𝑏, 𝑐, 𝑑], we are done. �
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Remark 7.76. Appreciate the elegance of the proof of  Theorem 7.75 compared to a proof by

direct computation.

Remark 7.77.  Theorem 7.75 implies that the formula for the cross-ratio ( Proposition 7.74 )

holds on any projective line equipped with any affine chart.

Note that in any projective space, the cross-ratio of four distinct collinear points is well-

defined. (Also, the cross-ratio of any four concurrent hyperplanes, by projective duality.) The

next theorem is an immediate consequence of  Theorem 7.75 :

Theorem 7.78. Projective linear maps preserve the cross-ratios of 4-tuples of collinear points.

Remark 7.79. The converse of  Theorem 7.78 is true: see  Exercise 7.12 .

Example 7.80. In  Figure 7.2 , the cross-ratios [𝐴, 𝐵,𝐶, 𝐷] and [𝐴′, 𝐵′,𝐶′, 𝐷′] must be equal,

since the two 4-tuples differ by a perspectivity, which is a projective linear by  Proposition 7.50 .

Example 7.81.  Exercise 7.11 features an application of  Theorem 7.78 to metrology borrowed

from Wikipedia [ Wik1 ]: using cross-ratios to measure real-world dimensions from a photo.

7.5 Quadrics

In this section, we define projective and affine quadrics and discuss some basic properties. This

introduction to quadrics is far from exhaustive! For a more thorough treatment, I recommend

Samuel’s book [ Sam1 ;  Sam2 ] or Berger’s [ Ber1 ;  Ber2 ], or the more approachable book of

Audin [ Aud1 ;  Aud2 ]. It is useful to first review quadratic forms in  § 3.1 .

7.5.1 Homogeneous functions

Let 𝑉 be a finite-dimensional vector space over a field K.

A function 𝑓 : 𝑉 → K is called polynomial if, for some (equivalently any) linear coordi-

nate system (𝑥1, . . . , 𝑥𝑚) (where𝑚 = dim𝑉 ), 𝑓 coincides with a polynomial of𝑚 variables

with coefficients in K. As an example, 𝑓 (𝑥,𝑦, 𝑧) = 𝑥2𝑦𝑧3 − 2𝑥𝑧4 is a polynomial function of

total degree 6 on 𝑉 = K3
.

A polynomial of several variables is called homogeneous of degree 𝑑 if it is a sum of

monomials, each of degree 𝑑 . For instance, 𝑃 (𝑋,𝑌 ) = 𝑋 2𝑌 3 − 𝑋𝑌 4 + 2𝑌 5
is homogeneous of

degree 5. This notion can be generalized to arbitrary functions on a vector space:

Definition 7.82. A function 𝑓 : 𝑉 → K is calledhomogeneous of degree𝑑 if 𝑓 (𝜆𝑣) = 𝜆𝑑 𝑓 (𝑣)
for all 𝜆 ∈ K and 𝑣 ∈ 𝑉 .

When 𝑓 is a polynomial function on 𝑉 and K is infinite, it is an elementary exercise of

algebra to check that the two notions of homogeneity coincide.
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Recall that a linear form is a linear map 𝑓 : 𝑉 → K, and that we call quadratic form a

function that can be written 𝑞(𝑣) = 𝐵(𝑣, 𝑣) where 𝐵 : 𝑉 ×𝑉 → K is a symmetric bilinear form.

𝐵 is uniquely determined by𝑞 by the polarization formula𝐵(𝑢, 𝑣) = 1

2
(𝑞(𝑢 + 𝑣) − 𝑞(𝑢) − 𝑞(𝑣))

(unless K has characteristic 2). Review  § 3.1 for more details on quadratic forms.

Proposition 7.83. Let 𝑉 be a finite-dimensional vector space over K (with charK ≠ 2).

𝑓 polynomial + homogeneous of degree 1 ⇔ 𝑓 is a linear form
𝑓 polynomial + homogeneous of degree 2 ⇔ 𝑓 is a quadratic form

Proof. This is an elementary exercise of linear algebra (do it!). �

Remark 7.84.  Proposition 7.83 admits a natural generalization for any degree: consider a

symmetric multilinear form 𝐹 : 𝑉 × · · · × 𝑉 → K and let 𝑓 (𝑣) = 𝐹 (𝑣, . . . , 𝑣). Then 𝑓 is

polynomial and homogeneous of degree 𝑑 . Conversely, any polynomial and homogeneous

function is of this form. As for polarization: 𝐹 (𝑣1, . . . , 𝑣𝑑) can be recovered as the coefficient

of 𝑡1 . . . 𝑡𝑑 in the polynomial 𝑝 (𝑡1, . . . , 𝑡𝑑) B 𝑓 (𝑡1𝑣1 + . . . 𝑡𝑑𝑣𝑑).
Remark 7.85. Not all homogeneous functions are polynomial: for instance, consider the

functions 𝑓 (𝑥,𝑦, 𝑧) = (𝑥3 + 𝑦3 + 𝑧3) 1

3 on R3 and 𝑔(𝑧,𝑤) = 𝑧𝑝𝑤𝑞𝑧�̄�
|𝑧 |2+|𝑤 |2 on C

2
.

Homogeneous functions are relevant to projective geometry in the following way. A

homogeneous function 𝑓 : 𝑉 → K is not constant on vector lines unless it has degree 1,

so it does not induce a function on P(𝑉 ). That being said, the zero level set Z(𝑓 ) B {𝑣 ∈
𝑉 : 𝑓 (𝑣) = 0} is invariant by scalar multiplication: it is clear that 𝑓 (𝜆𝑣) = 𝜆𝑑 𝑓 (𝑣) = 0 if and

only if 𝑓 (𝑣) = 0. In other words, Z(𝑓 ) is a union of vector lines; such a set is called a (linear)
cone. The projectivization of any such cone is a well-defined subset of P(𝑉 ). In summary:

Definition 7.86. If 𝑓 : 𝑉 → K is a homogeneous function, the set P({𝑓 = 0}) is well-defined
subset of P(𝑉 ), called projectivized cone of 𝑓 .

Remark 7.87. In the language of algebraic geometry, the projectivized cone of any homoge-

neous polynomial is a projective variety. More generally, a projective variety is the projec-

tivization of the common zero set of a finite family of homogeneous polynomials.

Example 7.88. On𝑉 = R3, the function 𝑞(𝑥,𝑦, 𝑧) = 𝑥2 +𝑦2 −𝑧2 is a homogeneous polynomial

of degree 2, i.e. a quadratic form. Its projectivized cone C is the subset of RP2 with equation

𝑥2 +𝑦2 − 𝑧2 = 0 in homogeneous coordinates. In the standard affine chart 𝑧 = 1, the equation

of C becomes 𝑥2 + 𝑦2 = 1: it is the unit circle in this affine plane.

Any polynomial can be homogenized by adding an extra dimension:

Lemma 7.89. AssumeK is infinite. For any 𝑃 ∈ K[𝑋1, . . . , 𝑋𝑛] of degree𝑑 , there exists a unique
homogeneous 𝑃 ∈ K[𝑋1, . . . , 𝑋𝑛+1] of degree 𝑑 such that 𝑃 (𝑋1, . . . , 𝑋𝑛) = 𝑃 (𝑋1, . . . , 𝑋𝑛, 1):

𝑃 (𝑋1, . . . , 𝑋𝑛, 𝑋𝑛+1) = 𝑋𝑑𝑛+1𝑃
(
𝑋1

𝑋𝑛+1
, . . . ,

𝑋𝑛

𝑋𝑛+1

)
. (7.5)
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Proof. The expression 𝑋𝑑𝑛+1𝑃
(
𝑋1

𝑋𝑛+1
, . . . ,

𝑋𝑛

𝑋𝑛+1

)
is a priori a rational fraction, but it is actually a

polynomial because 𝑃 has total degree 𝑑 , so that the denominator is cancelled by 𝑋𝑑𝑛+1. Thus
𝑃 is a well-defined polynomial, and it is quickly checked that it has the required qualities.

Uniqueness of 𝑃 is clear “for 𝑋𝑛+1 ≠ 0”: the identity ( 7.5 ), seen as an identity between

functions on K𝑛+1, must hold for 𝑥𝑛+1 ≠ 0 by homogeneity of 𝑃 . In order to conclude “by

continuity”, we need a slightly subtle algebraic argument: if two polynomials coincide on

the complement of {𝑥𝑛+1 = 0}, then they must be equal. This is true if K is infinite; it is a

generalization (that can be proven by induction) of the fact that a polynomial of one variable

is determined by its values on any infinite set. In the language of algebraic geometry: any

nonempty Zariski open set of K𝑛+1, such as {𝑥𝑛+1 ≠ 0}, is dense in the Zariski topology. �

Example 7.90. The recipe to homogenize any polynomial (function) is clear in practice:

𝑥 − 𝑦3 → 𝑥𝑧2 − 𝑦3

𝑎𝑥2 + 𝑏𝑥 + 𝑐 → 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2

𝑥3𝑦7 − 𝑧4 + 1 → 𝑥3𝑦7 − 𝑧4𝑡6 + 𝑡10

 Lemma 7.89 can be generalized as follows:

Theorem 7.91. Let 𝐻 be an affine space and P = P(𝑉 ) its projective completion. Any poly-
nomial function 𝑓 : 𝐻 → K admits a unique homogeneous extension ˆ𝑓 : 𝑉 → K of the same
degree. (Here the base field K is assumed infinite.)

By definition, the function
ˆ𝑓 in  Theorem 7.91 is the homogenization of 𝑓 .

Proof. The proof is a straightforward extension of  Lemma 7.89 by choosing an appropriate

coordinate system. Let ®𝐻 denote the vector space underlying 𝐻 . The projective completion

of 𝐻 can be constructed as P = P(𝑉 ) where 𝑉 = ®𝐻 × K, and 𝐻 is identified as ®𝐻 × {1}: see
 § 7.1.5 for details. As usual, choose a coordinate system (𝑥1, . . . , 𝑥𝑛+1) on 𝑉 such that 𝐻 has

equation 𝑥𝑛+1 = 1: this is achieved by choosing any basis (𝑒1, . . . , 𝑒𝑛) of ®𝐻 , and completing

it with 𝑒𝑛+1 = (0, . . . , 0, 1). Now, a polynomial function 𝑓 of degree 𝑑 on 𝐻 is given by a

polynomial 𝑃 ∈ K[𝑋1, . . . , 𝑋𝑛] in our coordinate system: for any 𝑥 ∈ 𝐻 with coordinates

(𝑥1, . . . , 𝑥𝑛, 1) in 𝑉 , we have 𝑓 (𝑥) = 𝑃 (𝑥1, . . . , 𝑥𝑛). Denote by 𝑃 the homogenization of 𝑃 as

in ( 7.5 ). Then
ˆ𝑓 (𝑥) B 𝑃 (𝑥1, . . . , 𝑥𝑛+1) is a homogeneous extension of 𝑓 . Uniqueness quickly

follows from the uniqueness of  Lemma 7.89 . �

Let 𝐻 be an affine space and denote P its projective completion. It follows from our

discussion that if 𝑆 ⊆ 𝐻 is the zero set of some polynomial function 𝑓 : 𝐻 → K, then 𝑆

admits a natural projective completion 𝑆 ⊆ P , defined as the projectivization of the zero set

of the homogenization
ˆ𝑓 of 𝑓 .

Example 7.92. The set 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 is a cubic in K2
called elliptic curve. Its projective

completion is the set in KP2 defined by 𝑦2𝑧 = 𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3 in homogeneous coordinates.
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7.5.2 Projective quadrics

Let P = P(𝑉 ) be a projective space. We have seen that given a homogeneous function

𝑓 : 𝑉 → K, its projectivized cone C B P({𝑓 = 0}) ⊆ P is well-defined. As a special case,

when 𝑓 = 𝑞 is a homogeneous polynomial of degree 2 i.e. a quadratic form ( Proposition 7.83 ),

C is called a quadric. If dimP = 2, the term conic is preferred. Let us record these definitions:

Definition 7.93. Let P = P(𝑉 ) be a projective space over a field K (with charK ≠ 2). Let

𝑞 : 𝑉 → K be a quadratic form, and let C B P({𝑓 = 0}) denote its projectivized cone.
• C is called a (projective) conic if dimP = 2.

• C is called a (projective) quadric if dimP > 3 (dimP = 1, 2 can also be tolerated).

We call the quadric C nondegenerate if the symmetric bilinear form 𝐵 associated to 𝑞 is

nondegenerate, and proper if it is nondegenerate and nonempty.

The quadratic form 𝑞 associated to a quadric C is not unique: any scalar multiple 𝜆𝑞

(with 𝜆 ∈ K×
) defines the same quadric. Unfortunately, this is not the only reason for non-

uniqueness: for instance, the quadratic forms 𝑞1(𝑥,𝑦, 𝑧) = 𝑥2 + 𝑦2 and 𝑞2(𝑥,𝑦, 𝑧) = 𝑥2 + 2𝑦2

define the same conic C = {[0 : 0 : 1]} ⊆ RP2. For this reason, “serious” books define a
quadric by its equation rather than as a subset of P—this is a standard approach in algebraic

geometry. Thankfully, the situation is not so terrible over K = R or C:

Theorem 7.94. Let𝑞1, 𝑞2 : 𝑉 → K be two quadratic forms having the same zero set, i.e. defining
the same quadric C ⊆ P(𝑉 ).

• If K = C, then 𝑞2 = 𝜆𝑞1 for some 𝜆 ∈ K×.
• If K = R and C is proper, the same conclusion holds.

(More generally, the conclusion holds if K is algebraically closed or if C has a simple point.)

Proof. For K = C or any algebraically closed field, the theorem can be seen as a simple ap-

plication of Hilbert’s Nullstellensatz, a fundamental theorem of algebraic geometry, although

this is a case of using a sledge hammer to kill a fly 

3
 . A more pedestrian proof consists in first

proving the theorem for a projective line, and second the general case by restricting to any

line. I leave out the details, which can be found in Berger [ Ber2 , Thm. 14.1.6.2].

An elementary algebraic proof of the theorem when C has a simple point can be found

in Samuel’s book (Thm. 46 in [ Sam1 ] or [ Sam2 ]). I suggest the following alternative proof

whenK = R and 𝑞 has mixed signature 

4
 , which is a weaker assumption than C proper (why?).

Let 𝑥 ∈ 𝑉 . If 𝑥 is isotropic for 𝑞1 or 𝑞2, there is nothing to show. Otherwise, there exists

𝑦 ∈ 𝑉 such that 𝑞 has signature (1, 1) in restriction to the 2-plane spanned by 𝑥 and 𝑦. Thus

it is (nearly) enough to prove the theorem on any such 2-plane, which is a straightforward

exercise of algebra. �

3
But according to US Marine Corps Major I. L. Holdridge: “Sometimes killing a fly with a sledge hammer is

entirely appropriate. It doesn’t make the fly any more dead, but the rest of the flies sure sit up and take notice”.

4
I guess this is more or less the proof that Berger had in mind for Exercise 14.8.1 in [ Ber2 ].
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Our knowledge of symmetric bilinear forms will prove useful to study projective quadrics.

For instance, when K = R, Sylvester’s law of inertia ( Theorem 3.19 ) yields:

Theorem 7.95. Let C ⊆ P = P(𝑉 ) be a quadric in a real projective space. There exists a
unique unordered pair of nonnegative integers 𝑝, 𝑞 with 𝑝 + 𝑞 6 dim𝑉 such that, in suitable
homogeneous coordinates, C is given by the equation

𝑥2
1
+ · · · + 𝑥2𝑝 − 𝑥2𝑝+1 − · · · − 𝑥2𝑝+𝑞 = 0 . (7.6)

When K = C, quadratic forms on𝑉 are classified by their rank ( Corollary 3.16 ), therefore

we obtain:

Theorem 7.96. Let C ⊆ P = P(𝑉 ) be a quadric in a complex projective space. There exists a
unique integer 𝑝 6 dim𝑉 such that, in suitable homogeneous coordinates, C is given by

𝑥2
1
+ · · · + 𝑥2𝑝 = 0 . (7.7)

We call ( 7.6 ) [resp. ( 7.7 )] the normal form of the quadric C. Note that C is nondegenerate if

and only if 𝑝 + 𝑞 = dim𝑉 [resp. 𝑝 = dim𝑉 ].

Remark 7.97.  Theorem 7.95 [resp.  Theorem 7.96 ] can be described as a classification theorem

because it implies that two quadrics differ by a projective transformation if and only if they

have same signature [resp. rank]. See  Exercise 7.13 .

When K = R or C, we have seen that P is an smooth (analytic) manifold, and it is

legitimate to wonder whether quadrics are submanifolds of P . In general, quadrics can have

singularities: for instance, the quadric in RP2 defined by 𝑞(𝑥,𝑦, 𝑧) = 𝑥2 − 𝑦2 is the union of

two intersecting lines–this is not a smooth manifold of R2. That being said, proper quadrics

are always nice hypersurfaces:

Theorem 7.98. Let P = P(𝑉 ) be a real or complex projective space. Any proper quadric in P
is an analytic hypersurface, i.e. an analytic submanifold of codimension 1.

Proof. Let 𝑞 : 𝑉 → K be the quadratic form defining C (unique up to scalar by  Theorem 7.94 )

and 𝐵 the associated symmetric bilinear form. The function 𝑞 : 𝑉 → K is analytic (because

it is polynomial) and its differential at any point 𝑣0 ∈ 𝑉 is the linear form 𝐵(𝑣0, ·) : 𝑉 → K.
Since 𝐵 is nondegenerate, 𝐵(𝑣0, ·) is not the zero linear form unless 𝑣0 = 0. Hence 𝑞 is a

submersion in restriction to 𝑉 − {0}. By a standard theorem of differential geometry, which

applies both in the real- and complex-analytic categories, it follows that 𝑍 B 𝑞−1(0) − {0}
is an analytic hypersurface in𝑉 . Another standard theorem guarantees that since the action

of K∗
on 𝑉 − {0} is analytic, free, and proper 

5
 , and preserves the hypersurface 𝑍 ⊆ 𝑉 , it

descends to an analytic hypersurface C ⊆ P when taking the quotient. �

5
We did not prove that the action of K∗

on𝑉 − {0} is proper, but it is a straightforward exercise of topology
using the characterization for a locally compact group𝐺 acting on a Hausdorff space 𝑋 : for all 𝑥,𝑦 ∈ 𝑋 , there
exists neighborhoods 𝑉𝑥 ,𝑉𝑦 such that {𝑔 ∈ 𝐺 | 𝑔 ·𝑉𝑥 ∩𝑉𝑦 ≠ ∅} is relatively compact [ Bou1 , TG III.31, Prop. 7].
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Remark 7.99. As a by-product of the proof above, we obtain that the linear tangent space to

{𝑞 = 0} at a point 𝑣0 ∈ 𝑉 − {0} is the kernel of the linear form 𝐵(𝑣0, ·). When taking the

projectivization, we obtain the projective hyperplane “tangent” to C. Let us give an example:

consider the conic 𝑥2 + 𝑦2 − 𝑧2 = 0 in RP2. The projective line tangent to C at [𝑥0 : 𝑦0 : 𝑧0] is
the line with equation 𝑥0𝑥 + 𝑦0𝑦 − 𝑧0𝑧 in homogeneous coordinates. In any affine chart, the

image of this line gives the affine tangent space to the conic. For instance, in the affine chart

𝑧 = 1, C is the circle 𝑥2 + 𝑦2 = 1, and the tangent line at (𝑥0, 𝑦0) has equation 𝑥0𝑥 + 𝑦0𝑦 = 1.

7.5.3 Real projective conics and quadrics

Conics

Assume P is a real projective plane (K = R and dimP = 2).  Theorem 7.95 implies that there

are only two normal forms of nondegenerate conics up to sign:

𝑥2 + 𝑦2 + 𝑧2 = 0

𝑥2 + 𝑦2 − 𝑧2 = 0

The first conic is empty. Thus we are left with just one proper conic in normal form: the conic

C with equation 𝑥2 + 𝑦2 − 𝑧2 = 0. Note that this is the projectivized light cone of Minkowski

space R2,1. What does C look like in an affine chart?

• If the line at infinity does not intersect C, then the image of C in the affine chart is

an ellipse. For instance, in the affine chart 𝑧 = 1, the line at infinity 𝑧 = 0 does not

intersect C, and the image of C is the circle 𝑥2 + 𝑦2 = 1.

• If the line at infinity intersects C once, then the image of C is a parabola. For instance,

in the affine chart 𝑧 = 𝑥 + 1, the line at infinity 𝑧 = 𝑥 intersects C at the point [1: 0 : 1],
and the image of C is the parabola 𝑦2 = 1 + 2𝑥 .

• If the line at infinity intersects C twice, the image of C is a hyperbola. For instance, in

the affine chart 𝑦 = 1, the line at infinity 𝑦 = 0 intersects C at the points [1: 0 : 1] and
[1: 0 : − 1], and the image of C is the hyperbola 𝑥2 − 𝑧2 = −1.

We leave it to the conscientious reader to prove carefully check these claims. The so-called

“conic sections” mentioned above are illustrated in  Figure 7.3 .

Quadric surfaces

Now let us increment the dimension: assume P has dimension 3. Proper quadrics in P are

called quadric surfaces (they are smooth surfaces by  Theorem 7.98 ).  Theorem 7.95 implies

that there are only three normal forms up to sign:

𝑥2 + 𝑦2 + 𝑧2 + 𝑡2 = 0

𝑥2 + 𝑦2 + 𝑧2 − 𝑡2 = 0

𝑥2 + 𝑦2 − 𝑧2 − 𝑡2 = 0
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Figure 7.3: The intersection of the cone 𝐶 : 𝑥2 + 𝑦2 − 𝑧2 = 0 with the planes 𝑧 = 1, 𝑧 = 𝑥 + 1,

and 𝑦 = 1 shows the image of the projective conic C = P(𝐶) in these affine charts: it is

alternatively a circle, a parabola, and a hyperbola.

The first quadric is empty. Thus we are left with two proper quadrics in normal form: C1 : 𝑥2+
𝑦2 + 𝑧2 − 𝑡2 = 0 and C2 : 𝑥2 + 𝑦2 − 𝑧2 − 𝑡2 = 0. Note that C1 is the projectivized light cone of

Minkowski space R3,1 (meanwhile C2 is the projectivized cone of R2,2). What do C1 and C2
look like in an affine chart𝐻? This depends on the position of the plane at infinityH = P

( ®𝐻 )
:

• For C1: Depending on whether H intersects C1 in the empty set (e.g. 𝐻 : 𝑡 = 1), in a

single point (e.g. 𝐻 : 𝑡 = 𝑧 + 1), or in a proper conic (e.g. 𝐻 : 𝑧 = 1), the image of C1 in 𝐻
is either an ellipsoid (e.g. 𝑥2+𝑦2+𝑧2 = 1), an elliptic paraboloid (e.g. 𝑥2+𝑦2−2𝑧 = 1),

or a hyperboloid of two sheets (e.g. 𝑥2 + 𝑦2 − 𝑡2 = −1). See  Figure 7.4 .

• For C2: Depending on whether H intersects C2 in two lines (e.g. 𝐻 : 𝑡 = 𝑦 + 1) or in a

proper conic (e.g.𝐻 : 𝑡 = 1), the image of C1 in𝐻 is either a hyperbolic paraboloid (e.g.

𝑥2 − 𝑧2 − 2𝑦 = 1) or a hyperboloid of one sheet (e.g. 𝑥2 + 𝑦2 − 𝑧2 = 1). See  Figure 7.5 .

Remark 7.100. One can check that the Gaussian curvature of C1 is everywhere positive in all

three affine charts, while that of C2 is everywhere negative in both affine charts. This is not

a coincidence: the sign of the Gaussian curvature is a projective invariant. See  Exercise 7.17 .

7.5.4 Projective completion of affine quadrics

Let 𝐻 be an affine space over an infinite field K.

Definition 7.101. A (affine) quadric in 𝐻 is a subset 𝐶 ⊆ 𝐻 that is the zero set of a

polynomial function 𝑓 : 𝐻 → K of degree 2. If dim𝐻 = 2, a quadric is also called a conic.

Example 7.102. The equation 𝑥2 − 3𝑦2 + 2𝑥𝑦 − 6𝑥 + 𝑦 − 7 = 0 defines a conic in R2 (or in any

affine plane equipped with an affine frame).

Example 7.103. Let 𝑎, 𝑏, 𝑐 > 0. The quadric
𝑥2

𝑎2
+ 𝑦2

𝑏2
+ 𝑧2

𝑐2
= 1 is an ellipsoid in R3.
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Figure 7.4: The ellipsoid 𝑥2 + 𝑦2 + 𝑧2 = 1, the elliptic paraboloid 𝑥2 + 𝑦2 − 2𝑧 = 1, and the

hyperboloid of two sheets 𝑥2 + 𝑦2 − 𝑡2 = −1 are all images of the projective quadric C1 in
different affine charts.

Figure 7.5: The hyperbolic paraboloid 𝑥2 − 𝑧2 − 2𝑦 = 1 and the hyperboloid of one sheet

𝑥2 + 𝑦2 − 𝑧2 = 1 are both images of the projective quadric C2 in different affine charts.

Theorem 7.104. Let P be a projective space. The image of a projective quadric C ⊆ P in any
affine chart 𝐻 ⊆ P is an affine quadric𝐶 ⊆ 𝐻 .

Conversely, let 𝐻 be an affine space and P its projective completion. Any affine quadric
𝐶 ⊆ 𝐻 is uniquely extended as a projective quadric C ⊆ P , called its projective completion.

Proof. The first part of the theorem is the easier: a projective quadric C inP = P(𝑉 ) is given by
the zero set of a homogeneous polynomial 𝑓 : 𝑉 → K of degree 2. Any polynomial function on

𝑉 restricts to a polynomial function of the same degree on 𝐻 (called its dehomogenization):
this is easy to check by choosing a suitable system of coordinates. It follows that the image
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of C in 𝐻 is the zero set of a polynomial function of degree 2. For the converse, we already

did the work: see  Theorem 7.91 and the discussion below the proof. �

An affine quadric is called nondegenerate or proper if its projective completion is.

Example 7.105. The parabola 𝐶 : 𝑦 = 𝑥2 is an affine conic in the Euclidean plane R2. Its

projective completion is the proper conic C : 𝑦𝑧 = 𝑥2 in R𝑃2. Note that C is obtained from𝐶

by adding a single point at infinity: [1: 0 : 0]. On the other hand:

• In an affine chart (e.g. 𝑧 = −𝑦 + 2) where the line at infinity (𝑧 = −𝑦) does not intersect
C, the image of C is an ellipse (𝑥2 + (𝑦 − 1)2 = 1).

• In an affine chart (e.g. 𝑧 = 𝑦 + 2) where the line at infinity (𝑧 = 𝑦) intersects C twice,

the image of C is a hyperbola (𝑥2 − (𝑦 + 1)2 = −1).
This example illustrates that “moving” the line at infinity can change an ellipse into a hyper-

bola, transitioning through a parabola. This phenomenon can be visualized by intersecting a

cone with different planes in R3 : we have seen this (for a different conic) in  Figure 7.3 .

Example 7.106. It is shown in  § 3.3 that pseudo-Euclidean spheres are proper quadrics.

We will study some features of affine and projective conics in the next section, under the

pretext of solving a problem of perspective drawing. In particular, the center and axes of real

affine conics will be discussed in  § 7.6.3 .

7.6 How to draw a wheel in perspective?

In this “bonus section”, which can safely be skipped, we are going to investigate a problem

of perspective geometry: how to draw a wheel? My friend Julien (the same who drew the

cover!) asked me this question, or rather the more precise question posed in  § 7.6.1 . After

thinking about it and finding some answers, I thought that a discussion of this problemwould

be a fitting way to conclude this chapter. It will give us the opportunity to experiment with

affine and projective conics, expanding on the previous section.

7.6.1 The problem

Suppose you want to draw a wheel in perspective—maybe it is an elementary step in drawing

a car. In the real 3-dimensional world, the wheel is a round circle, contained in a vertical plane;

but in perspective this circle becomes an ellipse. How can one “find” and draw this ellipse?

The easiest would be to know the center and the principal axes of the ellipse. We recall a

mathematical definition of these notions in  § 7.6.3 , but they are easy to describe visually: the

principal axes are the two axes of symmetry of the ellipse, and they meet at the center. The

minor axis gives the shortest “diameter” of the ellipse, and the major axis gives the longest.
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If you search for how to draw a wheel in perspective on the internet or in books that

specialize in perspective drawing, you will quickly find images such as  Figure 7.6  

6
 :

Figure 7.6: Wheels and axle

In this picture, the green line is the axis of rotation of the wheel (the axle), orthogonal to

the wheel in the 3-dimensional world; and the two blue lines are supposed to be the principal

axes of the ellipse. This type of picture suggests that the minor axis of the ellipse coincides

with the axis of rotation. Julien wondered if this was rigorously true:

Question 7.107. Does the minor axis of a wheel drawn in perspective always coincide with

the axis of rotation?

According to internet resources or even serious books on perspective drawing, the answer

is yes (see for instance [ Ida ], [ ske ], [ Rob ;  RB ], [ Nor ], [ Dob ]). In particular, this “fact” implies

that the center of the ellipse lies on the axis of rotation, just like the center of the wheel. (Most

sources do not go so far as saying that the two centers are equal, though.)

We are going to see that these facts are actually untrue: in general the minor axis does

not coincide with the axis of rotation (nor is it parallel to it or has same vanishing point). As

a matter of fact, the minor axis does not go through the center of the wheel. However, we

shall prove that the center of the ellipse always lies on the axis of motion (the horizontal line

contained in the wheel plane that goes through the center of the wheel).

6
See e.g.  https://courses.byui.edu/art110_new/art110/week01/minor.html for other examples of

the minor axis apparently coinciding with the orthogonal direction to the circle, or  https://youtu.be/
LtIkcLJ129k for a tutorial video on how to draw wheels on car based on this principle.
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7.6.2 Mathematical setup

Drawing in perspective means projecting the real world, modelled as a 3-dimensional Eu-

clidean space 𝐸, to an affine plane 𝐷 (the drawing plane). Here we are not talking about the
orthogonal projection, but a central projection as in  Remark 7.21 : we choose a point 𝑂 ∈ 𝐸
not in 𝐷 (the eye of the observer), and each point𝑀 ∈ 𝐸 is projected to the unique point𝑀′

defined as the intersection of the line𝑂𝑀 with 𝐷 : see  Figure 7.7 .

Figure 7.7: Perspective projection.

Note that the central projection is not defined on the plane parallel to 𝐷 through 𝑂 ,

although it extends to the projective completion of 𝐸 as a projective linear map defined

everywhere except at 𝑂 . In restriction to any other plane, such as the plane containing the

wheel, the central projection is called a perspectivity. See  § 7.3.4 for details.

A slightly different point of view is to consider that the observer does not truly see the

3-dimensional world 𝐸, but only its projectivization, or its image on the drawing plane 𝐷 .

Indeed, two points that are aligned with the eye cannot be distinguished by the observer. In
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other words: the observer’s representation of the world is the projective space P(𝐸), or its
image in the affine chart 𝐷 . See  § 7.2.2 for details on affine charts.

Consider  Figure 7.8 . According to the first viewpoint, it shows two different conics in

perspectivity: the wheel (in the blue plane) and its projection (in the beige plane). The

problem is: what is the effect of a perspectivity on the axes of a conic? According to the

second viewpoint,  Figure 7.8 shows a single projective conic (the yellow cone), and its image

in two different affine charts. The question becomes: how to find the axes of a projective

conic in an affine chart? Both approaches have their merits: the first is perhaps more natural,

but the second is more simple and elegant.

Figure 7.8: Depending on the point of view, this figure shows either: 1. Two affine conics in

perspectivity, or 2. The image of a projective conic in two different affine charts.
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7.6.3 Center and axes of an affine conic

Center

Consider a conic𝐶 in an affine plane equipped with a frame. By definition,𝐶 is given by an

equation 𝑝 (𝑥,𝑦) = 0, where 𝑝 is a polynomial function of degree 2 in two variables:

𝑝 (𝑥,𝑦) = 𝑎11𝑥2 + 𝑎22𝑦2 + 2𝑎12𝑥𝑦 + 2𝑎13𝑥 + 2𝑎23𝑦 + 𝑎33 .

The polynomial coefficients are named to emphasize that 𝑝 can be written

𝑝 (𝑥,𝑦) =
[
𝑥 𝑦 1

] 
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33



𝑥

𝑦

1


i.e. 𝑝 (𝑥,𝑦) = 𝑋1

T𝐴𝑋1 where 𝑋1 =
[
𝑥 𝑦 1

]
T
and 𝐴 =

[
𝑎𝑖 𝑗

]
is a symmetric matrix. This

expression makes it especially easy to write the homogenization of 𝑝 , which defines the

projective completion C of the conic: 𝑝 (𝑥,𝑦, 𝑧) = 𝑋T𝐴𝑋 where 𝑋 =
[
𝑥 𝑦 𝑧

]
T
. Thus 𝐴

represents the symmetric bilinear form associated to C. In order to define a proper conic, 𝐴

must be invertible and of mixed signature.

Coming back to the affine version, we can write 𝑝 as a sum of homogeneous polynomials

of different degrees:

𝑝 (𝑥,𝑦) = 𝑝2(𝑥,𝑦) + 𝑝1(𝑥,𝑦) + 𝑝0
where 𝑝2(𝑥,𝑦) = 𝑎11𝑥2 +𝑎22𝑦2 + 2𝑎12𝑥𝑦, 𝑝1 = 2𝑎13𝑥 + 2𝑎23𝑦, and 𝑝0 = 𝑎33. By  Proposition 7.83 ,

𝑝2 is a quadratic form and 𝑝1 is a linear form (on R2).

Proposition 7.108. The proper affine conic𝐶 is:
• An ellipse if and only if 𝑝2 is positive or negative definite (signature (2, 0) or (0, 2)).
• A hyperbola if and only if 𝑝2 is indefinite (signature (1, 1)).
• A parabola if and only if 𝑝2 is degenerate (signature (1, 0) or (1, 0)).

Proof. An easy application of Sylvester’s law of inertia shows that, in suitable coordinates,𝐶

is the ellipse 𝑥2 + 𝑦2 = 1 if 𝑝2 is positive or negative definite, the hyperbola 𝑥
2 − 𝑦2 = 1 if 𝑝2

is indefinite, and the hyperbola 𝑥2 − 2𝑦 = 0 if 𝑝2 is degenerate. (Other cases like 𝑥
2 +𝑦2 = −1,

𝑥2 − 𝑦2 = 0, 𝑥2 = 0 are excluded because 𝐶 is assumed proper.) �

The center of the conic is found by applying a translation (𝑥,𝑦) ↦→ (𝑥 − 𝑥0, 𝑦 − 𝑦0) that
gets rid of the linear term. Indeed, if the equation 𝑝2(𝑥,𝑦)+𝑝1(𝑥,𝑦)+𝑝0 = 0 has no linear term

i.e. 𝑝1 = 0, then it is invariant by the central symmetry (𝑥,𝑦) ↦→ (−𝑥,−𝑦). This means that

the origin of the frame (i.e. the point with coordinates (𝑥0, 𝑦0) before applying the translation)
is the center of symmetry of the conic. The center exists (and is unique) if (and only if) 𝑝2 is

nondegenerate, i.e. 𝐶 is an ellipse or a hyperbola:

Proposition 7.109. A proper affine conic admits a center if (and only if) it is not a parabola.
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Proof. Let us write 𝑣 = (𝑥,𝑦). The change of coordinates 𝑣 ↦→ 𝑣 − 𝑐 kills off the linear

term in 𝑝 (𝑣) = 𝑝2(𝑣) + 𝑝1(𝑣) + 𝑝0 provided that 2𝑏 (𝑣, 𝑐) = 𝑝1(𝑣), where 𝑏 is the symmetric

bilinear form associated to 𝑝2. Indeed, write 𝑝2(𝑣 − 𝑐) = 𝑝2(𝑣) − 2𝑏 (𝑣, 𝑐) + 𝑝2(𝑐), etc. If 𝑏 is

nondegenerate, the map 𝑐 ↦→ 𝑏 (·, 𝑐) is an isomorphism between 𝑉 = R2 and 𝑉 ∗
, therefore

there exists a unique 𝑐 ∈ 𝑉 such that 𝑏 (·, 𝑐) = 1

2
𝑝1. �

Axes

Assume that the quadratic form𝑝2 is nondegenerate, i.e. the conic𝐶 is an ellipse or a hyperbola.

By the previous discussion, up to a translation, the equation of𝐶 can be written 𝑝2(𝑥,𝑦) = 1.

Let us still denote 𝑏 the symmetric bilinear form associated to 𝑝2. The spectral theorem

says that 𝑏 is diagonalizable in an orthonormal basis. In other words, after applying a suitable

rotation to the coordinates, the equation of 𝐶 becomes:

𝜆1𝑥
2 + 𝜆2𝑦2 = 1

where 𝜆1, 𝜆2 are the eigenvalues of 𝑏 (i.e. the eigenvalues of the matrix

[
𝑎𝑖 𝑗

]
16𝑖, 𝑗62

). The

directions given by the 𝑥-axis and the 𝑦-axis in these coordinates are univocally defined: they

are the two eigenspaces of 𝑏. By the definition, these lines are the (principal) axes of the
conic. The spectral theorem ensures in particular that the axes are always orthogonal.

Remark 7.110. I deliberately left a small lie just above, can you find it?

If 𝑝2 has signature (2, 0), then we can put 𝜆1 > 𝜆2 > 0. Denoting 𝜆1 =
1

𝑎2
and 𝜆2 =

1

𝑏2
with

𝑎, 𝑏 > 0, the equation of 𝐶 is rewritten
𝑥2

𝑎2
+ 𝑦2

𝑏2
= 1. This is an ellipse with major axis 𝑎 and

minor axis 𝑏, which can be parametrized by 𝑥 = 𝑎 cos 𝑡 , 𝑦 = 𝑏 sin 𝑡 .

If 𝑝2 has signature (1, 1), then we can put 𝜆1 > 0 > 𝜆2. Denoting 𝜆1 =
1

𝑎2
and 𝜆2 = − 1

𝑏2
,

the equation of𝐶 is rewritten
𝑥2

𝑎2
− 𝑦2

𝑏2
= 1. This is a hyperbola, which can be parametrized by

𝑥 = 𝑎 cosh 𝑡 , 𝑦 = ±𝑏 sinh 𝑡 .
Remark 7.111. In summary, the center is obtained by translating to kill off the linear term,

and the axes by applying the spectral theorem to the quadratic term. Note that while the

center is a purely affine notion, the axes rely on the Euclidean structure of the plane.

7.6.4 Center and axes of a projective conic?

Assume now that C is given as a projective conic in a projective plane P = P(𝑉 ). We assume

that 𝑉 = 𝐸 has a Euclidean structure, so that any affine plane 𝐻 ⊆ 𝑉 inherits one. While the

center and axes of C do not make sense in P , it is reasonable to ask if one can predict the

center and axes in any affine chart 𝐻 . For the center, there is an elegant answer:

Proposition 7.112. Let C be a proper conic in P = P(𝑉 ) and 𝐵 : 𝑉 ×𝑉 → R the associated
symmetric bilinear form. Let 𝐻 ⊆ 𝑉 be an affine chart and ®𝐻 the underlying vector plane. The
center of C in 𝐻 is the point 𝑐 ∈ 𝐻 such that [𝑐] is the 𝐵-orthogonal of ®𝐻 .
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Remark 7.113. Despite being elementary, I was very pleased with  Proposition 7.112 when I

found it! It allows an elegant proof of  Theorem 7.116 .

Proof. Since 𝐵 is nondegenerate and of mixed signature, up to sign it has signature (2, 1).
Let us assume that the restriction of 𝐵 to ®𝐻 has signature (2, 0), since this is the case we are
interested in: the image of C in 𝐻 is an ellipse. By  Proposition 3.20 , the 𝐵-orthogonal of ®𝐻 is

a line 𝐿 such that ®𝐻 ⊕ 𝐿 = 𝑉 . (It is instructive to examine the other cases: if 𝐵 has signature

(1, 1) on ®𝐻 , i.e. C traces a hyperbola on 𝐻 , then the reader can show that ®𝐻 ⊕ 𝐿 = 𝑉 is still

true. What if 𝐵 is degenerate on ®𝐻?)
Let (𝑒1, 𝑒2, 𝑒3) be a basis of𝑉 such that 𝑒1, 𝑒2 ∈ ®𝐻 and 𝑒3 = 𝑐 is the intersection of 𝐿 and 𝐻 .

In the associated coordinate system (𝑥,𝑦, 𝑧), the equation of ®𝐻 [resp.𝐻 ] is 𝑧 = 0 [resp. 𝑧 = 1].

Since ®𝐻 ⊥𝐵 𝐿, the matrix 𝐴 of the bilinear form 𝐵 in this basis has a few zero entries:

𝐴 =


𝑎11 𝑎12 0

𝑎21 𝑎22 0

0 0 𝑎33


In other words, the equation of C in the homogeneous coordinates [𝑥 : 𝑦 : 𝑧] has no mixed

terms containing 𝑧:

𝑎11𝑥
2 + 𝑎22𝑦2 + 2𝑎12𝑥𝑦 + 𝑎33𝑧2 = 0 .

When dehomogenizing (just set 𝑧 = 1) to obtain the equation of the conic in the affine frame

(𝑐; 𝑒1, 𝑒2) of 𝐻 , this translates to the absence of linear terms:

𝑎11𝑥
2 + 𝑎22𝑦2 + 2𝑎12𝑥𝑦 + 𝑎33 = 0 .

This proves that the origin of the frame, namely the point 𝑐 , is the center of this conic. �

What about the axes? The simple yet key observation is that 𝑝2(𝑥,𝑦) = 𝑎11𝑥2 + 𝑎22𝑦2 +
2𝑎12𝑥𝑦 represents the restriction of 𝐵 to ®𝐻 . Thus the axes of the conic on 𝐻 are simply given

by applying the spectral theorem to this restriction.

Remark 7.114. Call (𝑢1, 𝑢2) be the basis of ®𝐻 obtained by applying the spectral theorem to

𝐵 in ®𝐻 . Then (𝑢1, 𝑢2, 𝑒3) is a basis of 𝑉 diagonalizing 𝐵. However, this is not the same as

applying the spectral theorem to 𝐵 in 𝑉 ; do you see why?

7.6.5 Resolution of the problem

Choosing coordinates

Let us come back to the wheel and develop the setup of  § 7.6.2 . Let us place the origin of 𝐸 at

the eye𝑂 (as in  Figure 7.7 ), which allows us to identify 𝐸 to a vector space.

We choose an orthonormal basis (𝑖0, 𝑗0, 𝑘0) of 𝐸 adapted to the drawing plane𝐷 as follows.

For 𝑘0 we take the unit vector pointing upwards; it belongs to ®𝐷 since 𝐷 is vertical. For 𝑗0, we

take the unit normal to 𝐷 , oriented so that 〈 𝑗0,
−−→
𝑂𝑀〉 > 0 for all𝑀 ∈ 𝐷 . More geometrically:
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call 𝑑𝐷 the distance from the origin𝑂 to the plane 𝐷 , given by 𝑑𝐷 = ‖−−−→𝑂𝑂𝐷 ‖ where𝑂𝐷 ∈ 𝐷 is

the closest point to𝑂 (its orthogonal projection). Then 𝑗0 is the unit normal 𝑗0 =
−−−→
𝑂𝑂𝐷

𝑑𝐷
. Finally,

𝑖0 is the unique vector such that (𝑖0, 𝑗0, 𝑘0) is orthonormal, i.e. 𝑖0 = 𝑘0 × 𝑗0 (cross-product).

The central projection on 𝐷 is given by

−−−→
𝑂𝑀′ = 𝜆

−−→
𝑂𝑀 with 𝜆 =

𝑑𝐷

〈−−→𝑂𝑀,𝑗0〉
(check this). In the

coordinate system associated to (𝑖0, 𝑗0, 𝑘0), the equation of 𝐷 is 𝑦 = 𝑑𝐷 , and the projection is

(𝑥,𝑦, 𝑧) ↦→ 𝑑𝐷

𝑦
(𝑥,𝑦, 𝑧) . (7.8)

(As expected, this is the restriction of a projective linear map 𝐸 → �̂� , remarkably simple in

homogeneous coordinates: [𝑥 : 𝑦 : 𝑧 : 𝑡] ↦→ [𝑥 : 𝑧 : 𝑡].)
Of course, we could have similarly defined an orthonormal basis adapted to any other

vertical plane, such as the wheel plane𝑊 . Call 𝜃 the oriented angle between𝐷 and𝑊 , so that

the rotation of angle 𝜃 around the vertical axis pointing upwards sends ®𝐷 to ®𝑊 . We denote

(𝑖𝜃 , 𝑗𝜃 , 𝑘𝜃 ) the orthonormal frame of 𝑉 adapted to𝑊 . In the previous coordinates, we have:

𝑖𝜃 = (cos𝜃, sin𝜃, 0)
𝑗𝜃 = (− sin𝜃, cos𝜃, 0)
𝑘𝜃 = (0, 0, 1) .

The ground (floor) is the horizontal plane 𝑧 = −ℎ where ℎ is the “altitude” of the eye 𝑂 .

For simplicity we take ℎ = 0, but one could easily adapt what follows to keep track of ℎ. We

write the center of the wheel 𝑐𝑊 = (𝑐1, 𝑐2, 𝑐3 = 𝑅) where 𝑅 is the radius. Since 𝑐𝑊 ∈𝑊 , we

have 〈𝑐𝑊 , 𝑗𝜃 〉 = 𝑐2 cos𝜃 − 𝑐1 sin𝜃 = 𝑑𝑊 where 𝑑𝑊 is the distance from𝑂 to𝑊 .

A picture

 Figure 7.9 shows the wheel circle (in red) in the wheel plane and its projection on the drawing

plane, as well as some notable lines:

• The axis of rotation in green: this is the line through the center of the wheel that is

orthogonal to the wheel plane.

• The axis of motion in orange: this is the horizontal line through the center of the

wheel that is contained in the wheel plane.

• In gray: the four lines tracing the vertical square in which the wheel is inscribed, the

two diagonals of this square meeting at the center, the vertical line through the center.

Resolution

After all the preparation, the plan is clear:

1. Write the equation of the wheel: first as an affine conic in𝑊 , then homogenize to

obtain the projective conic in P(𝐸) represented by the yellow cone in  Figure 7.8 .

2. Find the center and axes of the conic in the drawing plane by applying  § 7.6.3 .
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Figure 7.9: Projection of the wheel on the drawing plane.

For the first step, we do not need coordinates: a point 𝑣 ∈𝑊 is on the wheel if and only if

‖𝑣 − 𝑐𝑊 ‖2 = 𝑅2, hence the polynomial function 𝑝 :𝑊 → R defining our affine conic: 𝑝 (𝑣) =
‖𝑣 − 𝑐𝑊 ‖2 − 𝑅2. To homogenize 𝑝 into a quadratic form 𝑞 : 𝑉 → R, we write 𝑞(𝑣) = 1

𝜆2
𝑞(𝜆𝑣)

and choose 𝜆 so that 𝜆𝑣 ∈𝑊 . We obtain𝑞(𝑣) = 1

𝜆2
𝑝 (𝜆𝑣) = 1

𝜆2

(
‖𝜆𝑣 − 𝑐𝑊 ‖2 − 𝑅2

)
. Substituting

𝜆 =
𝑑𝑊
〈𝑣, 𝑗𝜃 〉 yields the expression of the quadratic form:

𝑞(𝑣) = ‖𝑣 ‖2 − 2

𝑑𝑊
〈𝑣, 𝑗𝜃 〉〈𝑣, 𝑐𝑊 〉 + ‖𝑐𝑊 ‖2 − 𝑅2

𝑑2
𝑊

〈𝑣, 𝑗𝜃 〉2 .

It is easy to guess the polarization of 𝑞:

𝐵(𝑣,𝑤) = 〈𝑣,𝑤〉 − 1

𝑑𝑊

[
〈𝑣, 𝑗𝜃 〉〈𝑤, 𝑐𝑊 〉 + 〈𝑤, 𝑗𝜃 〉〈𝑣, 𝑐𝑊 〉

]
+ ‖𝑐𝑊 ‖2 − 𝑅2

𝑑2
𝑊

〈𝑣, 𝑗𝜃 〉〈𝑤, 𝑗𝜃 〉 . (7.9)

For the second step, we need to:
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(a) Find the center: find 𝑐𝐷 ∈ 𝐷 such that [𝑐𝐷] is the 𝐵-orthogonal of ®𝐷 .
(b) Find the axes: apply the spectral theorem to the restriction of ®𝐵 to ®𝐷 .
These are basic exercises of linear algebra, and not the most interesting part of this section,

but let us go ahead sincewe have come this far (also, all of projective geometry is linear algebra,

is basically the point of this chapter).

 (a) We look for 𝑐𝐷 = (𝑥0, 𝑦0 = 𝑑𝐷 , 𝑧0) such that 𝐵(𝑣, 𝑐𝐷) = 0 for all 𝑣 = (𝑥,𝑦 = 0, 𝑧). Think
of 𝐵(𝑣, 𝑐𝐷) as a linear function of 𝑥 and 𝑧 whose coefficients must vanish. This yields a system

of two linear equations in 𝑥0 and 𝑧0, which is of course straightforward to solve. Let us spare

the details and record the result:

Proposition 7.115. The center of the ellipse on the drawing plane is 𝑐𝐷 = (𝑥0, 𝑦0, 𝑧0) with:

𝑥0 = 𝑑𝐷
𝑑𝑊 (𝑐1 cos𝜃 − 𝑐2 sin𝜃 ) + (‖𝑐 ‖2 − 2𝑅2) sin𝜃 cos𝜃

𝑑2
𝑊

+ 2𝑑𝑊 𝑐1 sin𝜃 + (‖𝑐 ‖2 − 2𝑅2) sin2 𝜃
𝑦0 = 𝑑𝐷

𝑧0 = 𝑅
𝑑𝐷 cos𝜃 − (sin𝜃 )𝑥0

𝑑𝑊

In contrast, the position of the center of the wheel on the drawing plane is, by ( 7.8 ), the

point with coordinates 𝑑𝐷 ( 𝑐1𝑐2 , 1,
𝑅
𝑐2
). In general, the two are distinct, but note that when 𝜃 = 0,

we have 𝑐2 = 𝑑𝑊 , and both are
𝑑𝐷
𝑑𝑊

(𝑐1, 𝑑𝑊 , 𝑅). This is the situation where the wheel is parallel

to the drawing plane, and we expect the projection of the wheel to be a circle.

 (b) For the axes, we must find the eigenvectors of the symmetric bilinear form ( 7.9 ) re-

stricted to ®𝐷 , i.e. 𝑦 = 0. In the coordinate system (𝑥, 𝑧), the matrix of 𝐵 is:[
1 + 2𝑐1 sin𝜃

𝑑𝑊
+ ‖𝑐 ‖2−𝑅2

𝑑2
𝑊

sin
2 𝜃 𝑅 sin𝜃

𝑑𝑊
𝑅 sin𝜃
𝑑𝑊

1

]
Of course, we could easily find the two eigenvalues and eigenvectors of this matrix, thus

giving an expression of the principal axes of the ellipse. This computation and its result

would not be very insightful though, so let us save the space.

Instead, let us show a picture:  Figure 7.10 is the same configuration as  Figure 7.8 , but only

shows the drawing plane. Clearly, the axes of the ellipse (in blue) have nothing to do with the

axis of rotation (in green). The minor axis does not even go through the center of the wheel.

In mathematics, answering no to a question like  Question 7.107 (“is it always true that

. . . ”) is often not very exciting, because it is enough to produce one counter-example. Let us

instead try to prove a positive result: it seems on  Figure 7.10 that the center of the ellipse

belongs to the axis of motion (in orange). Is this always true?

7.6.6 A theorem of perspective geometry

Theorem 7.116. When drawing a wheel in perspective, the center of the ellipse always lies on
the image of the axis of motion. (In  Figure 7.10 : the blue axes intersect on the orange line.)
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Figure 7.10: The wheel on the drawing plane.

Proof. The situation is as follows: we have a projective conic C ⊆ P(𝐸) and two vertical affine
planes 𝐷 and𝑊 in 𝐸. The centers of the conic on these two planes are 𝑐𝐷 and 𝑐𝑊 . We want

to show that two vector planes 𝑃,𝑄 ⊆ 𝐸 are equal:

• The vector plane containing the axis of motion, that is 𝑃 = [𝑐𝑊 ] ⊕ [𝑖𝜃 ].
• The vector plane containing both centers, that is 𝑄 = [𝑐𝑊 ] ⊕ [𝑐𝐷].

(Indeed, if 𝑃 = 𝑄 , then [𝑐𝐷] ⊆ 𝑃 , which in the affine chart 𝐷 translates to 𝑐𝐷 lying on the

image of the axis of motion.)

The key observation is that [𝑐𝑊 ] = ( ®𝑊 )⊥𝐵
and [𝑐𝐷] = ( ®𝐷)⊥𝐵

, therefore 𝑄 = ( ®𝑊 ∩ ®𝐷)⊥𝐵
.

The intersection of ®𝑊 and ®𝐷 is the vertical line [𝑘0] (unless 𝜃 = 0, in which case we saw that

[𝑐𝐷] = [𝑐𝑊 ]). The result of this discussion is that we need to show that 𝑃 = [𝑘0]⊥𝐵
, which

amounts to 𝑐𝑊 ⊥𝐵 𝑘0 and 𝑖𝜃 ⊥𝐵 𝑘0. We already know that 𝑐𝑊 ⊥𝐵 𝑘0 since 𝑘0 ∈ ®𝑊 . It remains

to show that 𝐵(𝑖𝜃 , 𝑘0) = 0, which is child’s play with the expression of 𝐵 ( 7.9 ). �

Remark 7.117. In fact, the expression of the 𝐵-orthogonal of 𝑘0 is quite simple: check that

𝐵(𝑣, 𝑘0) =
〈
𝑣, 𝑘0 − 𝑅

𝑑𝑊
𝑗𝜃

〉
for all 𝑣 ∈ 𝑉 ; it it follows that 𝑘⊥𝐵

0
is the regular orthogonal of the

vector 𝑘0 − 𝑅
𝑑𝑊
𝑗𝜃 , which is the vector plane with equation:

𝑧 − 𝑅

𝑑𝑊
(𝑦 cos𝜃 − 𝑥 sin𝜃 ) = 0 . (7.10)

As I claimed, 𝑖𝜃 = (cos𝜃, sin𝜃, 0) satisfies this equation. But the point I want to make here is

that ( 7.10 ) is the same as the equation giving 𝑧0 in  Proposition 7.115 . This is not a coincidence:

the two equations relating 𝑥0 and 𝑧0 express that 𝑐𝐷 ⊥𝐵 𝑖0 and 𝑐𝐷 ⊥𝐵 𝑘0.
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7.6.7 Conclusion

With nifty techniques of projective geometry, we were able to calculate the center and axes of

a wheel drawn in perspective. We debunked the misconception that the minor axis coincides

with the axis of rotation, but proved that the center of the ellipse lies on the axis of motion.

Unfortunately, our findings will be of little help to a real person who is trying to draw a

wheel only equipped with a pencil and ruler (and maybe a compass). I think my friend Julien

was a bit disappointed when I told him my solution (“remember the spectral theorem. . . ”)

because he was expecting a more practical answer.

It is in fact possible to ask the precise question: on a 2D drawing, starting with the horizon,

two vanishing points giving the directions parallel/orthogonal to the wheel, and the four lines

tangent to the wheel as in  Figure 7.11 ; can one find the center and axes of the ellipse by a

straightedge and compass construction? In theory, the answer is yes: it is a famous theorem

(due to Pierre-Laurent Wantzel in 1837 [ Wan ]) that points and lines in the Euclidean plane

are constructible if and only if they can be calculated by solving a finite number of linear and

quadratic equations. Our work has shown that this is the case for the center and axes of the

ellipse. The practical implementation of Wantzel’s theorem is most likely horrible, though.

Figure 7.11: Drawing the wheel by hand?

Remark 7.118. In the setup of  § 7.6.5 , it is easy to find the homogenized equations of:

• The axis of motion: (𝑅 sin𝜃 )𝑥 − (𝑅 cos𝜃 )𝑦 + 𝑑𝑊 𝑧 = 0.

• The axis of rotation: (𝑅 cos𝜃 )𝑥 + (𝑅 sin𝜃 )𝑦 − (𝑐1 cos𝜃 + 𝑐2 sin𝜃 )𝑧 = 0.

For the equation in the drawing plane, just put 𝑦 = 𝑑𝐷 . Putting 𝑧 = 0 yields the coordinates

of the two vanishing points: 𝑥1 = 𝑑𝐷 cot𝜃 and 𝑥2 = −𝑑𝐷 tan𝜃 . Conversely, the positions of

these two points allows one to recover 𝑑𝐷 (=
√−𝑥1𝑥2) and tan𝜃 (=

√︁
−𝑥2/𝑥1). The values of
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cos𝜃 and sin𝜃 are derived from tan𝜃 by quadratic equations. The position of the center of

the wheel gives us 𝑐1, 𝑐2, 𝑅. Finally, 𝑑𝑊 = 𝑐2 cos𝜃 − 𝑐1 sin𝜃 . Thus all the parameters of the

problem can be read off  Figure 7.11 , and the theorem of Wantzel is fully applicable.

Remark 7.119.  Remark 7.118 confirms that the ellipse is determined by the four gray tangency

lines and a fifth line through its center. This is reminiscent of the famous theorem (mentioned

in  Exercise 7.16 ) that a conic is uniquely determined by five tangency lines.

In practice, there are more useful tips to consider. First of all, it is easy to find the actual

center of the wheel (not of the ellipse) by tracing the two diagonals of the square: see dotted

gray lines in  Figure 7.11 . From the two vanishing points, we can then trace the axis of motion

(dotted orange) and the axis of rotation (dotted green). The axis of motion and the vertical

line through the center give the four points of tangency with the square. Pretty good! In

order to freehand draw a decent ellipse, four points is not enough, but it is possible to find

eight more by tracing more lines: see  Figure 7.12 . I learned this trick from [ Dob ].

Figure 7.12: Finding eight more points on the ellipse: First draw the four new blue lines

between the red points of tangency, then the four new gray lines between the blue points of

intersection, and finally the eight possible green segments similar to the one that is shown.
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7.7 Exercises

Exercise 7.1. Projective duality

Let 𝑉 be a finite-dimensional vector space and P B P(𝑉 ) its projectivization.
(1) What is projective duality?

(2) For 𝑥 ∈ 𝑉 , denote 𝛿𝑥 the linear form on𝑉 ∗
defined by 𝛿𝑥 (𝜑) = 𝜑 (𝑥). Prove that 𝑥 ↦→ 𝛿𝑥

is an isomorphism between 𝑉 and its bidual 𝑉 ∗∗
. Derive that there is an isomorphism

of projective spaces P ≈ P∗∗
. Prove  Proposition 7.14 :

Proposition . Projective duality is a bijective correspondence between projective subspaces
of P and projective subspaces of P∗ = P(𝑉 ∗), and it is decreasing with respect to inclusion.
Moreover, projective duality is involutive in the sense that [complete the sentence].

(3) Let P be a projective plane. Prove that any two lines of P intersect at a unique point:

first write a direct proof, then offer an alternate proof using projective duality.

Exercise 7.2. Axioms of projective geometry

Let K be any field and let 𝑉 be a vector space over K. Check that the projective space P(𝑉 )
satisfies the Veblen–Young axioms of projective geometry (see  § 7.1.4 ).

Exercise 7.3. Some elementary properties of homogeneous coordinates

Let P be a projective space of dimension 𝑛.

(1) Show that a choice of homogeneous coordinates on P amounts to the choice of a

projective isomorphism P ≈ KP𝑛.
(2) Consider two systems of homogeneous coordinates [𝑥𝑘] and [𝑦𝑘]. Show that there

exists 𝑃 ∈ GL(𝑛 + 1,K) and 𝜆 ∈ K×
such that [𝑥1, . . . , 𝑥𝑛+1]T = 𝜆𝑃 [𝑦1, . . . , 𝑦𝑛+1]T.

(3) Explain why homogeneous coordinates on P induce “dual” homogeneous coordinates

on P∗
. Show that the dual of the point [𝑎1 : . . . : 𝑎𝑛+1] is the projective hyperplane

with equation 𝑎1𝑥1 + · · · + 𝑎𝑛+1𝑥𝑛+1 = 0.

Exercise 7.4. Barycentric coordinates vs homogeneous coordinates

Let 𝐻 be an affine space of dimension 𝑛. Denote ®𝐻 the underlying vector space.

(1) Let𝐴1, . . . , 𝐴𝑁 be points in 𝐻 and let 𝛼1, . . . , 𝛼𝑁 be weights (real numbers, not all zero).

Denote 𝛼 B
∑𝑁
𝑘=1

𝛼𝑘 .

(a) Assume 𝛼 ≠ 0. Show there exists a unique point𝐺 ∈ 𝐻 , called barycenter, such
that

∑𝑁
𝑘=1

𝛼𝑘
−−−→
𝐺𝐴𝑘 = ®0. Check that

∑𝑁
𝑘=1

𝛼𝑘
−−−→
𝑂𝐴𝑘 = 𝛼

−−→
𝑂𝐺 for any𝑂 ∈ 𝐻 .

(b) If K = R, show that𝐺 is the unique minimizer of the function 𝐹 : 𝐻 → R defined

by 𝐹 (𝑀) = 1

2

∑𝑁
𝑘=1

𝛼𝑘 𝑑 (𝑀,𝐴𝑘)2. Hint: show that grad 𝐹 (𝑀) = −∑𝑁
𝑘=1

𝛼𝑘
−−−→
𝑀𝐴𝑘 .
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(c) Show that if 𝛼 = 0, then there is a well-defined vector 𝐺 ∈ ®𝐻 such that 𝐺 =∑𝑁
𝑘=1

𝛼𝑘
−−−→
𝑂𝐴𝑘 for any𝑂 ∈ 𝐻 .

(d) Show that if 𝐻 is an affine hyperplane in a vector space𝑉 , then𝐺 = 1

𝛼

∑𝑁
𝑘=1

𝛼𝑘𝐴𝑘

if 𝛼 ≠ 0 and𝐺 =
∑𝑁
𝑘=1

𝛼𝑘𝐴𝑘 if 𝛼 = 0. Show that [𝐺] is a well-defined element of

P(𝑉 ) and [𝐺] =
[∑𝑁

𝑘=1
𝛼𝑘𝐴𝑘

]
.

(2) Let 𝐴1, . . . , 𝐴𝑛+1 be points in 𝐻 that are affinely independent, i.e. not contained in a

hyperplane. Show that for all 𝑀 ∈ 𝐻 , there exists (𝛼1, . . . , 𝛼𝑛+1) such that 𝑀 is the

barycenter of {(𝐴𝑘 , 𝛼𝑘)}. Show that the tuple (𝛼1, . . . , 𝛼𝑛+1) is unique up to multiplica-

tion by 𝜆 ∈ K×
. Such a (𝑛 + 1)-tuple is called barycentric coordinates for𝑀 .

(3) Show that if𝐻 is an affine hyperplane in𝑉 , then𝐴1, . . . , 𝐴𝑛+1 ∈ 𝐻 are affinely indepen-

dent if and only if (𝐴1, . . . , 𝐴𝑛+1) is a basis of 𝑉 . Show that for all𝑀 ∈ 𝐻 , barycentric
coordinates for𝑀 are the same thing as homogeneous coordinates for [𝑀].

(4) Conclude that barycentric coordinates in an affine space are homogeneous coordinates

in the projective completion. Show that conversely, homogeneous coordinates in a

projective space are barycentric coordinates in the appropriate affine patch.

Exercise 7.5. The complex projective line and the Hopf fibration

(1) Let us identify R3 ≈ C × R. Consider the stereographic projection from the North pole

𝑠 : 𝑆2 − {𝑁 } → C (see e.g.  § 9.3.1 ). Argue that 𝑠 induces a homeomorphism 𝑆2 ≈ ˆC.

Check that 𝑠 (𝑧, 𝑡) = 𝑧

1 − 𝑡 and 𝑠
−1(𝑧) =

(
2𝑧

1 + |𝑧 |2 ,
−1 + |𝑧 |2
1 + |𝑧 |2

)
.

(2) Recall why CP1 ≈ ˆC (affine chart) and derive from the previous question that CP1 ≈ 𝑆2

via the map [𝑧1 : 𝑧2] ↦→
(

2𝑧1𝑧2

|𝑧1 |2 + |𝑧2 |2
,
|𝑧1 |2 − |𝑧2 |2
|𝑧1 |2 + |𝑧2 |2

)
.

(3) Let 𝑉 = C2 and 𝑆 = 𝑆3 ⊆ 𝑉 the unit sphere, i.e. 𝑆 = {(𝑧1, 𝑧2) ∈ 𝑉 : |𝑧1 |2 + |𝑧2 |2 = 1}.
Recall why the inclusion 𝑆 → 𝑉 induces a homeomorphism 𝑆/U(1) ∼−→ CP1.

(4) Let R3 ↩→ 𝑉 (i.e. R3 × {0} ↩→ R4). One would like to say: each C-vector line in 𝑉

intersects 𝑆2 once, therefore CP1 ≈ 𝑆2, hence 𝑆3/U(1) ≈ 𝑆2. Does this work?
(5) Define instead 𝑝 (𝑧1, 𝑧2) = (2𝑧1𝑧2, |𝑧1 |2− |𝑧2 |2). Show that 𝑝 defines a map 𝑆3 → 𝑆2 that

passes to the quotient as a homeomorphism 𝑆3/U(1) ≈ 𝑆2. Is this map related to  (2) ?

(6) Show that the preimage of 𝑋 ⊆ 𝑆2 by 𝑝 : 𝑆3 → 𝑆2 is:

• 𝑋 = {one point}: 𝑝−1(𝑋 ) is a circle in R4 (contained in 𝑆3).
• 𝑋 = the equator: 𝑝−1(𝑋 ) is a flat torus, i.e. the product of two circles 𝐶1 ×𝐶2.

• more generally, 𝑋 = any circle of latitude: 𝑝−1(𝑋 ) is also a flat torus.
Conclude that 𝑆3 is the reunion of a family of flat tori, plus two circles.

Note: The map 𝑝 is a smooth fiber bundle of 𝑆3 over 𝑆2 with fiber 𝑆1, denoted 𝑆1 → 𝑆3 → 𝑆2 and
called Hopf fibration. Some consider it one of the most beautiful mathematical constructions.
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Figure 7.13: Hopf fibration. This picture shows the foliation of 𝑆3 by flat tori under the

stereographic projection 𝑆3 ∼−→ R̂3. It is part of a beautiful animation created by Niles Johnson

with SageMath: visit  https://nilesjohnson.net/hopf.html .

Exercise 7.6. Homologies and elations

Let P = P(𝑉 ) be a projective space of dimension > 2. Let 𝑓 : P → P be a projective

transformation and 𝐹 : 𝑉 → 𝑉 a linear lift of 𝑓 .

(1) Show that 𝑓 is a central projective transformation if and only if 𝐹 admits an eigenspace

of codimension 1.

(2) A central projective transformation 𝑓 is called an elation if its center belongs to its axis

and a homology otherwise. Show that 𝑓 is a homology if and only if 𝐹 is diagonalizable.

(3) Give the matrix of an elation in a suitable basis and explain how to find the center.

(4) What is the Jordan form of the matrix of an elation? Conclude that all elations are in

the same conjugacy class. What about homologies?

Exercise 7.7. Central projective transformations (*)

Let P = P(𝑉 ) be a projective space of dimension > 2.

(1) Let H ⊆ P be a hyperplane and let 𝑂 ∈ P be a point not in H. Show that for any

points 𝐴,𝐴′
not inH such that 𝑂,𝐴,𝐴′

are distinct and collinear, there exists a unique

central projective transformation with center𝑂 that takes 𝐴 to 𝐴′
.

(2) Derive from the previous question that the central projective transformations with a

given center and axis form a group isomorphic to K×
.

(3) Show that any perspectivity between hyperplanes of P extends to a central projective

transformation of P .
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(4) Consider the configuration shown in  Figure 7.2 . Show that there exists a central pro-

jective transformation that takes 𝐴 to 𝐴′
etc. How unique is it? Conclude the equality

of cross-ratios [𝐴, 𝐵,𝐶, 𝐷] = [𝐴′, 𝐵′,𝐶′, 𝐷′].

Exercise 7.8. Pappus’s theorem

Pappus’s theorem, named after the Greek mathematician Pappus of Alexandria, is illustrated

in  Figure 7.14 . It can be phrased as ([ Cox1 , p. 231]): If the six vertices of a hexagon lie alternately
on two lines, then the three points of intersection of pairs of opposite sides are collinear.

Figure 7.14: Pappus’s theorem: the points 𝑋 , 𝑌 , 𝑍 are collinear.

(1) Is this a theorem of affine or projective geometry?

(2) Optional: Show that Pappus’s theorem is self-dual.

(3) Let us assume𝐶1,𝐶2, 𝑋 are not collinear. Explain why we can assume that (𝐶1,𝐶2, 𝑋,𝐴)
is a projective frame. What are the homogeneous coordinates of𝐶1,𝐶2, 𝑋 , and 𝐴?

(4) Show that one can write 𝐵1 = [𝑝 : 1 : 1], 𝑌 = [1: 𝑞 : 1], 𝐵2 = [1: 1 : 𝑟 ] with 𝑝, 𝑞, 𝑟 ∈ K.
Considering the three lines intersecting at 𝐴2, show that 𝑟𝑞𝑝 = 1.

(5) Show that 𝑍 is the intersection of the three expected lines if and only if 𝑟𝑝𝑞 = 1.

Conclude. Optional: Show that Pappus’s theorem holds if and only if K is commutative.

(6) Optional: Fix the proof if𝐶1,𝐶2, 𝑋 are collinear.

Note: This proof is adapted from [ Cox1 , p. 236]. Pappus’s original proof can be found in [ Jon ]
and is reproduced in [ Wik2 ]. The equivalence of Pappus’s theorem with the commutativity
of multiplication was proven by Hilbert in his Grundlagen [ Hil ]. I recommend [ Ric ] for more
perspective on Pappus’s theorem (e.g., nine different proofs!).
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Exercise 7.9. Desargues’s theorem

Desargues’s theorem, named after a French mathematician, is illustrated in  Figure 7.15 . It

says: If two triangles are in perspective centrally, then they are in perspective axially.

Figure 7.15: Desargues’s theorem: the points 𝑋 , 𝑌 , 𝑍 are collinear.

(1) Wework in the projective planeP = P(𝑉 ) where𝑉 is a 3-dimensional vector space. Let

us assume𝑂 ,𝐴1,𝐴2 are distinct (why?). Recall why one can choose𝑂 = [𝑜],𝐴1 = [𝑎1],
𝐴2 = [𝑎2] with 𝑜 = 𝑎1 + 𝑎2. Write similarly 𝑜 = 𝑏1 + 𝑏2 and 𝑜 = 𝑐1 + 𝑐2.

(2) Show that 𝑋 = [𝑥] where 𝑥 = 𝑎1 − 𝑏1 = 𝑏2 − 𝑎2 and similar identities for 𝑌 and 𝑍 .

(3) Check that 𝑥 + 𝑦 + 𝑧 = 0 and conclude.

(4) Show that the dual of Desargues’s theorem is its converse. Does it also hold?

Note: This proof is adapted from [ Bob ]. Desargues’s theorem can also be derived from Pappus’s:
see [ Cox1 , p. 238]. It is a fundamental theorem of projective geometry because it characterizes
projective spaces that are the projectivizations of vector spaces, see  Remark 7.18 .

Exercise 7.10. Formula for the cross-ratio

Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 be four distinct points in ˆK. Check that the map

𝑓 : 𝑧 ↦→ (𝑧 − 𝑧2) (𝑧1 − 𝑧3)
(𝑧1 − 𝑧) (𝑧3 − 𝑧2)
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is a linear fractional transformation that maps 𝑧1 to ∞, 𝑧2 to 0, and 𝑧3 to 1. Recover the

formula for the cross-ratio.

Exercise 7.11. Cross-ratios and metrology

Consider the picture of  Figure 7.16 (adapted from Wikipedia [ Wik1 ]). Denote by 𝐴, 𝐵,𝐶 , 𝐷 ,

𝑉 the points in the 3-dimensional world, and by 𝐴′
, 𝐵′,𝐶′

, 𝐷′
,𝑉 ′

the points in the image. On

the image, one can measure the lengths:

|𝐴′𝐵′| = 3cm |𝐵′𝐶′| = 2cm |𝐶′𝐷′| = 1cm |𝐷′𝑉 ′| = 6cm

The goal is to determine the width𝑤 = |𝐵𝐶 | between the two buildings.

Figure 7.16: Application of cross-ratios to measure real-world dimensions.

(1) A naive attempt to find 𝑤 consists in saying that lengths measured on the image are

proportional to lengths measured in the real world. Does this work?

(2) Justify the equality of cross-ratios [𝐴, 𝐵,𝐶, 𝐷] = [𝐴′, 𝐵′,𝐶′, 𝐷′]. Given the widths of

the adjacent houses |𝐴𝐵 | = 7m and |𝐶𝐷 | = 6m, prove that𝑤 = 8m.

(3) Justify that [𝐴, 𝐵,𝐶,𝑉 ] = [𝐴′, 𝐵′,𝐶′,𝑉 ′]. Find𝑤 using only |𝐴𝐵 | = 7m.

Exercise 7.12. Characterizing projective linear maps with cross-ratios

The goal of this exercise is to prove that a map 𝑓 : P → P between projective spaces is

projective linear if and only if it preserves cross-ratios.
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(1) Recall why, if 𝑓 is projective linear, then it preserves cross-ratios.

(2) Let us now prove the converse. First explain why the statement that “𝑓 preserves

cross-ratios” implicitly assumes that 𝑓 is a collineation.

(3) Prove the result when P is a projective line.

(4) Prove the result when dimP > 1. Hint: use  Theorem 7.63 .

Exercise 7.13. Classification of quadrics

Let 𝑉 be a vector space. Denote 𝑄 (𝑉 ) the space of quadratic forms 𝑞 : 𝑉 → K.
(1) Show that GL(𝑉 ) acts on 𝑄 (𝑉 ) by 𝑓 ∗𝑞 B 𝑞 ◦ 𝑓 . Can you describe this action in terms

of matrices?

(2) Assume K = R. Show that two quadratic forms belong to the same GL(𝑉 )-orbit if and
only if they have same signature.

(3) Assume K = C. Show that two quadratic forms belong to the same GL(𝑉 )-orbit if and
only if they have same rank.

(4) Let P = P(𝑉 ) be a projective space. Show that PGL(𝑉 ) has a natural action on the set

of all quadrics in P and discuss the number of orbits when K = R or C.

Exercise 7.14. From a hyperboloid of two sheets to a sphere

Consider the hyperboloidH of two sheets with equation 𝑥2 + 𝑦2 − 𝑧2 = −1 in R3.
(1) Show that by moving the plane at infinity 𝜕∞R3, the projective completion of

ˆH can be

seen as a sphere.

(2) Determine 𝜕∞H (the intersection of
ˆH with the plane at infinity 𝜕∞R3). Can you

describe whyH ∪ 𝜕∞H is a topological sphere?

Exercise 7.15. Determinant quadric

Let 𝑉 = M2×2(K) denote the vector space of 2 × 2 matrices over a field K.

(1) Show that the determinant function det : 𝑉 → K is a quadratic form.

(2) Show that the set of non-invertible matrices defines a nondegenerate quadric in P(𝑉 ).
Find its normal form when K = R. Optional: find an affine chart in which it is a
hyperboloid of one sheet, and another where it is a hyperbolic paraboloid.

(3) Show that SL(2,K) is an affine quadric in𝑉 . What is its projective completion?Optional:
when K = R, find an affine chart in which it is a hyperboloid of one sheet, and another
where it is a hyperbolic paraboloid.

Exercise 7.16. Dual conic
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Let P = P(𝑉 ) be a real projective space of dimension 2 (or any other dimension). Let 𝑏 be a

nondegenerate symmetric bilinear form on 𝑉 , i.e. a pseudo-inner product.

(1) Recall why 𝑏 defines an isomorphism
ˆ𝑏 : 𝑉 → 𝑉 ∗

where
ˆ𝑏 (𝑣) B 𝑏 (𝑣, ·).

(2) For any subspace𝑊 ⊆ 𝑉 , denote𝑊 ⊥𝑏 ⊆ 𝑉 the 𝑏-orthogonal of𝑊 . Show that there is

an induced map Q ↦→ Q⊥𝑏
between subspaces of P , which shares similar properties

with projective duality. In fact, show that there is an isomorphismQ⊥𝑏 ∼−→ Q◦
.

(3) Let C ⊆ P denote the projective conic (or quadric) defined by 𝑏. Show that for any

𝑝 ∈ C, 𝑝⊥𝑏
is a projective line (or hyperplane) that intersects C only at 𝑝 . By definition,

𝑝⊥𝑏
is the tangent line (or space) to C at 𝑝 . Optional: Show that in any affine chart 𝐴, C

is a smooth submanifold of 𝐴 and 𝑝⊥𝑝 is the affine tangent space to C at 𝑝 .

(4) Show that 𝑏 induces a pseudo-inner product 𝑏∗ on 𝑉 ∗
, hence a conic C∗ ⊆ P∗

. Show

that under projective duality, points on C are mapped to tangent lines to C∗
.

(5) It is a famous theorem that given five points in general position on a projective plane,

there exists a unique proper conic through all five. Being in general position means

that no three are collinear. Using projective duality, show that given 5 lines in general

position on a projective plane, there exists a unique proper conic tangent to all of them.

(What does it mean for three or more lines to be in general position?)

(6) Look up Pascal’s hexagon theorem and Brianchon’s hexagon theorem and explain why

they are dual theorems in the projective plane.

Exercise 7.17. Gaussian curvature of quadric surface (*)

Show that the sign of the Gaussian curvature of a surface is a projective invariant. Determine

the sign of the Gaussian curvature of the quadric surfaces in normal form.
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CHAPTER 8

The Klein model

Disclaimer: This chapter is a draft.

In this chapter we introduce and study the Klein model of hyperbolic space. This is a projective
model: although it can simply be described as a disk (a ball in higher dimensions) with a

special metric, it is best understood as a subset of the projective plane. In fact, themost natural

definition of the Klein model makes it a special case of a Cayley–Klein geometry, which is a

geometry that can be defined in the complement of a quadric in projective space. Remarkably,

Euclidean geometry and elliptic geometry are also examples of Cayley–Klein geometries.

Historically, the Klein model was actually discovered by Eugenio Beltrami in 1868 ([ Bel2 ;

 Bel3 ]), alongside what is now called the Poincaré models which we discuss in  Chapter 10 .

While Beltrami described the model as a disk where chords are geodesics, Klein ([ Kle1 ;  Kle2 ])

showed its projective nature and gave the formula for the metric in terms of cross-ratios,

inspired by work of Cayley [ Cay ]. For a more detailed historical account, refer to [ AP ].

8.1 Cayley–Klein geometries

In the complement of any quadric in projective space, one may define the Cayley–Klein

“metric” using cross-ratios. Although we are mostly concerned with one case, namely the

interior of an ellipsoid which will offer the Cayley–Klein model of hyperbolic space, it will be

interesting to see that elliptic geometry can also be derived as a Cayley–Klein geometry, and

even Euclidean geometry as a degenerate case. For a more extensive treatment, I recommend

the paper [ FS ]. Another good reference is the book [ Ric ], which is very thorough.
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8.1.1 The Cayley–Klein metric

LetQ be a quadric in a real projective space P = 𝑃 (𝑉 ) of dimension 𝑛. We denote 𝑞 : 𝑉 → R
a quadratic form defining Q, i.e. so that Q is the cone {𝑞 = 0}, and 𝑏 : 𝑉 × 𝑉 → R the

associated symmetric bilinear form. In our setup, the quadricQ will be fixed. The following

terminology is due to Cayley:

Definition 8.1. We shall call the quadricQ ⊆ P the absolute.

Example 8.2. When Q is of signature (𝑛, 1), it is called an ellipsoid. By Sylvester’s law of

inertia, in suitable homogeneous coordinates [𝑋1 : . . . : 𝑋𝑛+1],Q is given by the equation

𝑋 2

1
+ · · · + 𝑋 2

𝑛 − 𝑋 2

𝑛+1 = 0 .

Note thatQ does not intersect the hyperplane𝑋𝑛+1 = 0, thereforeQ is contained in the affine

chart P − {𝑋𝑛+1 = 0}, and its equation in the inhomogeneous coordinates 𝑥𝑘 =
𝑋𝑘

𝑋𝑛+1
is:

𝑥2
1
+ · · · + 𝑥2𝑛 − 1 = 0 .

Thus we see in thatQ is a sphere in such coordinates.

Typically, one could expect that P − Q has two connected components determined by

the sign of the quadratic form: Ω+ B {[𝑥] : 𝑞(𝑥) > 0} and Ω− B {[𝑥] : 𝑞(𝑥) < 0}, e.g. the
exterior and the interior of the ellipsoid.

Now let 𝑥,𝑦 be two points in P −Q, and consider the intersection of the line (𝑥𝑦) with
the absoluteQ. In any affine chart, the points of intersection solve a polynomial equation of

degree 2 in one variable, therefore there are three possibilities:

• There are two points of intersection 𝐼 and 𝐽 : the line (𝑥𝑦) is called hyperbolic. For
instance, this is the case when Q is an ellipsoid and 𝑥,𝑦 ∈ Ω−

are any two interior

points as in  Figure 8.1 .

• There is one double point of intersection 𝐼 = 𝐽 : the line (𝑥𝑦) is called parabolic.
• There are no points of intersection: the line (𝑥𝑦) is called elliptic. In this case, one

may still define 𝐼 and 𝐽 as complex points, that live in the complex projective space

P𝑐 B 𝑃 (𝑉 ⊗ C).
Remark 8.3. The case (𝑥𝑦) ⊆ Q is ruled out by the fact that 𝑥,𝑦 ∉ Q.

In all cases, one may take the cross-ratio:

𝑐 (𝑥,𝑦) B [𝑥,𝑦, 𝐽 , 𝐼 ] .

This is a natural quantity to consider because it is a projective invariant, in particular it does

not depend on the choice of coordinates on P .

Proposition 8.4. Let 𝑙 ⊆ P be a projective line and consider the restriction 𝑐 on 𝑙 −Q.
• If 𝑙 is hyperbolic, then 𝑐 is real-valued, and is positive on each component of 𝑙 −Q.
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Figure 8.1: For any two 𝑥 ,𝑦 in the interior of the ellipsoidQ, the projective line (𝑥𝑦) intersects
Q in two distinct points 𝐼 and 𝐽 .

• If 𝑙 is parabolic, then 𝑐 is constant equal to 1.
• If 𝑙 is elliptic, then 𝑐 takes values in the unit circle U(1) ⊆ C.

In all cases, for every 𝑥,𝑦, 𝑧 ∈ 𝑙 −Q:

𝑐 (𝑥,𝑦)𝑐 (𝑦, 𝑧) = 𝑐 (𝑥, 𝑧) . (8.1)

Proof. In the hyperbolic case and parabolic cases, 𝑐 is real-valued by definition. Let us consider
the hyperbolic case. The line 𝑙 is a topological circle, therefore 𝑙 − Q = 𝑙 − {𝐼 , 𝐽 } has two
connected components. Choose any inhomogeneous coordinate on 𝑙 , giving an identification

𝑙 ≈ ˆR. Then the explicit formula for the cross-ratio (see  Proposition 7.74 ) is:

𝑐 (𝑥,𝑦) = (𝐽 − 𝑥) (𝐼 − 𝑦)
(𝐽 − 𝑦) (𝐼 − 𝑥) . (8.2)

We see with this formula that if 𝑥 and 𝑦 are in either component of
ˆR − {𝐼 , 𝐽 }, then

𝑐 (𝑥,𝑦) > 0.

For the parabolic case, since 𝐼 = 𝐽 , then 𝑐 (𝑥,𝑦) = [𝑥,𝑦, 𝐽 , 𝐼 ] = 1 by definition of the

cross-ratio.

For the elliptic case, choose any inhomogeneous coordinate on 𝑙 as before. We still have

the formula ( 8.2 ), but now 𝐼 and 𝐽 are conjugate complex numbers: 𝐽 = 𝐼 . Taking the modulus

of ( 8.2 ) gives 𝑐 (𝑥,𝑦) = 1.

Finally, the formula ( 8.1 ) is immediately checked using ( 8.2 ). �

In order to try and obtain a distance on (a connected component of) P − Q, it makes

sense to take the logarithm of 𝑐 (𝑥,𝑦) in order to turn the multiplicative property ( 8.2 ) into an

additive property.
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Definition 8.5. The Cayley–Klein metric (or Cayley–Klein pseudo-distance) on P −Q is

the function defined by

𝑑 (𝑥,𝑦) B 1

2

|ln 𝑐 (𝑥,𝑦) |

where ln denotes the branch of the logarithm ln : C − {0} → {𝑧 ∈ C : Im(𝑧) ∈ (−𝜋, 𝜋]}.

Indeed, taking the logarithm of equation  Equation 8.1 and using the identity

ln(𝑎𝑏) = ln(𝑎) + ln(𝑏) (8.3)

when 𝑎 = 𝑐 (𝑥,𝑦) and 𝑏 = 𝑐 (𝑦, 𝑧), we find that ln 𝑐 (𝑥, 𝑧) = ln 𝑐 (𝑥,𝑦) + ln 𝑐 (𝑦, 𝑧). The triangle
inequality for real numbers then yields

𝑑 (𝑥, 𝑧) 6 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧)

Hence we essentially proved that 𝑑 satisfies the triangle inequality in restriction to any line.

However we have to be a little more careful, because the complex logarithm does not always

verify the identity ( 8.3 ), in general it only holds up to a multiple of 𝑖𝜋 .

The following proposition is trivial to prove by definition of the Cayley–Klein metric, but

is nevertheless important to note:

Proposition 8.6. The Cayley–Kleinmetric is natural when restricting to projective subspaces: let
P′ ⊆ P be a projective subspace, then the Cayley–Klein metric of P′−Q′ (whereQ′ B Q∩P′)
is equal to the restriction of the Cayley–Klein metric of P −Q.

Remark 8.7. Whenever P′ = 𝑃 (𝑊 ) ⊆ P = 𝑃 (𝑉 ) is a projective subspace, the restricted

quadricQ′ B Q∩P′
is a quadric inP′

: the associated quadratic form is simply the restriction

of 𝑞 to𝑊 .

8.1.2 Isometries and geodesics

Assume that the symmetric bilinear from 𝑏 is nondegenerate. Recall that the subgroup of

GL(𝑉 ) that preserves 𝑏 is denoted O(𝑏) (or O(𝑞)). Clearly, O(𝑏) preserves the quadric ˆQ B
{𝑞 = 0} in 𝑉 , and the decomposition of 𝑉 into cones 𝑉 = Ω̂+ t ˆQ t Ω̂−

where Ω̂+ B
{𝑣 ∈ 𝑉 : 𝑞(𝑣) > 0} and Ω̂− B {𝑣 ∈ 𝑉 : 𝑞(𝑣) < 0}. Going to the quotient, we have

that PO(𝑏) ⊆ PGL(𝑉 ) preserves the quadric Q in P = 𝑃 (𝑉 ), and the decomposition of

P = Ω+ tQtΩ−
. Since projective transformations preserve the cross-ratio, we clearly have:

Theorem 8.8. The projective orthogonal group PO(𝑏) acts on Ω± by isometries with respect to
the Cayley–Klein metric.

Remark 8.9. The Cayley–Klein metric is not an genuine distance in general, but  Theorem 8.8 

still makes sense: it means that the action of PO(𝑏) on Ω±
preserves 𝑑 .
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Remark 8.10. It is not too hard to show that conversely, any isometry of the Cayley–Klein

metric coincides with the action of an element of PO(𝑏), at least still assuming that 𝑏 is nonde-

generate. We will only prove it in the hyperbolic case i.e. signature (𝑛, 1) (see  Theorem 8.36 ),

relying on the analogous result for the hyperboloid ( Theorem 5.7 ). Note that in the degener-

ate cases, one cannot hope that the statement is literally true, as shows the Euclidean case

(signature (1, 0)) where the Cayley–Klein metric is identically zero.

Another fact that almost comes for free is that lines are geodesics for the Cayley–Klein

metric, more precisely:

Definition 8.11. A chord in Ω±
is the intersection of a line in P with Ω±

.

Theorem 8.12. Chords are complete geodesics for the Cayley–Klein metric. More precisely:
• Hyperbolic chords are complete length-minimizing geodesics, in the sense that they can be
parametrized as isometric curves 𝛾 : R→ Ω± (i.e. such that 𝑑 (𝛾 (𝑠), 𝛾 (𝑡)) = |𝑠 − 𝑡 | for all
𝑠, 𝑡 ∈ R).

• Elliptic chords are complete geodesics, in the sense that they can be parametrized as locally
isometric curves (i.e. such that𝑑 (𝛾 (𝑠), 𝛾 (𝑡)) = |𝑠−𝑡 | for all 𝑠, 𝑡 sufficiently close). Moreover,
they are closed geodesics.

• Parabolic lines are degenerate geodesics in a sense that can be made precise, in particular
the distance between any two points on a parabolic line is zero.

Remark 8.13. Note that any elliptic chord is equal to a whole projective line, so that it is a

topological circle hence a closed geodesic (in particular it is not globally length-minimizing).

Proof. Let 𝑐 = 𝑙 ∩ Ω±
be a chord. Assume that the line 𝑙 is hyperbolic, so that 𝑑 (𝑥, 𝑧) =

𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧) for any 𝑥,𝑦, 𝑧 that lie on 𝑐 in this cyclic order. Let 𝑥0 be any point on 𝑐 and

define 𝑠 (𝑥) B ±𝑑 (𝑥0, 𝑥) for any 𝑥 ∈ 𝑐 , where the sign is chosen so that 𝑠 (𝑥) < 0 when 𝑥

is between 𝐼 and 𝑥0 and 𝑠 (𝑥) > 0 when 𝑥 is between 𝑥0 and 𝐽 . It follows from the previous

additive property that 𝑠 is globally increasing along 𝑐 , so that it gives a global coordinate on

the chord. Moreover, one sees from ( 8.2 ) that 𝑠 (𝑥) → ±∞when 𝑥 approaches 𝐼 or 𝐽 , therefore

𝛾 = 𝑠−1 is defined on R. Finally, the fact that 𝑑 (𝛾 (𝑠), 𝛾 (𝑡)) = |𝑠 − 𝑡 | is again an immediate

consequence of the additive property of the distance along 𝑐 .

In the elliptic case, the additive property is only true if 𝑥,𝑦, 𝑧 are sufficiently close, but

the proof is essentially the same.

In the parabolic case, it is clear that the distance between any two points on the line is

zero. Let us leave the “sense that can be made precise” a mystery, but the example to have in

mind is light-like geodesics in a pseudo-Riemannian manifolds. �

Remark 8.14. Again, it would be nice to prove that conversely, any geodesic for the Cayley–

Klein metric is a projective line. We shall only do it in the hyperbolic case though (see  § 8.2.4 ).

As an exercise, the reader may prove the elliptic case (with the setup of  § 8.1.5 ).
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8.1.3 Cayley–Klein metrics in one dimension

Let us now examine the one-dimensional case more closely. Let 𝑙 = P = 𝑃 (𝑉 ) be a projective
line and let𝑄 ⊆ P be a quadric as before, called the absolute, with associated quadratic form

𝑞 and bilinear form 𝑏. As we have seen in  § 8.1.1 , 𝑄 consists of a pair of points 𝐼 , 𝐽 , possibly

equal, possibly complex conjugate. Let us discuss these cases more precisely by looking at

the signature of 𝑞.

Signature (1, 1) case. (This is the case we are most interested in, which gives the Klein

model.) By Sylvester’s law of inertia, we can find coordinates (𝑋1, 𝑋2) on𝑉 such that 𝑞(𝑋 ) =
𝑋 2

1
− 𝑋 2

2
. Therefore we see that Q = {𝑞 = 0} consists of two vector lines: 𝑋1 + 𝑋2 = 0 and

𝑋1 − 𝑋2 = 0, in other words 𝑄 consists of two points 𝐼 B [−1: 1] and 𝐽 B [1: 1]. In the

affine chart {𝑋2 ≠ 0} with coordinate 𝑥 =
𝑋1

𝑋2

, this is 𝐼 = −1 and 𝐽 = 1. As expected, P −Q ≈
ˆR−{−1, 1} consists of two connected components: Ω− = {|𝑥 | < 1} and Ω+ = {|𝑥 | > 1}. Since
the function 𝑐 defined in ( 8.2 ) is positive on either connected components, the logarithm of

𝑐 is the usual real logarithm, which satisfies ( 8.3 ). It follows that the Cayley–Klein metric

( Definition 8.5 ) is a genuine distance on either connected components. Let us study it more

precisely. The function 𝑐 is given by

𝑐 (𝑥,𝑦) = (1 − 𝑥) (−1 − 𝑦)
(1 − 𝑦) (−1 − 𝑥)

so that

𝑑 (𝑥,𝑦) = 1

2

����ln (1 + 𝑥) (1 − 𝑦)
(1 − 𝑥) (1 + 𝑦)

���� .
Let us consider the component Ω−

. There the factors (1 + 𝑥), (1 − 𝑦), (1 − 𝑥), (1 + 𝑦) are all
positive, therefore

𝑑 (𝑥,𝑦) =
����1
2

ln

(
1 + 𝑥
1 − 𝑥

)
− 1

2

ln

(
1 + 𝑦
1 − 𝑦

)����
= |artanh𝑥 − artanh𝑦 | .

As we shall see in  § 8.1.4 , this expression makes it clear that Ω−
equipped with the Cayley–

Klein metric is isometric to the hyperboloid model of hyperbolic space.

Remark 8.15. The component Ω+
can be treated similarly. In fact, Ω−

and Ω−
are interchange-

able: the fractional linear map 𝑥 ↦→ 1

𝑥
is a projective transformation that exchanges the two.

This symmetry is specific to dimension 1: the interior and exterior of higher-dimensional

ellipsoids are not interchangeable: only the interior is convex.

Signature (2, 0) or (0, 2) case. Let us consider the (2, 0) case; the (0, 2) case is the same.

Now in suitable coordinates we have 𝑞(𝑋 ) = 𝑋 2

1
+ 𝑋 2

2
. The quadric 𝑄 is therefore empty,

neverthelesswe can define two imaginary points 𝐼 = [−𝑖 : 1] and 𝐽 = [𝑖 : 1], which correspond
to the complex vector lines𝑋1+𝑖𝑋2 and𝑋1−𝑖𝑋2. In the affine chart {𝑋2 ≠ 0} with coordinate
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𝑥 =
𝑋1

𝑋2

, this is 𝐼 = −𝑖 and 𝐽 = +𝑖, which live in P𝑐 ≈ C𝑃1 instead of P ≈ R𝑃1. Now the

function 𝑐 is given by

𝑐 (𝑥,𝑦) = (𝑖 − 𝑥) (−𝑖 − 𝑦)
(𝑖 − 𝑦) (−𝑖 − 𝑥)

so that

𝑑 (𝑥,𝑦) = 1

2

����ln (𝑥 + 𝑖) (𝑦 − 𝑖)
(𝑥 − 𝑖) (𝑦 + 𝑖)

���� .
We would like as before to expand this expression using the identity ln(𝑎𝑏) = ln𝑎 + ln𝑏, but

we have to be a little careful: for arbitrary nonzero complex numbers 𝑎 and 𝑏 this is only true

up to a multiple of 2𝑖𝜋 . With this in mind, we continue:

𝑑 (𝑥,𝑦) = 1

2

����ln (
𝑦 − 𝑖
𝑦 + 𝑖

)
− ln

(
𝑥 − 𝑖
𝑥 + 𝑖

)
− 2𝑖𝑘𝜋

����
=

���� 𝑖
2

ln

(
𝑦 − 𝑖
𝑦 + 𝑖

)
− 𝑖

2

ln

(
𝑥 − 𝑖
𝑥 + 𝑖

)
+ 𝑘𝜋

����
that is

𝑑 (𝑥,𝑦) = |arccot𝑦 − arccot𝑥 + 𝑘𝜋 | (8.4)

where 𝑘 is the unique integer that makes arccot𝑦 − arccot𝑥 + 𝑘𝜋 ∈ (−𝜋
2
, 𝜋
2
], in other words

( 8.4 ) defines 𝑑 (𝑥,𝑦) uniquely as an element of [0, 𝜋
2
]. As we shall see in  § 8.1.5 , this expression

makes it clear that P equipped with the Cayley–Klein metric is isometric to the elliptic space

𝑆1/{±1}.

Signature (1, 0) or (0, 1) case. Let us consider the (1, 0) case; the (0, 1) case is the same.

Note that this is a degenerate case: the bilinear form 𝑏 is degenerate, so is the quadric 𝑄 (by

definition). Now in suitable coordinates we have 𝑞(𝑋 ) = 𝑋 2

2
. The quadric Q is therefore

reduced to the point 𝐼 = 𝐽 = [1: 0], which correspond to the vector lines 𝑋2 = 0. In the affine

chart {𝑋2 ≠ 0}with coordinate 𝑥 =
𝑋1

𝑋2

, this is 𝐼 = 𝐽 = ∞. Now the function 𝑐 is constant equal

to 1, therefore 𝑑 (𝑥,𝑦) = 0 for any 𝑥,𝑦. Clearly 𝑑 is not a distance on R; nevertheless one may

interpret this case as the Euclidean one. Indeed, we have seen in the previous chapter (see

 § 7.1.5 ) that the complement of a hyperplane (here a point) in a projective space is naturally an

affine space, and it admits a natural (although not completely canonical) Euclidean structure.

8.1.4 Cayley–Klein model of hyperbolic space

This is the most important subsection of  § 8.1 for us, since it gives the Klein model of hyper-

bolic space.

Let P = 𝑃 (𝑉 ) be an 𝑛-dimensional real projective space and let the absolute Q ⊆ P be a

quadric of signature (𝑛, 1). Such a quadric is called an ellipsoid. As usual, we denote 𝑏 and 𝑞
the associated symmetric bilinear form and quadratic form.
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Proposition 8.16. The quadric Q ⊆ P is a topological sphere of dimension 𝑛 − 1. P − Q
consists of two connected components: Ω+ B {[𝑥] : 𝑞(𝑥) > 0} and Ω− B {[𝑥] : 𝑞(𝑥) < 0}.
The component Ω− is called the interior of the ellipsoid. It is a topological ball, it is convex, any
line (𝑥𝑦) with 𝑥,𝑦 ∈ Ω− is hyperbolic (it intersectsQ in two distinct points).

Let us introduce suitable coordinates to analyze the situation and prove  Proposition 8.16 

along the way. By Sylvester’s law of inertia, in suitable homogeneous coordinates on 𝑉 , the

equation ofQ is written

𝑋 2

1
+ · · · + 𝑋 2

𝑛 − 𝑋 2

𝑛+1 = 0 .

Note thatQ does not intersect the hyperplane𝑋𝑛+1 = 0, thereforeQ is contained in the affine

chart P − {𝑋𝑛+1 = 0}, and its equation in the inhomogeneous coordinates 𝑥𝑘 =
𝑋𝑘

𝑋𝑛+1
is:

𝑥2
1
+ · · · + 𝑥2𝑛 − 1 = 0 .

Thus we see that Q is an ellipsoid (it has the equation of a round sphere in the coordinates

(𝑥𝑖), but we do not have a Euclidean metric to distinguish between round spheres and other

ellipsoids). The other claims of  Proposition 8.16 are now immediate. In particular, the image

of Ω−
in the affine chart P −Q → {𝑋𝑛+1 = 1} ≈ R𝑛 is the unit ball, it is called the Beltrami–

Klein disk (or Beltrami–Klein ball).
Consider now the Cayley–Klein metric 𝑑 (𝑥,𝑦) on Ω−

. By the discussion carried out in

in  § 8.1.3 , this is a genuine distance along any chord (intersection of Ω−
with a line) and it

satisfies the additive property 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧) = 𝑑 (𝑥, 𝑧) whenever 𝑦 is between 𝑥 and 𝑧. It

is tempting to say that 𝑑 is a genuine distance on Ω−
and that the geodesics are the chords.

Instead of proving it directly, we obtain this as a consequence of  Theorem 8.18 .

Recall from  Chapter 5 thatH ⊆ 𝑉 denotes the hyperboloid

H B {𝑣 ∈ 𝑀 : 〈𝑣, 𝑣〉 = −1} .

and H+
is the upper sheet H+ = H ∩ {𝑋𝑛+1 > 0}. In  Chapter 5 , we saw that the induced

metric on H+
from (𝑉 ,𝑏) is a Riemannian metric which makes H+

a model of hyperbolic

space. Now, observe that there is an obvious way to identify Ω−
andH+

, since Ω−
is the set

of timelike lines in 𝑉 , and each such line intersectsH+
exactly once:

Definition 8.17. We denote𝜓 : H+ → Ω−
the bijective map

𝜓 : H+ → Ω−

𝑣 ↦→ [𝑣] .

The stereographic projection of the hyperboloid is the bijective map 𝜉 : H+ → 𝐵, where

𝐵 is the unit ball in the affine hyperplane {𝑋𝑛+1 = 1} ≈ R𝑛, obtained by post-composing 𝜓

with the affine chart 𝜑 : P − Q → {𝑋𝑛+1 = 1}. Its image 𝐵 is the Beltrami–Klein disk (see

 Figure 8.2 ).
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Figure 8.2: Stereographic projection of the hyperboloid to the Beltrami–Klein disk.

Theorem 8.18. The map 𝜓 is an isometry with respect to the hyperbolic distance 𝑑H on H+

and the Cayley–Klein metric 𝑑CK on Ω−.

Remark 8.19. Although we have not yet shown that the Cayley–Klein metric on Ω−
is a

genuine distance,  Theorem 8.18 means that 𝑑CK(𝜓 (𝑣),𝜓 (𝑤)) = 𝑑H(𝑣,𝑤) for all 𝑣,𝑤 ∈ H+
.

(In addition, we know that 𝜓 is bijective, so it deserves to be called a global isometry.) The

fact that 𝑑CK is a genuine distance is a corollary.

Proof. Let 𝑣,𝑤 ∈ H+
, denote 𝑥 = 𝜓 (𝑣) and 𝑦 = 𝜓 (𝑤); we want to show that 𝑑CK(𝑥,𝑦) =

𝑑H(𝑣,𝑤).
First we argue that it is enough to do the one-dimensional case, by simply restricting to the

geodesic (𝑣𝑤) inH+
, which is a one-dimensional hyperboloid. This amounts to intersecting

H+
with a 2-dimensional vector subspace, therefore in P this corresponds to restricting to

the projective line (𝑥𝑦). Indeed, on the one hand the Cayley–Klein metric is natural when

restricting to projective subspaces (see  Proposition 8.6 ); and on the other hand the hyperboloid

is also natural when restricting to vector subspaces, (see  Proposition 5.1 ): the restriction of

the hyperbolic distance to a lower-dimensional hyperboloid is the hyperbolic distance on the

lower-dimensional hyperboloid. (In Riemannian geometry, one says that lower-dimensional

hyperboloids are totally geodesic.)
We thus now assume that P is a projective line, and we can reinvest the work of  § 8.1.3 .
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Choose coordinates such that the quadratic form is 𝑞(𝑋 ) = 𝑋 2

1
− 𝑋 2

2
, and denote 𝑥 =

𝑋1

𝑋2

the affine coordinate on P − {𝑋2 = 0}. The quadric Q is the pair of points 𝐼 = −1 and

𝐽 = 1, the domain Ω−
is the interval [−1, 1], and the Cayley–Klein metric is 𝑑CK(𝑥,𝑦) =

| artanh𝑥 − artanh𝑦 |.
On the other hand,H+

is the upper arc of the hyperbola 𝑋 2

1
−𝑋 2

2
= −1. It is parametrized

by 𝛾 (𝑡) = (sinh 𝑡, cosh 𝑡), and in fact this is a unit geodesic (see  Theorem 5.8 ). Let 𝑡1 and 𝑡2
be such that 𝑣 = 𝛾 (𝑡1) and 𝑤 = 𝛾𝑡2 . Since 𝛾 is a unit geodesic, we have 𝑑H(𝑣,𝑤) = |𝑡1 − 𝑡2 |.
The points 𝑥 = 𝜓 (𝑣) is determined by [𝑥 : 1] = [sinh 𝑡1 : cosh 𝑡1], so 𝑥 = tanh 𝑡1. Similarly,

𝑦 = tanh 𝑡2. Hence we find 𝑑CK(𝑥,𝑦) = | artanh𝑥 − artanh𝑦 | = |𝑡1 − 𝑡2 | = 𝑑H(𝑣,𝑤) as
desired. �

Corollary 8.20. The Cayley–Klein metric on Ω− may be written:

𝑑 ( [𝑢], [𝑣]) = arcosh

(
−𝑏 (𝑢, 𝑣)√︁
𝑞(𝑢)𝑞(𝑣)

)
(8.5)

Proof. The right-hand side of ( 8.5 ) is invariant by scaling𝑢 or 𝑣 by positive numbers, therefore

we may assume that 𝑞(𝑢) = 𝑞(𝑣) = −1. However in that case arcosh (−𝑏 (𝑢, 𝑣)) is the

hyperbolic distance on H+
(see  Theorem 5.12 ), so that ( 8.5 ) is precisely the statement of

 Theorem 8.18 . �

As an immediate consequence of  Theorem 8.18 , we obtain:

Theorem 8.21. The Cayley–Klein metric is a distance on Ω−. It is induced by a complete
Riemannian metric of constant sectional curvature −1.

In other words, the previous theorem says that Ω−
equipped with the Cayley–Kleinmetric

is a model of hyperbolic space. Being slightly pedantic, we call it the Cayley–Klein model
or projective model, to distinguish it from the Beltrami–Klein model which is the same

model, except it is considered in an affine chart (where Ω−
becomes a disk).

Remark 8.22. Hilbert proposed a very elegant and elementary proof that the Cayley–Klein

metric is a genuine distance that holds more generally on any proper convex set Ω ⊆ P . This

generalization of the Cayley–Klein metric is called the Hilbert metric. Hilbert’s proof is re-
produced by Papadopoulos in [ Pap , §5.6], and I sincerely encourage you to go and read it. The

key ingredient is the invariance of the cross-ratio under perspectivities (central collineations).

8.1.5 Cayley–Klein model of elliptic space

Consider now the case where 𝑏 is of signature (𝑛 + 1, 0), in other words (𝑉 ,𝑏) ≈ R𝑛+1 is
a Euclidean vector space. In this case, the quadric Q is empty, therefore the Cayley–Klein

metric is defined on all P . Notice that all lines are elliptic in this case.

Let 𝑆 = {𝑣 ∈ 𝑉 : 𝑞(𝑣) = 1} denote the unit sphere in (𝑉 ,𝑏). As in  § 8.1.4 , we would

like to define the stereographic projection𝜓 : 𝑆 → P , however note that each vector line in
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𝑉 intersects 𝑆 twice, at two antipodal points ±𝑣 . This is similar to the situation where each

timelike line in Minkowski space intersects the hyperboloidH twice, except here there is no

“upper sheet” of the sphere to resolve the issue. Instead, we have to define the stereographic

projection as a map𝜓 : 𝑆/{± id} → P , where 𝑆/{± id} is the set of pairs of antipodal points
on the sphere.

Definition 8.23. We denote𝜓 : 𝑆/{± id} → P the bijective map

𝜓 : 𝑆/{± id} → P
{±𝑣} ↦→ [𝑣] .

Remark 8.24. In this setting, the stereographic projection of 𝑆/{± id} is the map 𝑆/{± id} →
{𝑋𝑛+1 = 1} ≈ R𝑛, obtained by post-composing𝜓 with the affine chart P −Q → {𝑋𝑛+1 = 1}.
See  Figure 8.3 . Note that the stereographic projection is not defined on the 𝑛 − 1-dimensional

sphere 𝑆 ∩ {𝑋𝑛+1 = 0} (mod ± id), however it can be extended as a bijective map 𝑆/{± id} →
{𝑋𝑛+1 = 1} ∪ 𝜕∞{𝑋𝑛+1 = 1} ≈ R𝑃𝑛.

Figure 8.3: Stereographic projection of 𝑆/{± id}.

Equip 𝑆 with the Riemannian metric induced from the Euclidean metric on (𝑉 ,𝑏). As
is well-known, this is a complete Riemannian metric of constant sectional curvature 1 (see
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 Exercise 2.5 ). Since 𝑣 ↦→ −𝑣 is an isometry of 𝑆 , the metric is well-defined on the quotient

on 𝑆/±1. We shall call the resulting Riemannian manifold 𝑆/{± id} the spherical model of
elliptic space.

Theorem 8.25. The map𝜓 is an isometry with respect to the spherical distance 𝑑𝑆 on 𝑆/{± id}
and the Cayley–Klein metric 𝑑CK on P .

Proof. The proof is completely analogous to that of  Theorem 8.18 ; we leave it as an exercise

to the reader (see  Exercise 8.1 ). �

As an immediate consequence of the previous theorem, we obtain:

Theorem 8.26. The Cayley–Klein metric is a distance on P . It is induced by a complete
Riemannian metric of constant sectional curvature 1.

In other words, R𝑃𝑛 equipped with the Cayley–Klein metric is a model of elliptic space,

which we naturally call the Cayley–Klein model or projective model.

8.1.6 Cayley–Klein model of Euclidean space

Consider now the case where 𝑏 is of signature (1, 0), in particular it is degenerate. In suitable

coordinates, the quadratic form is written

𝑞(𝑋 ) = 𝑋 2

𝑛+1

therefore the degenerate quadric Q is the projective hyperplane 𝑋𝑛+1 = 0. Note that in this

case, all lines inP −Q are parabolic, so the Cayley–Klein metric is constant equal to zero; it is

not a Euclidean metric as one could hope. Nevertheless, we have already seen in the previous

chapter (see  § 7.1.5 ) that the complement P − Q has a natural structure of an affine space.

Like all affine spaces it admits a natural Euclidean structure, although it is not completely

canonical: it depends on the choice of an inner product on the underlying vector space. In

our case, this choice amounts to a Euclidean inner product 𝑏′ on the kernel of 𝑏, so that 𝑏 +𝑏′
is a Euclidean inner product on 𝑉 .

Let E+ ⊆ 𝑉 denote the affine hyperplane 𝑋𝑛+1 = 1. Note that this is the upper sheet of the

pseudosphere {𝑞 = 1}. Themap𝜓 is now the bijective map𝜓 : E+ → P−Q, given by 𝑣 ↦→ [𝑣]
as before. Note that it coincides with the inverse of the affine chartP−Q ∼−→ {𝑋𝑛+1 = 1} ≈ R𝑛,
so the “stereographic projection” in this setting is the identity map E+ → {𝑋𝑛+1 = 1} ≈ R𝑛.
Equip E+

with the metric induced from 𝑏 +𝑏′. Then E+
is a complete Riemannian manifold of

zero sectional curvature, in other words a model of Euclidean space. Using the stereographic

projection 𝜓 to transport the metric, we obtain that P − Q is a model of Euclidean space,

which we call the Cayley–Klein model or projective model.
In summary, it is not the case that Euclidean geometry is obtained as a Cayley–Klein

geometry, in the sense that the Euclidean metric is not a Cayley–Klein metric; nevertheless

149



CHAPTER 8. THE KLEIN MODEL

we can interpret the Cayley–Klein geometry associated to a degenerate quadric of signature

(1, 0) as a model of Euclidean geometry. In addition, in  Exercise 8.2 it is shown that the

Euclidean metric may be viewed as a degenerate elliptic metric.

8.1.7 Other Cayley–Klein geometries

Naturally, there are many more Cayley–Klein geometries, depending on the signature of

quadric. Exploring these other examples is a fascinating program but beyond our scope, so

we will be content with alluding to their existence.

Actually, as we saw in the Euclidean case, a Cayley–Klein geometry is not adequately

defined by the Cayley–Klein metric in degenerate cases, nor even by the quadric alone. There

are however more refined approaches to defining Cayley–Klein geometries. In [ Ric ], a 2-

dimensional Cayley–Klein geometry is defined by a “primal/dual” pair of conics, leading

to seven types of Cayley–Klein geometries. A more general treatment is to define Cayley–

Klein geometries as certain types of homogeneous spaces (spaces with a large group of

symmetries), in the spirit of Klein’s Erlangen program. This leads to nine 2-dimensional

Cayley–Klein geometries: see e.g. [ HOS ] (requires some knowledge of Lie theory!). I also

recommend reading [ FS ] for more geometric insights, especially on the Lorentzian geometries

(Minkowski, de Sitter, anti de Sitter).

8.2 The Beltrami–Klein disk

8.2.1 Definition

Let us recap the setup of  § 8.1.4 . Let (𝑉 ,𝑏) be a Minkowski space of dimension 𝑛 + 1. By

choosing a suitable basis, we can identify (𝑉 ,𝑏) ≈ R𝑛,1. We denote (𝑋1, . . . , 𝑋𝑛+1) the associ-
ated coordinates. We denoteQ ⊆ R𝑃𝑛 the projectivized light cone, it is the projective quadric
associated to 𝑏, called an ellipsoid. The open set Ω− ⊆ R𝑃𝑛 is the set of timelike vector lines,

it is the interior of the ellipsoid, and a convex set in R𝑃𝑛. The Cayley–Klein metric 𝑑CKis a

distance in Ω−
, making it a model of hyperbolic space. The image of this model under the

usual affine chart 𝜑 : 𝑃 (𝑉 ) − 𝑃 ({𝑋𝑛+1 = 0}) ∼−→ {𝑋𝑛+1 = 1} ≈ R𝑛 is called the Beltrami–Klein
disk:

Definition 8.27. The Beltrami–Klein disk (or ball) (𝐵,𝑑) is the unit ball 𝐵 ⊆ R𝑛 with the

distance 𝑑 that is the image of the Cayley–Klein model (Ω−, 𝑑CK) ⊆ R𝑃𝑛 under the affine
chart 𝜑 .

We shall give an explicit expression of the distance 𝑑 in the next subsection. As a corollary

of  Theorem 8.18 , we obtain:

Theorem 8.28. The Beltrami–Klein disk (𝐵,𝑑) is the isometric image of the hyperboloid model
(H+, 𝑑H) under the stereographic projection 𝜉 : H+ → 𝐵.
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We will derive many features of the Beltrami–Klein disk from the hyperboloid using

 Theorem 8.28 , especially the Riemannian metric. For now, we have:

Corollary 8.29. The Beltrami–Klein disk is a model of hyperbolic space.

8.2.2 Distance

By definition, the distance𝑑 in the Klein disk 𝐵 is the image (the push-forward) of the Cayley–

Klein metric 𝑑CK, which is defined in terms of cross-ratios. Since the cross-ratio can be

computed directly in any affine chart (due to its invariance under projective transformations),

this distance can be defined directly in the Klein model:

Proposition 8.30. Let 𝑥,𝑦 ∈ 𝐵. Denote by 𝐼 and 𝐽 the intersections of the straight line 𝑙 =
(𝑥𝑦) ⊆ R𝑛 with 𝜕𝐵, so that 𝐼 , 𝑥,𝑦, 𝐽 are aligned in this order. Choose any affine frame on 𝑙 ,
identifying it with R. Then

𝑑 (𝑥,𝑦) = 1

2

ln[𝑥,𝑦, 𝐽 , 𝐼 ]

=
1

2

ln

|𝐽𝑥 | |𝐼𝑦 |
|𝐽𝑦 | |𝐼𝑥 |

where we denote |𝐴𝐵 | the Euclidean distance between two points 𝐴, 𝐵 ∈ R𝑛.

More explicitly, the distance can also be written:

Proposition 8.31.

𝑑 (𝑥,𝑦) = arcosh

(
1 − 〈𝑥,𝑦〉√︁

(1 − ‖𝑥 ‖2) (1 − ‖𝑦‖2)

)
(8.6)

where 〈·, ·〉 and ‖ · ‖ denote the Euclidean inner product and norm in R𝑛.

Proof. Although  Proposition 8.30 is an immediate application of  Corollary 8.20 (also see

 Exercise 8.4 ), it is a good exercise to write the direct proof.

Let 𝐾 be the Euclidean midpoint of 𝐼 and 𝐽 : see  Figure 8.4 . Let us choose the pair of

points 𝐾 and 𝐽 as an affine chart on the line 𝑙 = (𝑥𝑦), giving an identification (𝑥𝑦) ≈ R: any
point𝑚 ∈ 𝑙 is uniquely represented by a real coordinate 𝜆 such that𝑚 = (1 − 𝜆)𝐾 + 𝜆𝐽 . The
coordinates of 𝐼 , 𝐽 , 𝑥,𝑦 are respectively:

𝜆𝐼 = −1
𝜆𝐽 = 1

𝜆𝑥 =
𝐾𝑥√︁

1 − ‖𝐾 ‖2

𝜆𝑦 =
𝐾𝑦√︁

1 − ‖𝐾 ‖2
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Figure 8.4: Calculating the distance 𝑑 (𝑥,𝑦) in the Beltrami–Klein disk.

where we denote 𝐾𝑥 the signed distance between 𝐾 and 𝑥 , same for 𝐾𝑦 (for instance, in

 Figure 8.4 , 𝐾𝑥 = −|𝐾𝑥 | and 𝐾𝑦 = +|𝐾𝑦 |). The expressions for 𝜆𝑥 and 𝜆𝑦 above can be found

by noticing that 𝐾𝐼 =
√︁
1 − ‖𝐾 ‖2 by the Pythagorean theorem.

Since the cross-ratio can be computed in any affine coordinates on a line, we may use

these coordinates to compute the distance between 𝑥 and 𝑦:

𝑑 (𝑥,𝑦) = 1

2

|ln[𝑥,𝑦, 𝐽 , 𝐼 ] |

=
1

2

����ln (1 − 𝜆𝑥 ) (−1 − 𝜆𝑦)
(1 − 𝜆𝑦) (−1 − 𝜆𝑥 )

���� .
Let us manipulate this expression in view of obtaining ( 8.6 ):

𝑑 (𝑥,𝑦) = 1

2

������ln 1 + 𝜆𝑥−𝜆𝑦
1−𝜆𝑥𝜆𝑦

1 − 𝜆𝑥−𝜆𝑦
1−𝜆𝑥𝜆𝑦

������
=

����artanh 𝜆𝑥 − 𝜆𝑦
1 − 𝜆𝑥𝜆𝑦

����
= arcosh

1 − 𝜆𝑥𝜆𝑦√︃
(1 − 𝜆2𝑥 ) (1 − 𝜆2𝑦)

.

(8.7)

For the last equality, we used the identity artanh |𝑡 | = arcosh
1√
1−𝑡2

for −1 < 𝑡 < 1.
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To conclude, we compute:

1 − 𝜆𝑥𝜆𝑦√︃
(1 − 𝜆2𝑥 ) (1 − 𝜆2𝑦)

=
1 − ‖𝐾 ‖2 − 𝐾𝑥𝐾𝑦

(1 − ‖𝐾 ‖2 − 𝐾𝑥2) (1 − ‖𝐾 ‖2 − 𝐾𝑦2)
(8.8)

By writing 𝑥 = 𝐾 + (𝑥 − 𝐾) and 𝑦 = 𝐾 + (𝑦 − 𝐾), we see that 〈𝑥,𝑦〉 = ‖𝐾 ‖2 + 𝐾𝑥𝐾𝑦,
‖𝑥 ‖2 = ‖𝐾 ‖2 + 𝐾𝑥2, and ‖𝑦‖2 = ‖𝐾 ‖2 + 𝐾𝑦2, so that ( 8.8 ) is rewritten

1 − 𝜆𝑥𝜆𝑦√︃
(1 − 𝜆2𝑥 ) (1 − 𝜆2𝑦)

=
1 − 〈𝑥,𝑦〉

(1 − ‖𝑥 ‖2) (1 − ‖𝑦‖2) . (8.9)

Inserting ( 8.9 ) into ( 8.7 ) yields the desired result. �

8.2.3 Riemannian metric

The distance on the Beltrami–Klein disk is induced by a Riemannian metric, which can be

computed as the pullback of the Riemannian metric on the hyperboloid under the inverse of

the stereographic projection:

Proposition 8.32. The Riemannian metric on the Beltrami–Klein disk 𝐵 ⊆ R𝑛 is given by

d𝑠2 =
d𝑥2

1
+ · · · + d𝑥2𝑛

1 − ‖𝑥 ‖2 + (𝑥1 d𝑥1 + · · · + 𝑥𝑛 d𝑥𝑛)2
(1 − ‖𝑥 ‖2)2

Proof. The inverse of the stereographic projection is the map

𝜉−1 : 𝐵 → H+ ⊆ R𝑛,1

𝑥 ↦→ 𝑥

‖𝑥 ‖

where we have denoted 𝑥 = (𝑥, 1) and ‖𝑥 ‖ =
√︁
|𝑞(𝑥) |. In other words, this is:

𝜉−1 : 𝑥 ↦→ (𝑥, 1)√︁
1 − ‖𝑥 ‖2

where ‖𝑥 ‖ now denotes the Euclidean norm of 𝑥 ∈ R𝑛. Recall that the metric on the hyper-

boloid is induced by the Minkowski metric

d𝑠2 = d𝑋 2

1
+ · · · + d𝑋 2

𝑛 − d𝑋 2

𝑛+1 .

The pullback metric on 𝐵 under 𝜉−1 is obtained by replacing each d𝑋𝑘 by its expression of

terms of the d𝑥𝑘 ’s. More precisely, the map 𝜉−1 is written

𝑋𝑘 =
𝑥𝑘√︁

1 − ‖𝑥 ‖2
for 𝑘 ∈ {1, . . . , 𝑛}

𝑋𝑛+1 =
1√︁

1 − ‖𝑥 ‖2
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therefore we find:

d𝑋𝑘 =
d𝑥𝑘√︁

1 − ‖𝑥 ‖2
+ 𝑥𝑘 (1 − ‖𝑥 ‖2)−3/2

(∑︁
𝑗

𝑥 𝑗 d𝑥 𝑗

)
for 𝑘 ∈ {1, . . . , 𝑛}

d𝑋𝑛+1 = (1 − ‖𝑥 ‖2)−3/2
(∑︁

𝑗

𝑥 𝑗 d𝑥 𝑗

)
Taking the squares (symmetric product of one-forms):

d𝑋 2

𝑘
=

d𝑥2
𝑘

1 − ‖𝑥 ‖2 +
𝑥2
𝑘

(∑
𝑗 𝑥 𝑗 d𝑥 𝑗

)
2

(1 − ‖𝑥 ‖2)3 +
2𝑥𝑘 d𝑥𝑘

(∑
𝑗 𝑥 𝑗 d𝑥 𝑗

)
(1 − ‖𝑥 ‖2)2 for 𝑘 ∈ {1, . . . , 𝑛}

d𝑋 2

𝑛+1 =

(∑
𝑗 𝑥 𝑗 d𝑥 𝑗

)
2

(1 − ‖𝑥 ‖2)3

Combining these, we find

d𝑠2 = d𝑋 2

1
+ · · · + d𝑋 2

𝑛 − d𝑋 2

𝑛+1

=

∑
𝑘 d𝑥

2

𝑘

1 − ‖𝑥 ‖2 +
‖𝑥 ‖2

(∑
𝑗 𝑥 𝑗 d𝑥 𝑗

)
2

(1 − ‖𝑥 ‖2)3 +
2

(∑
𝑗 𝑥 𝑗 d𝑥 𝑗

)
2

(1 − ‖𝑥 ‖2)2 −
(∑

𝑗 𝑥 𝑗 d𝑥 𝑗
)
2

(1 − ‖𝑥 ‖2)3

=

∑
𝑘 d𝑥

2

𝑘

1 − ‖𝑥 ‖2 +
(∑

𝑗 𝑥 𝑗 d𝑥 𝑗
)
2

(1 − ‖𝑥 ‖2)2

as desired. �

Remark 8.33. We see from the expression that the Beltrami–Klein metric is not conformal to

the Euclidean metric in 𝐵. More precisely, it is nowhere conformal except at the origin.

8.2.4 Geodesics

Since the stereographic projection H+ → 𝐵 is a Riemannian isometry from the hyper-

boloid to the Beltrami–Klein disk, the (parametrized) geodesics on 𝐵 are the images of the

(parametrized) geodesics onH. Ignoring the parametrization, recall that a geodesic onH is

the intersection of H with a 2-plane in R𝑛,1. In the projective model, this translates to the

intersection of Ω−
with a projective line. In the Beltrami–Klein model, it thus translates to

the intersection of 𝐵 with a Euclidean straight line, in other words a chord.

Theorem 8.34. The (unparametrized) geodesics in the Beltrami–Klein model are the chords, i.e.
Euclidean straight line segments joining two points of 𝜕𝐵.

The curious reader will find an arclength parametrization of the geodesics ( Exercise 8.8 ).
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8.2.5 Isometries

We have seen in  Theorem 8.8 that in the projective model, the projective orthogonal group

PO(𝑏) acts by isometries on Ω−
(and we promised to later prove that this is all the isometries).

In the Beltrami–Klein disk, the action of PO(𝑏) translates to the action of PO(𝑛, 1) on 𝐵 by

linear fractional transformations.

Example 8.35. Consider the Lorentz boost𝑀 (𝑡) ∈ SO
+(2, 1):

𝑀 (𝑡) = ©«
1 0 0

0 cosh 𝑡 sinh 𝑡

0 sinh 𝑡 cosh 𝑡

ª®¬ .
The projective linear action of ±𝑀 (𝑡) on R𝑃2 (preserving Ω−

) is given by

[𝑋1 : 𝑋2 : 𝑋3] ↦→ [𝑋1 : (cosh 𝑡)𝑋2 + (sinh 𝑡)𝑋3 : (sinh 𝑡)𝑋2 + (cosh 𝑡)𝑋3] .

The linear fractional action of ±𝑀 (𝑡) on R2 preserving the Beltrami–Klein disk 𝐵 ⊆ R2 is
given by:

(𝑥1, 𝑥2) ↦→
(

𝑥1

(sinh 𝑡)𝑥2 + cosh 𝑡
,
(cosh 𝑡)𝑥2 + (sinh 𝑡)
(sinh 𝑡)𝑥2 + (cosh 𝑡)

)
.

By the discussion above, we have:

Theorem 8.36. The group of isometries of the Beltrami–Klein disk is PO(𝑛, 1) acting by linear
fractional transformations. The subgroup of orientation-preserving isometries is PSO(𝑛, 1).

Remark 8.37. Given any 𝑓 ∈ O(𝑛, 1), exactly one element of the pair {𝑓 ,−𝑓 } is in O
+(𝑛, 1). It

follows that there is an obvious isomorphism PO(𝑛, 1) ≈ O
+(𝑛, 1), and PSO(𝑛, 1) ≈ SO

+(𝑛, 1).
It follows that PO(𝑛, 1) has two connected components, PSO(𝑛, 1) (orientation-preserving
isometries) and the other one (orientation-reversing isometries).

The only nontrivial part of  Theorem 8.36 that remains to prove is that any isometry of

the Beltrami–Klein disk is given by the action of some element of PO(𝑛, 1). This follows from
 Theorem 5.6 and the following proposition:

Proposition 8.38. The action of O+(𝑛, 1) on H+ translates to the action of PO(𝑛, 1) on the
Beltrami–Klein disk. More precisely, the stereographic projection 𝜉 : H+ → 𝐵 conjugates the
action of any 𝑓 ∈ 𝑂+(𝑛, 1) on H+ (restricting the linear action on R𝑛,1) to the projective linear
(resp. fractional linear) action of ±𝑓 on Ω− (resp. on 𝐵).

The proof of  Proposition 8.38 is essentially trivial and left to the reader: it is a matter of

unraveling the definitions.
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8.3 Exercises

Exercise 8.1. Cayley–Klein model of elliptic space

Let (𝑉 ,𝑏) be a Euclidean vector space. We denote 𝑆 the unit sphere in 𝑉 .

(1) Prove  Theorem 8.25 : The stereographic projection 𝑆/{± id} → 𝑃 (𝑉 ) is an isometry with
respect to the spherical distance on 𝑆/{± id} and the Cayley–Klein metric on 𝑃 (𝑉 ).

(2) Show that the Cayley–Klein metric on 𝑃 (𝑉 ) may be written:

𝑑 ( [𝑢], [𝑣]) = arccos

(
𝑏 (𝑢, 𝑣)√︁

𝑏 (𝑢,𝑢)𝑏 (𝑣, 𝑣)

)
.

Exercise 8.2. Cayley–Klein model of Euclidean space

Let P = 𝑃 (𝑉 ) be a projective space of dimension 𝑛 and let 𝑏 be a symmetric bilinear form on

𝑉 of signature (1, 0). Let 𝑞 denote the associated quadratic form and Q ⊆ P the associated

quadric.

(1) Let 𝑏0 be a Euclidean inner product on ker𝑏. Show that 𝑏𝜀 B 𝜀2𝑏0 + 𝑏 is a Euclidean

inner product on 𝑉 . Write the Cayley–Klein metric 𝑑𝜀 on 𝑃 (𝑉 ) associated to 𝑏𝜀 using
 Exercise 8.1  (2) . Derive the following expression in a suitable affine chart P −Q ∼→ R𝑛:

𝑑𝜀 (𝑥,𝑦) = arccos

(
1 + 𝜀2〈𝑥,𝑦〉√︁

(1 + 𝜀2‖𝑥 ‖2) (1 + 𝜀2‖𝑦‖2)

)
.

(2) Show that, when 𝜀 → 0, the Cayley–Klein metric 𝑑𝜀 converges to the constant function

𝑑0 = 0. Is this expected?

(3) Show that, when 𝜀 → 0, the “blown-up” Cayley–Klein metric
1

𝜀
𝑑𝜀 converges to a

Euclidean metric on P −Q, which can be identified to 𝑏0. Is this expected?

Exercise 8.3. Hilbert metric

We have seen that the Cayley–Klein metric 𝑑 is a distance in Ω ⊆ R𝑛 when Ω is the interior

of an ellipsoid. Hilbert gave an elegant and elementary proof that applies more generally

whenever Ω is a bounded convex open set. Your task is to go and read this proof in [ Pap ,

§5.6], and summarize it in a few lines.

Exercise 8.4. Beltrami–Klein distance and stereographic projection

(1) Recall the expression of the hyperbolic distance 𝑑H on the hyperboloidH+ ⊆ R𝑛,1 and
the distance 𝑑BK on the Beltrami–Klein disk 𝐵 ⊆ R𝑛.

(2) Compute the image of the distance𝑑H on 𝐵 under the stereographic projection. Recover
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that the stereographic projection is an isometry from the hyperboloid to the Beltrami–

Klein disk.

Exercise 8.5. Riemannian metric in the Beltrami–Klein disk

(1) Redo the calculation of the Riemannian metric in the Beltrami–Klein disk (preferably

without looking at the lecture notes).

(2) Is the Beltrami–Klein metric conformal to the Euclidean metric in 𝐵?

Exercise 8.6. Distance to origin

Check that the distance from the origin to a point 𝑥 in the Beltrami–Klein disk 𝐵 ⊆ R𝑛 is
given by 𝑑 (𝑂, 𝑥) = artanh(‖𝑥 ‖), using three different arguments:

(1) Using the expression of the Cayley–Klein metric in terms of cross-ratios.

(2) Using the explicit expression of the distance (see  Proposition 8.31 ).

(3) Using the Riemannian metric.

Exercise 8.7. Circles in the Beltrami–Klein disk

A circle𝐶 (𝑥, 𝑅) in the 2-dimensional Beltrami–Klein disk (𝐵,𝑑) is the set of points at distance
𝑅 from 𝑥 . Show that any circle in the Beltrami–Klein disk is a Euclidean ellipse. Show an

analogous result for higher-dimensional Beltrami–Klein disks.

Exercise 8.8. Geodesics in the Beltrami–Klein disk

Find the expression of any parametrized geodesic in the Beltrami–Klein disk.

Exercise 8.9. Isometries in the Beltrami–Klein disk

(1) Describe the action of PO(1, 1) on the 1-dimensional Beltrami–Klein disk.

(2) Consider the matrix

𝑅(𝑡) = ©«
cos 𝑡 − sin 𝑡 0

sin 𝑡 cos 𝑡 0

0 0 1

ª®¬ .
Show that 𝑅(𝑡) ∈ SO(2, 1) and describe its action on the 2-dimensional Beltrami–Klein

disk.

(3) Show that any element of PSO(2, 1) can be written [𝐿] [𝑅], for some Lorentz boost 𝐿

and some 𝑅 = 𝑅(𝑡). (We denote [𝑀] the element of 𝑃𝐺 associated to𝑀 ∈ 𝐺 .) Recover
the fact that PSO(2, 1) is connected.
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Part IV

Möbius geometry and the Poincaré models

Mathematics is the art of giving the same name to different things.

– Henri Poincaré 

1
 

1
[ Poi3 ]. It is amusing that Poincaré writes la mathématique as a singular noun in the original French text,

contrary to the customary plural.



CHAPTER 9

Möbius transformations

Disclaimer: This chapter is a draft.

In this chapter, we review Möbius transformations, which can be either defined as conformal

self-maps of 𝑆𝑛 or R̂𝑛, or as products of inversions through spheres. These are extremely

important maps in hyperbolic geometry because they are the isometries of hyperbolic space

in the Poincaré models, as we shall see in the next chapter. In a nutshell, the Poincaré models

are conformal domains of R𝑛, therefore their isometries will be conformal maps of R𝑛, which

are Möbius transformations. We shall also see that Möbius transformations are crucial in

understanding the relations between different models of hyperbolic space. As it turns out,

Möbius transformations play an even more special role in 2- and 3-dimensional hyperbolic

geometry, where they are a key part of a striking connection between hyperbolic geometry

and complex geometry. This small miracle is essentially due to the coincidence of Möbius

transformations of the sphere 𝑆2 with projective automorphisms of the complex projective

line C𝑃1.

Möbius transformations are named after the 19th century German mathematician August

Ferdinand Möbius. He is best known for the discovery of the Möbius strip, but also made im-

portant contributions to projective geometry (e.g., he introduced homogeneous coordinates),

where Möbius transformations play an important part.

I recommend [ Bea , Chap. 3, Chap. 4] as a complementary treatment of Möbius transfor-

mations: the coverage is slightly less extensive than these notes, but it contains more details

and proofs.
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9.1. CONFORMAL MAPS

9.1 Conformal maps

9.1.1 Similarities

Let (𝑉 , 〈·, ·〉) be a Euclidean vector space. We recall that a linear map 𝑓 : 𝑉 → 𝑉 is called a

similarity if it satisfies one of the equivalent conditions:

(i) 𝑓 multiplies all distances by a constant factor. Equivalently, there exists 𝑘 > 0 such

that ‖ 𝑓 (𝑥)‖ = 𝑘 ‖𝑥 ‖ for all 𝑥 ∈ 𝑉 .
(ii) 𝑓 can be written as the composition of a linear isometry (an element of O(𝑉 )) and a

homothety (an element of R∗ id𝑉 ).

Linear similarities form a subgroup of GL(𝑉 ), which one may sensibly denote R∗O(𝑉 ).
Remark 9.1. More generally, similarities refer to the affine version of the definition above:

they are the maps𝑉 → 𝑉 that multiply all distances by a constant factor, equivalently they

are affine maps whose linear part is a linear similarity.

On the other hand, a linear map 𝑓 : 𝑉 → 𝑉 is called conformal (or angle-preserving) if
it preserves unoriented angles between vectors:

∀𝑢, 𝑣 ∈ 𝑉 ](𝑓 (𝑢), 𝑓 (𝑣)) = ](𝑢, 𝑣) .

Remark 9.2. What is an angle? One may define the unoriented angle between two nonzero

vectors 𝑢, 𝑣 ∈ 𝑉 as the real number 𝜃 = ](𝑢, 𝑣) ∈ [0, 𝜋] given by the formula

〈𝑢, 𝑣〉 = ‖𝑢‖ ‖𝑣 ‖ cos𝜃 .

Unless𝑉 is 2-dimensional, one cannot define a reasonable notion of oriented angles between

vectors in𝑉 , so onemay not define a notion of oriented angles-preservingmap. It nevertheless

makes sense to require that a map is angle-preserving and orientation-preserving.

Remark 9.3. By definition, if 𝑓 is a linear conformal map, 𝑓 must be injective: otherwise the

angle ](𝑓 (𝑢), 𝑓 (𝑣)) would not always be well-defined. Thus 𝑓 is an element of GL(𝑉 ).

It turns out that linear similarities and linear conformal maps are the same:

Proposition 9.4. A linear map 𝑓 : 𝑉 → 𝑉 is conformal if and only if it is a similarity.

Proof. Elementary and left to reader. �

9.1.2 Conformal maps of R𝑛

Let𝑉 = R𝑛, or more generally any Euclidean vector space, and let Ω ⊆ 𝑉 be an open set. Let

𝑓 : Ω →𝑊 be a differentiable map, where𝑊 is another Euclidean space. For our purposes

we will take𝑊 = 𝑉 , but the reader should easily be able to generalize to any𝑊 . Let us

assume that d𝑓 is always injective, in other words 𝑓 is an immersion. (In our case where

𝑉 =𝑊 , this amounts to saying that d𝑓 is always bijective, i.e. 𝑓 is a local embedding.)
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Consider two regular curves 𝛾1 : 𝐼1 → Ω and 𝛾2 : 𝐼2 → Ω. By regular we mean that 𝛾𝑖 is

differentiable and 𝛾 ′𝑖 does not vanish. Let 𝑝 ∈ Ω be a point of intersection of the two curves:

assume 𝑝 = 𝛾1(𝑡1) = 𝛾2(𝑡2). One can define the (unoriented) angle between 𝛾1 and 𝛾2 as the

angle between their tangent vectors:

]𝑝 (𝛾1, 𝛾2) B ]
(
𝛾 ′
1
(𝑡1), 𝛾 ′2(𝑡2)

)
.

If 𝑓 is an immersion, then the image curves 𝑓 ◦ 𝛾1 and 𝑓 ◦ 𝛾2 are regular curves in𝑊
that intersect at 𝑓 (𝑝). One can again measure their angle of intersection. By definition, 𝑓 is

angle-preserving if, for any two regular curves 𝛾1 and 𝛾2 and for any point of intersection 𝑝 ,

]𝑓 (𝑝) (𝑓 ◦ 𝛾1, 𝑓 ◦ 𝛾2) = ]𝑝 (𝛾1, 𝛾2) .

(See  Figure 9.1 .)

Figure 9.1: Angle-preserving map.

A synonym for angle-preserving is conformal:

Definition 9.5. A map 𝑓 : Ω ⊆ 𝑉 → 𝑊 is called conformal if it is an angle-preserving

immersion.

The next characterization is left to the reader as an exercise ( Exercise 9.1 ):

Proposition 9.6. Let 𝑓 : Ω ⊆ 𝑉 →𝑊 = 𝑉 . Then 𝑓 is conformal if and only if 𝑓 is differentiable
and d𝑓𝑥 is a linear similarity for all 𝑥 ∈ Ω.

In dimension 2, conformal maps are the same thing as locally injective holomorphic or

anti-holomorphic maps:
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Proposition 9.7. Assume 𝑉 ≈ C be a 2-dimensional Euclidean vector space and Ω ⊆ 𝑉 is an
open connected subset. Then 𝑓 : Ω ⊆ 𝑉 → 𝑉 is conformal if and only if 𝑓 is holomorphic or
antiholomorphic and 𝑓 ′ does not vanish.

In higher dimensions, conformal maps are much more rigid, as shows the theorem of

Liouville which will be given in  § 9.2 . Let us state a short version of this theorem here:

Theorem 9.8 (Liouville’s conformal mapping theorem). Let 𝑓 : Ω ⊆ 𝑉 → 𝑉 where dim𝑉 > 3.
Then 𝑓 is conformal if and only if it is the restriction of a Möbius transformation of R̂𝑛.

9.1.3 Conformal maps of Riemannian manifolds

The definitions of  § 9.1.2 swiftly generalize to the Riemannian setting. Let (𝑀,𝑔) be a Rie-
mannian manifold. We recall that the Riemannian metric 𝑔 is the data of an inner product

〈·, ·〉 in each tangent space T𝑥 𝑀 . In particular, one can measure the angle of intersection of

two regular curves just like in R𝑛, by taking the angle between tangent vectors. Once again,

a conformal map as defined as an angle-preserving map:

Definition 9.9. Let (𝑀,𝑔) and (𝑁,ℎ) be Riemannian manifolds. A conformal map 𝑓 : Ω ⊆
𝑀 → 𝑁 is an angle-preserving immersion.

By definition, two Riemannian metrics 𝑔1 and 𝑔2 on𝑀 are called conformal (or confor-
mally equivalent) if there exists a positive function 𝜆 : 𝑀 → R>0 such that 𝑔1 = 𝜆𝑔2. This

means that any point 𝑥 ∈ T𝑥 𝑀 , the inner products 𝑔1 and 𝑔2 define the same angle between

any two vectors in T𝑥 𝑀 . A conformal structure on 𝑀 consists of a conformal class of

metrics. The next proposition is elementary:

Proposition 9.10. A differentiable map 𝑓 : Ω ⊆ 𝑀 → 𝑁 is conformal if and only if the
pullback metric 𝑓 ∗ℎ is conformal to 𝑔.

We leave the proof to  Exercise 9.2 (elementary, yet a good exercise).

Definition 9.11. Let (𝑀,𝑔) be a Riemannian manifold. A conformal automorphism of𝑀

is a conformal diffeomorphism 𝑓 : 𝑀 → 𝑀 .

Remark 9.12.  Definition 9.11 makes sense if𝑀 is only equipped with a conformal structure

instead of a Riemannian metric.

Remark 9.13. By definition, any conformal map 𝑀 → 𝑀 is in particular a local diffeomor-

phism. If 𝑀 is additionally compact and simply connected, then 𝑓 must be a global diffeo-

morphism. Therefore, under these additional topological assumptions, the requirement that

𝑓 is a diffeomorphism is superfluous in  Definition 9.11 . This is the case for instance when𝑀

is a topological sphere as in  § 9.3 .
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9.2 Möbius transformations of R̂𝑛

Let 𝑛 be a positive integer. We denote R̂𝑛 B R𝑛 ∪ {∞}. Topologically, R̂𝑛 is the one-point
compactification of R𝑛 and is homeomorphic to 𝑆𝑛 via, for instance, the famous stereographic

projection. We shall soon see that the stereographic projection is in fact a conformal equiva-

lence between R̂𝑛 and 𝑆𝑛.

Let us say that 𝑆 ⊆ R̂𝑛 is a (hyper)sphere if either 𝑆 ⊆ R𝑛 is a (hyper)sphere, or 𝑆 =

𝑃 ∪ {∞} where 𝑃 ⊆ R𝑛 is an affine (hyper)plane.

Definition 9.14. 𝑆 ⊆ R̂𝑛 be a hypersphere. The inversion through 𝑆 is themap 𝑓 : R̂𝑛 → R̂𝑛
defined as follows:

• If 𝑆 = 𝑆 (𝑎, 𝑟 ) is a hypersphere in R𝑛, then 𝑓 is defined on R𝑛 − {𝑎} by the property that
𝑥′ = 𝑓 (𝑥) if and only if 𝑥 and 𝑥′ lie on a same half-line starting at 𝑎, and the Euclidean

distances 𝑎𝑥 and 𝑎𝑥′ are related by:

𝑎𝑥 · 𝑎𝑥′ = 𝑟 2 .

(See  Figure 9.2 .) 𝑓 is continuously extended to R̂𝑛 by 𝑓 (𝑎) = ∞ and 𝑓 (∞) = 𝑎.
• If 𝑆 = 𝑃∪{∞}where 𝑃 ⊆ R𝑛 is a hyperplane, then 𝑓 is the Euclidean reflection through
𝑃 on R𝑛, extended to R̂𝑛 by 𝑓 (∞) = ∞.

Figure 9.2: Inversion in a circle.

It is immediate to show from the definition that 𝑓 is an involutive homeomorphism of R̂𝑛,

which fixes 𝑆 and exchanges the two connected components of R̂𝑛 − 𝑆 . It is also elementary

to derive the analytic expression of the inversion in both cases (through a sphere or plane):

see  Exercise 9.4 .
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Definition 9.15. Amap 𝑓 : R̂𝑛 → R̂𝑛 is called aMöbius transformation if it can be written

as a finite product of inversions.

We will denote Möb(R̂𝑛) the group of Möbius transformations of R̂𝑛 and Möb
+(R̂𝑛) the

subgroup of orientation-preserving elements. It is easy to see that it is an index 2 subgroup:

there is a short exact sequence

1 → Möb
+(R̂𝑛) → Möb(R̂𝑛) → {±1} → 1

where Möb(R̂𝑛) → {±1} is defined by assigning +1 [resp. −1] to an orientation-preserving

(resp. reversing) Möbius transformation. Picking out any inversion 𝜏 ∈ Möb(R̂𝑛) yields a
splitting of this short exact sequence via the isomorphism {±1} ∼−→ {1, 𝜏} ⊆ Möb(R̂𝑛).
Remark 9.16. It is quite common in the mathematics literature to impose that Möbius trans-

formations are orientation-preserving, especially for 𝑛 = 2. We do not make this restriction.

We sometimes call Möb(𝑆𝑛) the full Möbius group and Möb
+(𝑆𝑛) the restricted Möbius

group.

Remark 9.17. We shall see in the next section that the Möbius group Möb(R̂𝑛) is isomorphic

to the Lie group PO(𝑛 + 1, 1), whence Möb
+(R̂𝑛) is identified to PSO(𝑛 + 1, 1).

The central theorem of this section is:

Theorem 9.18. Let 𝑛 > 2 and let 𝑓 : R̂𝑛 → R̂𝑛. The following are equivalent:
(i) 𝑓 is a Möbius transformation.
(ii) 𝑓 preserves (unsigned) cross-ratios.
(iii) 𝑓 is bijective and sphere-preserving, in the sense that it sends any sphere of lower dimension

of R̂𝑛 to a sphere.
(iv) 𝑓 can be expressed as

𝑓 (𝑥) = 𝑏 + 𝛼𝐴(𝑥 − 𝑎)
|𝑥 − 𝑎 |𝜀 (9.1)

where 𝑎, 𝑏 ∈ R𝑛, 𝛼 ∈ R, 𝐴 ∈ O(𝑛), and 𝜀 ∈ {0, 2}.
(v) 𝑓 is a conformal automorphism.

Remark 9.19. To make sense of  (ii) , we need to define cross-ratios in R̂𝑛. Let 𝑎, 𝑏, 𝑐 , 𝑑 be four

distinct points in R𝑛. Let us define the (unsigned) cross-ratio as

[𝑎, 𝑏, 𝑐, 𝑑] = |𝑎𝑐 | |𝑏𝑑 |
|𝑏𝑐 | |𝑎𝑑 |

where we take the Euclidean distances. This expression can be extended when one of the

points is∞ by ignoring the factors containing it. Note that, when 𝑎, 𝑏, 𝑐 , 𝑑 are collinear, their

cross-ratio coincides up to sign with their cross-ratio as four points on a real projective line

as defined in  § 7.4.3 .
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Remark 9.20. To be precise in  (v) , we should say what it means for an immersion 𝑓 : R̂𝑛 → R̂𝑛
to be conformal at the point∞. One way to define it is to say that for some/any inversion 𝑔

through a sphere 𝑆 (𝑎, 𝑟 ) ⊆ R𝑛, the composition 𝑓 ◦ 𝑔 is conformal at 𝑎. Similarly, at a point

𝑥0 where 𝑓 (𝑥0) = ∞, one can make sense of 𝑓 being conformal at 𝑥0 by requiring that for

some/any inversion 𝑔 through a sphere 𝑆 (𝑎, 𝑟 ) ⊆ R𝑛, the composition 𝑔 ◦ 𝑓 is conformal at

𝑥0.

We shall not prove theorem  Theorem 9.18 , but let us give a few insights. The proof of

 (i) ⇔  (ii) is surprisingly simple, see [ Bea , Theorem 3.2.7]. The fact that inversions satisfy

 (iii) ,  (iv) , and  (v) can be checked by direct computation. Clearly, these properties are stable

under finite composition. Proving that conversely,  (iii) implies  (i) requires some tricks, but it

is not too difficult. The fact that  (iv) implies  (i) may be seen as a variation of the important

theorem of linear algebra that any orthogonal transformation is a finite product of reflections.

It remains to show that  (v) implies one of the other characterizations, which is the truly hard

part of the theorem. When 𝑛 = 2, the result can be proven using complex analysis (see  § 9.5 

for the derivation of the Möbius group in that case). When 𝑛 > 3, the result is a special case

of Liouville’s theorem below.

Theorem 9.21 (Liouville’s conformal mapping theorem). Let 𝑓 : Ω ⊆ R𝑛 → R𝑛 with 𝑛 > 3.
Then 𝑓 is conformal if and only if 𝑓 can be written as in ( 9.1 ).

Proving Liouville’s theorem essentially amounts to solving a PDE, a higher-dimensional

version of the Cauchy–Riemann equations. As can be expected, this is a hard task. We shall

not provide a proof, which is more or less difficult depending on the regularity assumption

on 𝑓 : a proof avoiding functional analysis can be written for 𝑓 of class C3, but the theorem is

known to hold more generally for 𝑓 in the Sobolev spaceW
1,𝑛

loc
(Ω,R𝑛). We refer to [ IM ] for a

detailed account. Let us mention that, whileW
1,𝑛

loc
(Ω,R𝑛) does not include all differentiable

functions, it is not hard to show that any conformal map is automaticallyW
1,𝑛

loc
: see [ Dap ]. I

also recommend readingDanny Calegari’s blog post [ Cal ] for a sketch of proof with geometric

insight.

9.3 Möbius transformations of 𝑆𝑛

9.3.1 Stereographic projection

There are several versions of the stereographic projection of a sphere to a plane. Let us

consider the most standard one: given the unit sphere centered at the origin 𝑆𝑛 ⊆ R𝑛+1, we
project the sphere 𝑆𝑛 to the hyperplane 𝑥𝑛+1 = 0 from the “North pole” 𝑁 = (0, . . . , 0, 1). See

 Figure 9.3 .

The stereographic projection is a homeomorphism 𝑠 : 𝑆𝑛−{𝑁 } → R𝑛 that can be extended
as a homeomorphism 𝑆𝑛 → R̂𝑛 by setting 𝑠 (𝑁 ) = ∞. It is elementary to derive its analytic
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Figure 9.3: Standard stereographic projection 𝑆𝑛 − {𝑁 } → R𝑛.

expression: write 𝑥′ − 𝑁 = 𝜆(𝑥 − 𝑁 ) where 𝑥′ = 𝑠 (𝑥). Examining the last component gives

0 − 1 = 𝜆(𝑥𝑛+1 − 1), so 𝜆 = 1

1−𝑥𝑛+1 . We thus find:

𝑥′
𝑘
=

𝑥𝑘

1 − 𝑥𝑛+1
for all 𝑘 ∈ {1, . . . , 𝑛}. We easily recognize from this expression that the stereographic projec-

tion is the restriction to 𝑆𝑛 of an inversion of R̂𝑛+1 (figure out the details in  Exercise 9.7 ):

Proposition 9.22. The stereographic projection 𝑠 : 𝑆𝑛 → R̂𝑛 is the restriction to 𝑆𝑛 of the
inversion of R̂𝑛+1 through the sphere 𝑆 (𝑎, 𝑟 ) with 𝑎 = 𝑁 and 𝑟 2 = 2.

In particular, 𝑠 is the restriction of a Möbius transformation, therefore it is conformal.

Corollary 9.23. The stereographic projection 𝑠 : 𝑆𝑛 → R̂𝑛 is a conformal diffeomorphism.

Remark 9.24. In  Corollary 9.23 , it is understood that the conformal structure of 𝑆𝑛 is induced

by R𝑛+1. This coincides with the conformal structure on 𝑆𝑛 underlying the spherical metric,

since this metric is also induced by the Euclidean metric of R𝑛+1.

9.3.2 Möbius transformations

Since the stereographic projection is the restriction of a Möbius transformation of R̂𝑛+1, it is
sphere-preserving: it sends spheres (of lower dimensions) in 𝑆𝑛 to spheres. By definition, a
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map 𝑆𝑛 → 𝑆𝑛 is called an inversion if it is conjugate to an inversion of R̂𝑛 by the stereographic

projection. Thus inversions of 𝑆𝑛 are conformal involutions and their fixed point sets are

hyperspheres.

Let us define a Möbius transformation of 𝑆𝑛 as a map 𝑆𝑛 → 𝑆𝑛 that can be written as a

finite product of inversions. Using  Theorem 9.18 we immediately obtain the characterization:

Theorem 9.25. Let 𝑛 > 2 and let 𝑓 : 𝑆𝑛 → 𝑆𝑛. The following are equivalent:
(i) 𝑓 is a Möbius transformation (finite product of inversions).
(ii) 𝑓 is conjugate to a Möbius transformation of R̂𝑛 by the stereographic projection.
(iii) 𝑓 is a sphere-preserving bijection.
(iv) 𝑓 is a conformal automorphism.

Naturally, we denote Möb(𝑆𝑛) the group of Möbius transformations of 𝑆𝑛 and Möb
+(𝑆𝑛)

the index 2 subgroup of orientation-preserving elements. Clearly, the stereographic projection

conjugates Möb(𝑆𝑛) and the Möb(R𝑛). In particular, they are isomorphic Lie groups.

9.3.3 Projective point of view

The projective point of view consists as seeing the sphere as a projective quadric. This will

enable us to identify the Möbius group of 𝑆𝑛 as the group of its projective automorphisms.

Consider Minkowski space𝑉 = R𝑛+1,1. Recall that the projectivized light cone 𝑃 ({〈𝑣, 𝑣〉 =
0}) is a projective quadric Q ⊆ 𝑃 (𝑉 ) called an ellipsoid, whose equation in homogeneous

coordinates is

𝑋 2

1
+ · · · + 𝑋 2

𝑛+1 − 𝑋 2

𝑛+2 = 0 .

In the affine chart 𝜑 : 𝑃 ({𝑋𝑛+2 ≠ 0}) ∼−→ {𝑋𝑛+2 = 1} ≈ R𝑛+1 with coordinates 𝑥𝑘 =
𝑋𝑘

𝑋𝑛+2
, the

equation of the ellipsoid is

𝑥2
1
+ · · · + 𝑥2𝑛+1 − 1 = 0

soQ is identified to the unit sphere 𝑆𝑛 in R𝑛+1. Clearly, the Lorentz group O(𝑛 + 1, 1) acts on
𝑉 preserving the light cone, therefore the projective Lorentz group PO(𝑛 + 1, 1) acts on 𝑃 (𝑉 )
preserving the ellipsoid Q.

Theorem 9.26. Let 𝑛 > 2. The identification 𝑆𝑛 ≈ Q given by the inverse of the affine chart 𝜑
yields isomorphisms

Möb(𝑆𝑛) ≈ PO(𝑛 + 1, 1)
Möb

+(𝑆𝑛) ≈ PSO(𝑛 + 1, 1) .
Remark 9.27. Recall that we also have PO(𝑛+1, 1) ≈ O

+(𝑛+1, 1) and PSO(𝑛, 1) ≈ SO
+(𝑛+1, 1)

(the latter is called the restricted Lorentz group). Since SO
+(𝑛, 1) is connected (see  § 4.6 ), it

follows that Möb
+(𝑆𝑛−1) is the identity component of Möb(𝑆𝑛−1).

We do not give the detailed proof of  Theorem 9.26 , but here is the idea: both the Möbius

transformations of 𝑆𝑛−1 and its projective automorphisms can be characterized by the prop-

erty that they are sphere-preserving, in the sense that they send spheres (of lower dimen-

sions) to spheres. For the projective automorphisms, this characterization is a variation of
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 Theorem 7.63 . For Möbius transformations, it is part of  Theorem 9.25 . A variation of this

proof using the cross-ratios preserving property might also be possible.

As a consequence of  Theorem 9.26 and the discussion of  § 9.3.2 , we obtain:

Theorem 9.28. We have isomorphisms:

Möb(R̂𝑛) ≈ Möb(𝑆𝑛) ≈ PO(𝑛 + 1, 1) ≈ O
+(𝑛 + 1, 1)

Möb
+(R̂𝑛) ≈ Möb

+(𝑆𝑛) ≈ PSO(𝑛 + 1, 1) ≈ SO
+(𝑛 + 1, 1)

Remark 9.29. In  Theorem 9.28 , we have isomorphisms of Lie groups: they are both homomor-

phisms of groups and diffeomorphisms of smooth finite-dimensional manifolds.

9.4 Möbius transformations of 𝐻𝑛 and 𝐵𝑛

9.4.1 Möbius transformations of 𝐻𝑛

Consider the natural inclusion R̂𝑛−1 ⊆ R̂𝑛 given by (𝑥1, . . . , 𝑥𝑛−1) ↦→ (𝑥1, . . . , 𝑥𝑛−1, 0). Note
that the complement R̂𝑛 − R̂𝑛−1 = R𝑛 − R𝑛−1 consists of two half-spaces, which we denote

𝐻𝑛
+ and 𝐻𝑛

− according to the sign of the last coordinate.

Clearly, any Möbius transformation of R̂𝑛 that preserves R̂𝑛−1 restricts to a Möbius trans-

formation of R̂𝑛−1. Moreover, it must either preserve or exchange 𝐻𝑛
and 𝐻−

, since these are

the connected components of R̂𝑛 − R̂𝑛−1. Conversely, we have:

Theorem 9.30. Let 𝑛 > 2. Any Möbius transformation of R̂𝑛−1 uniquely extends to a Möbius
transformation of R̂𝑛 that preserves each of the two connected components of R̂𝑛 − R̂𝑛−1.

Remark 9.31. If one does not insist that each of the two components of R̂𝑛−R̂𝑛−1 are preserved,
then there are two possible extensions, which differ by the inversion through the hyperplane

R̂𝑛−1 ⊆ R̂𝑛.

Using the conformal equivalence 𝑆𝑛 ≈ R̂𝑛 given by the stereographic projection, we obtain
the equivalent form of the previous theorem:

Theorem 9.32. Let 𝑛 > 2. Any Möbius transformation of 𝑆𝑛−1 ⊆ 𝑆𝑛 uniquely extends to a
Möbius transformation of 𝑆𝑛 that preserves each of the two connected components of 𝑆𝑛 − 𝑆𝑛−1.

Proof. We use the projective point of view explained in  § 9.3.3 . We see 𝑆𝑛−1 as a pro-

jective quadric in R𝑛,1. Consider the inclusion R𝑛,1 → R𝑛+1,1 given by (𝑥1, . . . , 𝑥𝑛+1) ↦→
(0, 𝑥1, . . . , 𝑥𝑛+1). This induces an inclusion between the projective spaces, which restricts to

an inclusion 𝑆𝑛 → 𝑆𝑛+1. Up to a change of coordinates, this is the same as the inclusion in

the statement of theorem.
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It is easy to check that the “obvious” inclusion of PO(𝑛, 1) in PO(𝑛+1, 1) given the diagonal
embedding

O(𝑛, 1) → O(𝑛 + 1, 1)

𝑀 ↦→
[
1 0

0 𝑀

]
provides an suitable extension of any𝑀 ∈ O(𝑛, 1). Conversely, any suitable extension of𝑀

must be of the form

�̂� =

[
𝑥 0

𝑣 𝑀

]
with 𝑣 ∈ R𝑛 and 𝑥 ∈ R, but the condition that �̂� ∈ 𝑂 (𝑛 + 1, 1) enforces 𝑣 = 0 and 𝑥2 = 1 (we

leave this computation as an easy exercise). Finally, the fact that �̂� preserves each component

of 𝑆𝑛 − 𝑆𝑛−1 rules out 𝑥 = −1. �

Now let us examine the half-space 𝐻𝑛 B 𝐻𝑛
+ . The topological boundary of 𝐻𝑛

in R̂𝑛 is

𝜕𝐻𝑛 = R̂𝑛−1. Observe that an inversion of R̂𝑛 through a sphere 𝑆 preserves𝐻𝑛
if and only if 𝑆

is orthogonal to 𝜕𝐻𝑛
. Let us callMöbius transformation of 𝐻𝑛

any map 𝑓 : 𝐻𝑛 → 𝐻𝑛
that

can be written as a product of such inversions. We have the characterization:

Theorem 9.33. Let 𝑛 > 2 and 𝑓 : 𝐻𝑛 → 𝐻𝑛. The following are equivalent:
(i) 𝑓 is a Möbius transformation.
(ii) 𝑓 is the restriction of a (unique) Möbius transformation of R̂𝑛 that preserves 𝐻𝑛.
(iii) 𝑓 is a conformal automorphism.

Proof. It is clear that  (i) implies  (ii) by definition. The converse is more tricky, we admit it.

The fact that  (ii) and  (iii) are equivalent follows from Liouville’s theorem when 𝑛 > 3, and

from direct analysis in the case 𝑛 = 2 (see  § 9.5 ). �

Note that in particular, anyMöbius transformation𝐻𝑛
extends continuously to the bound-

ary 𝜕𝐻𝑛 = R̂𝑛−1, and the boundary map is a Möbius transformation of R̂𝑛−1. The uniqueness
of this boundary map is merely due to continuity, and its existence to the previous theorem.

Conversely, given a Möbius transformation of R̂𝑛−1,  Theorem 9.30 guarantees that it extends

to a Möbius transformation of 𝐻𝑛
. Let us record this:

Theorem 9.34. Let𝑛 > 2. AnyMöbius transformation of𝐻𝑛 extends continuously to the bound-
ary 𝜕𝐻𝑛 = R̂𝑛−1, and the boundary map is a Möbius transformation of R̂𝑛−1. Conversely, any
Möbius transformation 𝑓 ∈ Möb(R̂𝑛−1) is the boundary map of a unique Möbius transformation
ˆ𝑓 ∈ Möb(𝐻𝑛), called the Poincaré extension of 𝑓 .

Corollary 9.35. Let 𝑛 > 2. We have the isomorphisms:

Möb(𝐻𝑛) ≈ Möb(R̂𝑛−1) ≈ PO(𝑛, 1) ≈ O
+(𝑛, 1)

Möb
+(𝐻𝑛) ≈ Möb

+(R̂𝑛−1) ≈ PSO(𝑛, 1) ≈ SO
+(𝑛, 1)
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9.4.2 Cayley transform and Möbius transformations of 𝐵𝑛

Let 𝑛 > 2 and consider the open unit ball 𝐵𝑛 ⊆ R𝑛. Its topological boundary is 𝜕𝐵𝑛 = 𝑆𝑛−1.
The story we told for 𝐻𝑛

and 𝜕𝐻𝑛
can be repeated for 𝐵𝑛 and 𝜕𝐵𝑛. Indeed, the two are

conformally equivalent via a Möbius transformation of R̂𝑛.

Consider the stereographic projection 𝑠 : 𝑆𝑛−1 → R̂𝑛−1 from the “South pole” 𝑃 with

coordinates (0, . . . , 0,−1). Similarly to the stereographic projection from the North pole

studied in  § 9.3.1 , 𝑠 extends as an inversion of R̂𝑛, namely the inversion through the sphere

𝑆 (𝑎, 𝑟 ) with 𝑎 = 𝑃 and 𝑟 2 = 2. We leave it as an easy exercise to the reader to argue that this

inversion maps R̂𝑛−1 to 𝑆𝑛−1 and 𝐻𝑛
to 𝐵𝑛, and conversely. However, this map is orientation-

reversing, so instead let us consider the composition

𝑐 B 𝜏 ◦ 𝑠

where 𝜏 is the inversion (reflection) through the hyperplane R̂𝑛−1, which clearly preserves

𝐵𝑛. We thus have:

Theorem 9.36. The map 𝑐 is an orientation-preserving Möbius transformation of R̂𝑛 that
restricts to a conformal equivalence 𝐻𝑛 → 𝐵𝑛, called the Cayley transform.

It is straightforward to derive the expression of the Cayley transform:

𝑥′
𝑘
=

2𝑥𝑘

1 + ‖𝑥 ‖2 + 2𝑥𝑛
for 𝑘 ∈ {1, . . . , 𝑛 − 1} 𝑥′𝑛 =

‖𝑥 ‖2 − 1

1 + ‖𝑥 ‖2 + 2𝑥𝑛

We can now use the Cayley transform to transport the situation of 𝐻𝑛
to 𝐵𝑛, following

 § 9.4.1 step by step.

Theorem 9.37. Let 𝑛 > 2. Any Möbius transformation of 𝑆𝑛−1 uniquely extends to a Möbius
transformation of R̂𝑛 that preserves each of the two connected components of R̂𝑛 − 𝑆𝑛−1.

An inversion of R̂𝑛 through a sphere 𝑆 preserves 𝐵𝑛 if and only if 𝑆 is orthogonal to

𝜕𝐵𝑛 = 𝑆𝑛−1 (be careful: this does not amount to saying that the center of 𝑆 lies on 𝑆𝑛−1). Let
us callMöbius transformation of 𝐵𝑛 any map 𝑓 : 𝐵𝑛 → 𝐵𝑛 that can be written as a product

of such inversions. We have the characterization:

Theorem 9.38. Let 𝑛 > 2 and 𝑓 : 𝐵𝑛 → 𝐵𝑛. The following are equivalent:
(i) 𝑓 is a Möbius transformation of 𝐵𝑛.
(ii) 𝑓 is conjugate to a Möbius transformation of 𝐻𝑛 by the Cayley transform.
(iii) 𝑓 is the restriction of a (unique) Möbius transformation of R̂𝑛 that preserves 𝐵𝑛.
(iv) 𝑓 is a conformal automorphism.

In particular, any Möbius transformation of 𝐵𝑛 extends continuously to the boundary

𝜕𝐵𝑛 = 𝑆𝑛−1, and the boundary map is a Möbius transformation of 𝑆𝑛−1. Conversely, given a

Möbius transformation of 𝑆𝑛−1, it uniquely extends to a Möbius transformation of 𝐵𝑛:
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Theorem 9.39. Let 𝑛 > 2. Any Möbius transformation of 𝐵𝑛 extends continuously to the bound-
ary 𝜕𝐵𝑛 = 𝑆𝑛−1, and the boundary map is a Möbius transformation of 𝑆𝑛−1. Conversely, any
Möbius transformation 𝑓 ∈ Möb(𝑆𝑛−1) is the boundary map of a unique Möbius transformation
ˆ𝑓 ∈ Möb(𝐵𝑛), called the Poincaré extension of 𝑓 .

Corollary 9.40. Let 𝑛 > 2. We have the isomorphisms:

Möb(𝐵𝑛) ≈ Möb(𝑆𝑛−1) ≈ PO(𝑛, 1) ≈ O
+(𝑛, 1)

Möb
+(𝐵𝑛) ≈ Möb

+(𝑆𝑛−1) ≈ PSO(𝑛, 1) ≈ SO
+(𝑛, 1)

9.5 Möbius transformations of ˆC, D, and H

The 2-dimensional case is special, because the theorem of Liouville ( Theorem 9.21 ) no longer

holds for an arbitrary open set Ω ⊆ R2. On the other hand, the possibility to use complex

numbers and complex analysis opens new perspectives. By a fortunate coincidence, we will

see that the conformal automorphisms of Ω ⊆ R̂2 ≈ ˆC are indeed Möbius transformations

when Ω = R̂2, Ω = 𝐵2, and Ω = 𝐻 2
. As a result, the theory of Möbius transformations that

we developed in the previous sections is still valid in the 2-dimensional case when working

on these domains.

From now on, we identify R2 = C and R̂2 = ˆC, and we denote D = 𝐵2 the unit disk in C

and H = 𝐻 2
the upper half-plane.

9.5.1 Holomorphic and conformal maps on domains of C

Let 𝑓 : Ω ⊆ C → C where Ω is an open set. We recall that 𝑓 is called holomorphic if it

is complex-differentiable at every 𝑧0 ∈ Ω. Equivalently, 𝑓 is real-differentiable at 𝑧0 and its

derivative d𝑓𝑧0 is C-linear (this amounts to the so-called Cauchy–Riemann equations). We

also say that 𝑓 is antiholomorphic if it is differentiable at every 𝑧0 ∈ Ω, and its derivative

d𝑓𝑧0 is C-antilinear (d𝑓 (𝑖𝑣) = −𝑖 d𝑓 (𝑣)). It is left as an easy exercise to the reader to show

that 𝑓 is antiholomorphic if and only if the complex conjugate
¯𝑓 is holomorphic.

The relation between conformal maps and holomorphic maps in real dimension 2 is

entirely explained by the following elementary lemma of linear algebra:

Lemma 9.41. Let 𝐿 : R2 → R2 be a nonzero linear map. Identify R2 ≈ C.
If 𝐿 is orientation-preserving (det𝐿 > 0), then

𝐿 is a similarity ⇔ 𝐿 is C-linear ⇔ 𝐿(𝑧) = 𝑎𝑧 (𝑎 ∈ C∗)

If 𝐿 is orientation-reversing (det𝐿 < 0), then

𝐿 is a similarity ⇔ 𝐿 is C-antilinear ⇔ 𝐿(𝑧) = 𝑎𝑧 (𝑎 ∈ C∗)
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Proof. Elementary and left to the reader as an exercise. �

Corollary 9.42. 𝑓 : Ω ⊆ C→ C. We have:

𝑓 is conformal ⇔ 𝑓 is ±-holomorphic and 𝑓 ′ does not vanish .

(We call ±-holomorphic a function that is holomorphic or antiholomorphic.)

9.5.2 Möbius transformations of ˆC

The extended complex line
ˆC = C∪{∞} is called theRiemann sphere, and it can be identified

to the complex projective line CP1 via the standard affine chart [𝑧1 : 𝑧2] ↦→ 𝑧1
𝑧2
. Under this

identification, the group of projective automorphisms of C𝑃1, which is the projective linear

group PGL(2,C), acts on ˆC by fractional linear transformations 𝑧 ↦→ 𝑎𝑧+𝑏
𝑐𝑧+𝑑 . For more details,

see  § 7.4 .

Theorem 9.43. A map 𝑓 : ˆC → ˆC is an Möbius transformation if and only if it is fractional
linear (orientation-preserving case) or its conjugate is fractional linear (orientation-reserving
case).

Proof. See  Exercise 9.9 . �

The fact that  Theorem 9.18 and  Theorem 9.25 hold when 𝑛 = 2, even though Liouville’s

theorem does not, follows from the next theorem, whose proof relies on complex analysis.

Theorem 9.44. Let 𝑓 : ˆC→ ˆC. The following are equivalent:
(i) 𝑓 is an orientation-preserving Möbius transformation.
(ii) 𝑓 is a fractional linear transformation.
(iii) 𝑓 is orientation-preserving conformal automorphism.
(iv) 𝑓 is a complex automorphism (a biholomorphism ˆC→ ˆC).

Remark 9.45. We have seen that a map 𝑓 : Ω ⊆ C→ C is orientation-preserving conformal

if and only if 𝑓 is holomorphic and 𝑓 ′ does not vanish. We can extend this property to maps

𝑓 : Ω ⊆ ˆC→ ˆC, but first we need to extend the notions of holomorphicity and conformality

for such maps. We have already seen how to define conformality in  Remark 9.20 . One can

similarly define holomorphicity by composing with the map 𝑧 ↦→ 1

𝑧
. More formally,

ˆC (or

C𝑃1) can naturally be equipped with a structure of one-dimensional complex manifold (also

known as Riemann surface), which is the right setting for holomorphicity.

Proof. The equivalence  (i) ⇔  (ii) immediately follows from  Theorem 9.43 . The equivalence

 (i) ⇔  (iv) essentially follows from the compatibility between the extension of the notion of

holomorphicity and conformality at∞ (see  Remark 9.45 ). The skeptical or meticulous reader

may take this equivalence as a definition of complex automorphism. Let us now prove that

 (ii) ⇔  (iii) .
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If 𝑓 is fractional linear, then it is easy to check that it is orientation-preserving and

conformal. Essentially, this boils down to the fact that holomorphicmaps (with non-vanishing

derivative) are orientation-preserving and conformal. Even quicker, we can use  (i) : since 𝑓 is

a Möbius transformation, it is conformal.

Conversely, assume that 𝑓 is an orientation-preserving conformal automorphism. Since

fractional linear transformations act transitively on
ˆC, we may assume that 𝑓 (∞) = ∞ by

precomposing 𝑓 with a fractional linear transformation (for instance, take 𝑧 ↦→ 𝑤𝑧+1
𝑧+𝑤 where

𝑤 = 𝑓 −1(∞)). Thus 𝑓 restricts to an entire function C→ C, moreover lim |𝑓 (𝑧) | = +∞ when

|𝑧 | → +∞. It is a classical exercise of complex analysis that this forces 𝑓 to be polynomial.

Indeed, the function 𝑔 : 𝑧 ↦→ 𝑓 ( 1
𝑧
) has a pole at 𝑧 = 0 (since |𝑔(𝑧) | → +∞ when 𝑧 → 0),

therefore the Laurent series of 𝑔 has finitely many nonzero coefficients of negative degree,

i.e. the power series of 𝑓 has finitely many nonzero coefficients. Since 𝑓 is bijective it must

have exactly one zero, therefore it has degree 1 by the fundamental theorem of algebra. Thus

𝑓 (𝑧) = 𝑎𝑧 + 𝑏 for some 𝑎 ∈ C∗ and 𝑏 ∈ C, in particular 𝑓 is fractional linear. �

Corollary 9.46. The natural identifications 𝑆2 ≈ ˆC ≈ C𝑃1 induce isomorphisms:

Möb
+(𝑆2) ≈ Aut( ˆC) ≈ Aut(C𝑃1)

where Aut( ˆC) is the group of complex (i.e. conformal orientation-preserving) automorphisms of
the Riemann sphere ˆC and Aut(C𝑃1) is the group of projective transformations of C𝑃1.

Recall that we also have isomorphisms Möb
+(𝑆2) ≈ PSO(3, 1) andAut(C𝑃1) ≈ PGL(2,C)

(acting projective linearly on C𝑃1 or fractional linearly on
ˆC), therefore we obtain the “acci-

dental” isomorphism of Lie groups:

PSO(3, 1) ≈ PGL(2,C) .

Remark 9.47. Let us mention that there is also an accidental isomorphism of complex Lie

groups PGL(2,C) ≈ SO(3,C).

9.5.3 Möbius transformations of D

Which subgroup of PGL(2,C) leaves the unit disk D invariant when acting on the Riemann

sphere
ˆC? To answer this question, it is useful to work in CP1. In homogeneous coordinates,

the disk D can be written: D = {[𝑧1 : 𝑧2] | |𝑧1 |2 − |𝑧2 |2 < 0}. Indeed, this is clearly equivalent

to |𝑧 |2 < 1 where 𝑧 =
𝑧1
𝑧2
. Consider the Hermitian symmetric form on C2:

ℎ : C2 × C2 → C
((𝑧1, 𝑧2), (𝑧′1, 𝑧′2)) ↦→ 𝑧1𝑧

′
1
− 𝑧2𝑧′

2

and denote 𝑞(𝑧1, 𝑧2) = ℎ((𝑧1, 𝑧2), (𝑧1, 𝑧2)) = |𝑧1 |2 − |𝑧2 |2 the associated quadratic form. The

signature of ℎ as a Hermitian symmetric form is (1, 1), in fact its matrix in the canonical basis

of C2 is

𝐻 =

[
1 0

0 −1

]
.
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The subgroup of GL(2,C) leaving ℎ invariant is denoted U(ℎ) or simply U(1, 1). Let us also
introduce the group SU(1, 1) of elements of U(1, 1) with determinant 1. In terms of matrices

(see  Exercise 9.10 ):

U(1, 1) = {𝑀 ∈ M2×2(C) | 𝑀T𝐻�̄� = 𝐻 }
= {𝑢𝐴 | |𝑢 | = 1, 𝐴 ∈ SU(1, 1)}

SU(1, 1) = {𝑀 ∈ SL(2,C) | 𝑀T𝐻�̄� = 𝐻 }

=

{[
𝑎 𝑏
¯𝑏 𝑎

]
∈ M2×2(C) | |𝑎 |2 − |𝑏 |2 = 1

}
Clearly, the projective action of U(1, 1) on C𝑃1 preserves D = P{𝑞 < 0}, since U(1, 1)
preserves 𝑞 by definition. Conversely, any projective transformation of C𝑃1 preserving D

is induced by some element of U(1, 1), see  Exercise 9.10 . Also, note that since any element

𝑀 ∈ U(1, 1) may be written 𝑀 = 𝑢𝐴 with 𝐴 ∈ SU(1, 1), the projective action of 𝑀 and 𝐴

coincide, and the inclusion SU(1, 1) ⊆ U(1, 1) induces an isomorphism PSU(1, 1) ≈ PU(1, 1).
Theorem 9.48. Let 𝑓 : D→ D. The following are equivalent:

(i) 𝑓 is an orientation-preserving Möbius transformation of D.
(ii) 𝑓 is a fractional linear transformation that preserves D.
(iii) 𝑓 is a fractional linear transformation induced by some element of SU(1, 1).
(iv) 𝑓 is an orientation-preserving conformal automorphism.
(v) 𝑓 is a complex automorphism (a biholomorphism D→ D).

Proof. The equivalence  (i) ⇔  (ii) follows from the general case  Theorem 9.38 and from

the characterization of Möbius transformations of
ˆC as fractional linear transformations

( Theorem 9.44 ). The equivalence  (ii) ⇔  (iii) follows from the discussion above the theorem.

The equivalence  (iv) ⇔  (v) is  Corollary 9.42 .

Finally, let us show that  (iii) ⇔  (v) . It is clear that  (iii) ⇒  (v) , since fractional linear

transformations are holomorphic and bijective. It remains to show that conversely, any

complex biholomorphism of D is fractional linear. This is the hardest part of the theorem,

which requires some basic knowledge of complex analysis.

So, let 𝑓 : D → D be a biholomorphism. After composing 𝑓 with a fractional linear

transformation (that preserves D), we can assume that 𝑓 (0) = 0. Specifically, one may post-

compose 𝑓 with 𝑧 ↦→ 𝑧−𝑎
1−𝑎𝑧 where 𝑎 = 𝑓 (0). Conclude with the lemma of Schwarz (see e.g.

[ Ahl , Theorem 13]) that 𝑓 (𝑧) = 𝑢𝑧 for some 𝑢 ∈ C with |𝑢 | = 1. [If you are unfamiliar with

the lemma of Schwarz, the argument is essentially as follows: apply the maximum principle

to the function 𝑔(𝑧) = 𝑓 (𝑧)
𝑧
, which can be holomorphically extended at 𝑧 = 0 by 𝑔(0) = 𝑓 ′(0).

By applying the maximum principle to 𝑔 on the disk 𝐷 (0, 𝑟 ) with 𝑟 → 1, we obtain that

|𝑔 | 6 1 on D. On the other hand, switching 𝑓 and 𝑓 −1 if necessary, we have |𝑔′(0) | > 1. By

the maximum principle, 𝑔 is constant.] In particular, 𝑓 (𝑧) = 𝑢𝑧 is fractional linear. �

Corollary 9.49. We have isomorphisms:

Möb
+(𝐵2) ≈ Aut(D) ≈ PSU(1, 1) .
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9.5.4 Möbius transformations of H

We have seen that in general the Cayley transform is the conformal equivalence 𝑐 : 𝐻𝑛 → 𝐵𝑛

which can be described as 𝑐 = 𝜏 ◦ 𝑠 , where 𝜏 is the reflection through the 𝑥𝑛 = 0 hyperplane

and 𝑠 is the inversion through the sphere 𝑆 (𝑎, 𝑟 ) where 𝑎 = (0, . . . , 0,−1) and 𝑟 2 = 2. In the

case 𝑛 = 2, using the complex variable 𝑧, we find 𝜏 (𝑧) = 𝑧 and 𝑠 (𝑧) = −𝑖 𝑧−𝑖
𝑧+𝑖 , which gives us

the expression of the Cayley transform and its inverse:

𝑐 : H→ D

𝑧 ↦→ 𝑖
𝑧 − 𝑖
𝑧 + 𝑖

𝑐−1 : D→ H

𝑧 ↦→ −𝑖 𝑧 + 𝑖
𝑧 − 𝑖

Note that 𝑐 is induced by the linear map 𝐶 : C2 → C2 with matrix

𝐶 =

[
𝑖 1

1 𝑖

]
.

Our discussion from the previous subsection (Möbius transformations of D) can be trans-

ported to H via the Cayley transform.

Consider the Hermitian form
˜ℎ = 𝐶∗ℎ associated to the matrix

�̃� = 𝐶T𝐻𝐶 =

[
0 2𝑖

−2𝑖 0 .

]
This is a Hermitian form on C2 of signature (1, 1), with associated quadratic form

𝑞(𝑧1, 𝑧2) = 2𝑖 (𝑧1𝑧2 − 𝑧2𝑧1)
= − Im(𝑧1𝑧2)

As expected, the locus {𝑞 < 0} in C2 is the cone over H = {Im(𝑧) > 0} ⊆ CP1, since
Im(𝑧) = Im(𝑧1𝑧2)

|𝑧2 |2 for 𝑧 =
𝑧1
𝑧2
.

The subgroup of GL(2,C) preserving {𝑞 < 0} is C∗ U( ˜ℎ) = C∗ SU( ˜ℎ), where U( ˜ℎ) [resp.
SU( ˜ℎ)] is the subgroup of GL(2,C) [resp. SL(2,C)] preserving ˜ℎ. In terms of matrices:

SU( ˜ℎ) = {𝑀 ∈ SL(2,C) | 𝑀T�̃��̄� = �̃� }
= SL(2,R)

Indeed, we leave it to the reader as an easy exercise to check that for𝑀 ∈ SL(2,C), �̄�T�̃� =

�̃�𝑀−1
if and only if𝑀 has real coefficients.

Remark 9.50. Alternatively, we can write SU( ˜ℎ) = 𝐶−1 (SU(1, 1))𝐶 , and one can prove that

𝐶−1 (SU(1, 1))𝐶 = SL(2,R) by direct computation.

By transporting  Theorem 9.48 via the Cayley transform, we obtain:

Theorem 9.51. Let 𝑓 : H→ H. The following are equivalent:
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(i) 𝑓 is an orientation-preserving Möbius transformation of H.
(ii) 𝑓 is a fractional linear transformation that preserves H.
(iii) 𝑓 is a fractional linear transformation induced by an element of SL(2,R).
(iv) 𝑓 is an orientation-preserving conformal automorphism.
(v) 𝑓 is a complex automorphism (a biholomorphism H→ H).

Corollary 9.52. We have isomorphisms:

Möb
+(𝐻 2) ≈ Aut(H) ≈ PSL(2,R) .

Since we also have isomorphisms Möb
+(𝐵2) ≈ Möb

+(𝐻 2) ≈ Möb
+(𝑆1) ≈ PSO(2, 1), we

obtain the “accidental” isomorphisms of Lie groups:

PSU(1, 1) ≈ PSL(2,R) ≈ PSO(2, 1) .
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9.6 Exercises

Exercise 9.1. Characterization of conformal maps of R𝑛

Let 𝑉 ,𝑊 be Euclidean vector spaces and Ω ⊆ 𝑉 be an open set. Consider an immersion

𝑓 : Ω → 𝑉 .

(1) Let 𝛾1 and 𝛾2 be two regular curves in Ω that intersect at 𝑝 ∈ Ω. Denote 𝑣𝑖 the tangent
vector to 𝛾𝑖 at 𝑝 . Show that 𝑓 ◦𝛾1 and 𝑓 ◦𝛾2 are two regular curves in𝑊 that intersect

at 𝑓 (𝑝), and that the tangent vector to 𝛾𝑖 at 𝑓 (𝑝) is d𝑓 (𝑣𝑖).
(2) Prove  Proposition 9.6 : Let 𝑓 : Ω ⊆ 𝑉 →𝑊 = 𝑉 . Then 𝑓 is conformal if and only if 𝑓 is

differentiable and d𝑓𝑥 is a linear similarity for all 𝑥 ∈ Ω.

(3) Prove  Proposition 9.7 : 𝑓 : Ω ⊆ C → C is conformal if and only if 𝑓 is holomorphic
or antiholomorphic and 𝑓 ′ does not vanish. (This question requires basic knowledge of

holomorphic functions.)

Exercise 9.2. Characterization of conformal maps between Riemannian manifolds

Let (𝑀,𝑔) and (𝑁,ℎ) be Riemannian manifolds.

(1) Let 𝑓 : 𝑉 →𝑊 be a linear map between vector spaces. For any bilinear form 𝑏 on𝑊 ,

we define the bilinear form 𝑓 ∗𝑏 on 𝑉 by 𝑓 ∗𝑏 (𝑢, 𝑣) B 𝑏 (𝑓 (𝑢), 𝑓 (𝑣)). Show that if 𝑏 is

an inner product, 𝑓 ∗𝑏 is an inner product if and only if 𝑓 is injective.

(2) Let 𝑓 : (𝑉 , 〈·, ·〉𝑉 ) → (𝑊, 〈·, ·〉𝑊 ) be a linear map between Euclidean vector spaces.

Show that 𝑓 is angle-preserving if and only if there exists 𝜆 ∈ R>0 such that 𝑓 ∗〈·, ·〉𝑊 =

𝜆〈·, ·〉𝑉 .
(3) Let 𝑓 : (𝑀,𝑔) → (𝑁,ℎ) be a differentiable map between Riemannian manifolds. How

do you define the pullback 𝑓 ∗ℎ? Show that 𝑓 is conformal if and only if 𝑓 ∗ℎ is conformal

to 𝑔.

Exercise 9.3. Full vs restricted Möbius group

Denote Möb
+(𝑆𝑛) the restricted Möbius group of 𝑆𝑛, consisting of orientation-preserving

Möbius transformations.

(1) Show that Möb
+(𝑆𝑛) is an index 2 normal subgroup of Möb(𝑆𝑛).

(2) Show that Möb
+(𝑆𝑛) is the identity component of Möb(𝑆𝑛).

(3) Show the same results for Möb
+(𝐵𝑛) < Möb(𝐵𝑛) and Möb

+(R̂𝑛) < Möb(R̂𝑛).

Exercise 9.4. Inversions

(1) Let 𝑆 = 𝑆 (𝑎, 𝑟 ) be the sphere of center 𝑎 and radius 𝑟 in R𝑛. What is its Cartesian
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equation? Show that the inversion through 𝑆 has the expression:

𝑓 (𝑥) = 𝑎 + 𝑟 2

‖𝑥 − 𝑎‖2 (𝑥 − 𝑎) .

(2) Let 𝑃 ⊆ R𝑛 be an affine hyperplane. Denote 𝑣 a nonzero normal vector and 𝜆 ∈ R such

that 𝑥0 = 𝜆𝑣 belongs to 𝑃 (why is 𝜆 well-defined?). Show that the Cartesian equation

of 𝑃 is 〈𝑥 − 𝑥0, 𝑣〉 = 0. Show that the inversion through 𝑃 has the expression:

𝑓 (𝑥) = 𝑥 − 2〈𝑥 − 𝑥0, 𝑣〉
𝑣

‖𝑣 ‖2 .

(3) Show that the results of  (2) may be obtained by taking the limit of  (1) with 𝑎 = 𝑥0 + 𝑡𝑣
and 𝑟 = 𝑡 ‖𝑣 ‖ when 𝑡 → +∞.

(4) Recover the result that any finite product of inversions may be written

𝑓 (𝑥) = 𝑏 + 𝛼𝐴(𝑥 − 𝑎)
|𝑥 − 𝑎 |𝜀

where 𝑎, 𝑏 ∈ R𝑛, 𝛼 ∈ R, 𝐴 ∈ O(𝑛), and 𝜀 ∈ {0, 2}.

Exercise 9.5. More inversions

(1) Show that any translation R𝑛 → R𝑛 can be written as a product of two reflections.

Could you expect such a result?

(2) Show that any linear similarity R𝑛 → R𝑛 can be written as a product of two inversions.

Could you expect such a result?

Exercise 9.6. Möbius transformations vs Euclidean similarities

Show that the subgroup of Möb(R̂𝑛) fixing∞ is isomorphic to the group of affine similarities

of R𝑛.

Exercise 9.7. Stereographic projection

(1) Recover the expression of the standard stereographic projection 𝑠 : 𝑆𝑛 → R̂𝑛.

(2) Recover that the stereographic projection is the restriction to 𝑆𝑛 of an inversion of R̂𝑛+1.
Derive that 𝑠 is a conformal equivalence.

(3) Recover that 𝑠 is conformal by direct computation: compute the pullback Riemannian

metric 𝑠∗𝑔 on 𝑆𝑛 − {𝑁 }, where 𝑔 is the Euclidean metric on R𝑛.

Exercise 9.8. Poincaré extension

(1) Find the Poincaré extension of an inversion of R̂𝑛.
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(2) Write a new proof of the existence of the Poincaré extension of aMöbius transformation.

Can you extend your argument to also prove uniqueness?

Exercise 9.9. Möbius transformations of ˆC

The goal of this exercise is to show  Theorem 9.43 : A map 𝑓 : ˆC→ ˆC is an Möbius transforma-
tion if and only if it is fractional linear (orientation-preserving case) or its conjugate is fractional
linear (orientation-reserving case).

(1) Argue that it is enough to show that 𝑓 is an orientation-preserving Möbius transfor-

mation if and only if it is fractional linear.

(2) (a) Show that the inversion through the sphere 𝑆 (𝑎, 𝑟 ) can be written 𝑓 (𝑧) = 𝑎 + 𝑟 2

𝑧−𝑎 .

(b) Show that the inversion through the line with normal vector 𝑣 going through the

point 𝑧0 = 𝜆𝑣 can be written 𝑓 (𝑧) = 2𝑧0 − 𝑣
𝑣
𝑧.

(c) Show that the composition of any two inversions is fractional linear. Conclude

that any Möbius transformation of
ˆC is fractional linear.

(3) (a) Show that any fractional linear transformation may be written as a composition

of maps of the form: 𝑧 ↦→ 𝑧 + 𝑏 where 𝑏 ∈ C, 𝑧 ↦→ 𝑎𝑧 where 𝑎 ∈ C∗, and 𝑧 ↦→ 1

𝑧
.

(b) Show that the three maps of the previous question may be written as a product

of inversions.

(c) Conclude that any fractional linear transformation is a Möbius transformation of

ˆC.

Exercise 9.10. The group PSU(1, 1)

(1) Recall the definition of SU(1, 1) and show that

SU(1, 1) =
{[
𝑎 𝑏
¯𝑏 𝑎

]
∈ M2×2(C) | |𝑎 |2 − |𝑏 |2 = 1

}
(2) Show that U(1, 1) = {𝑢𝐴 | |𝑢 | = 1, 𝐴 ∈ SU(1, 1)}. Derive that PU(1, 1) ≈ PSU(1, 1).
(3) Show that the action of any element of U(1, 1) by fractional linear transformation can

be written

𝑧 ↦→ 𝑢
𝑧 − 𝑎
1 − 𝑎𝑧

where |𝑢 | = 1 and 𝑎 ∈ D.
(4) Recover from the previous question that the action of U(1, 1) on ˆC preserves D.

(5) Prove that conversely, a fractional linear transformation preserving D coincides with

the action of an element of U(1, 1).
(6) Recall why Möb

+(D) ≈ Aut(D) ≈ PSU(1, 1).
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Exercise 9.11. The group PSL(2,R)

(1) Recover by direct proof that theCayley transform 𝑐 (𝑧) = 𝑖 𝑧−𝑖
𝑧+𝑖 defines a biholomorphism

from H to D.

(2) Recover by direct proof that the fractional linear action of𝑀 ∈ SL(2,C) on𝐶 preserves

H if and only if𝑀 has real coefficients.

(3) Recover by direct proof that SL(2,R) = 𝐶−1 (SU(1, 1))𝐶 where𝐶 =

[
𝑖 1

1 𝑖

]
. Recall the

connection between this result and the previous question.

(4) Show that there are natural “inclusions”

PSL(2,R) ↩→ PGL(2,R) ↩→ PGL(2,C)
PSL(2,R) ↩→ PSL(2,C) ∼−→ PGL(2,C)

How would you describe the difference between PSL(2,R) and PGL(2,R)?

Exercise 9.12. The one-dimensional case

Throughout the chapter, we discussed conformal maps and Möbius transformations of R̂𝑛,

𝑆𝑛, 𝐻𝑛
, 𝐵𝑛 for 𝑛 > 2. What about the case 𝑛 = 1? Work out as many details as possible about

what still works and what breaks.

181



CHAPTER 10

The Poincaré models

Disclaimer: This chapter is a draft.

In this chapter we present the Poincaré ball model and the Poincaré half-space model of

hyperbolic geometry. These are conformal models, meaning that they can be defined as

Euclidean domains equipped with a metric that is conformally equivalent to the Euclidean

metric.

Alternatively, the Poincaré ball model may be obtained from the hyperboloid model stud-

ied in  Chapter 5 via a stereographic projection, and the half-space model may be derived via a

Möbius transformation called the Cayley transform. We will use these relations to showcase

the essential features of these models.

Historically, both Poincaré models of the hyperbolic plane were discovered by Eugenio

Beltrami in 1868 ([ Bel2 ;  Bel3 ]), alongside the Beltrami–Klein model which we discussed in

 Chapter 8  

1
 . Poincaré rediscovered the half-plane and disk models in 1882 and revealed the

connection between 2-dimensional hyperbolic geometry and complex geometry, especially

Fuchsian groups and automorphic functions [ Poi1 ].

1
Beltrami also discovered the pseudosphere in [ Bel2 ], which we prefer to call tractricoid: see  Exercise 2.6 .
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10.1 The Poincaré ball model

10.1.1 Stereographic projection of the hyperboloid

Let 𝑛 > 2 be an integer (we could also allow 𝑛 = 1 for most of this chapter). Embed R𝑛 in

Minkowski space R𝑛,1 in the obvious way:

R𝑛 → R𝑛,1

(𝑥1, . . . , 𝑥𝑛) ↦→ (𝑥1, . . . , 𝑥𝑛, 0) .

Consider the point 𝑆 = (0, . . . , 0,−1) ∈ R𝑛,1 (the “South pole”). Let us denoteH+ ⊆ R𝑛,1 the
hyperboloid as in  Chapter 5 and 𝐵𝑛 ⊆ R𝑛 the Euclidean unit ball. We call stereographic
projection of the hyperboloid from the point 𝑆 the map 𝑠 : H+ → 𝐵 such that for every

𝑥 ∈ H+
and 𝑥′ ∈ 𝐵𝑛, the points 𝑆 , 𝑥′, 𝑥 are collinear if and only if 𝑥′ = 𝑠 (𝑥). See  Figure 10.1 .

Figure 10.1: Stereographic projection of the hyperboloid to the Poincaré disk.

It is elementary to compute the analytic expression of the map 𝑠 , and thereby prove that

it is well-defined and bijective: writing (𝑥′ − 𝑆) = 𝜆(𝑥 − 𝑆) yields 𝜆 = 1

1+𝑥𝑛+1 by examining

the last coordinate. Therefore we find:

𝑥′
𝑘
=

𝑥𝑘

1 + 𝑥𝑛+1
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for 𝑘 ∈ {1, . . . , 𝑛}. In order to find the inverse, one can find the expression of 𝜆 in terms of 𝑥′

by writing that 〈𝑥, 𝑥〉 = −1 (since 𝑥 ∈ H+
), which yields 𝜆 =

1−‖𝑥 ′‖2
2

. Therefore we find:

𝑥𝑘 =
2𝑥′
𝑘

1 − ‖𝑥′‖2 (𝑘 ∈ {1, . . . , 𝑛}) 𝑥𝑛+1 =
1

𝜆
− 1 =

1 + ‖𝑥′‖2
1 − ‖𝑥′‖2 .

In particular, we see that the stereographic projection 𝑠 is a smooth (even real-analytic)

diffeomorphis from the hyperboloidH+
to the ball 𝐵𝑛.

Definition 10.1. The Poincaré ball (or Poincaré disk) (𝐵𝑛, 𝑔𝐵𝑛 ) is the image of the hyper-

boloid (H+, 𝑔H+) by the stereographic projection 𝑠 : H𝑛 → 𝐵𝑛.

This definition means that we use the stereographic projection to transport the geometry

of the hyperboloid to the unit ball. Technically, it is enough to transport the Riemannian

metric, since all other geometric features follow: distance, geodesics, isometries, etc. It follows

immediately from its definition that the Poincaré ball is a model of hyperbolic space:

Theorem 10.2. The Poincaré ball (𝐵𝑛, 𝑔𝐵𝑛 ) is a complete, simply-connected Riemannian mani-
fold of constant sectional curvature −1.
Remark 10.3. We have seen several different stereographic projections in this course. Their

common feature is that they are all projections to a (hyper)plane by drawing lines from a

single point. The stereographic projection of the hyperboloid to the Poincaré ball is especially

similar to the stereographic projection of the hyperboloid to the Klein ball (see  Figure 8.2 ).

Nevertheless, the Poincaré ball and the Klein ball are significantly different models. See

 Exercise 10.3 .

10.1.2 Riemannian metric

By definition, the hyperbolic metric (also called Poincaré metric) 𝑔𝐵𝑛 is the pullback of the

hyperbolic metric 𝑔H+ on the hyperboloid by 𝑠−1 : 𝐵𝑛 → H+
. We leave it as an exercise

( Exercise 10.1 ) to derive its explicit expression:

d𝑠2 = 4

d𝑥2
1
+ · · · + d𝑥2𝑛

(1 − ‖𝑥 ‖2)2
.

Remark 10.4. Of course, we could have defined the Poincaré ball by giving the Riemannian

metric above, and then proved that it is isometric to the hyperboloid via stereographic pro-

jection.

We immediately note that 𝑔𝐵𝑛 = 𝑓 𝑔0, where 𝑔0 is the Euclidean metric in 𝐵𝑛 and 𝑓 (𝑥) =
4

(1−‖𝑥 ‖2)2 is a smooth function on 𝐵𝑛. This shows that the Poincaré metric is conformally

equivalent to the Euclidean metric in 𝐵𝑛 (see  § 9.1.3 ). In short, we say that the Poincaré ball

is a conformal model of hyperbolic space.
Remark 10.5. Note that lim‖𝑥 ‖→1 𝑓 (𝑥) = +∞: the conformal factor blows up as one approaches

the boundary of the ball. This is expected because the hyperbolic metric in 𝐵𝑛 is complete

(unlike the Euclidean metric), therefore point of 𝜕𝐵𝑛 should be infinitely far away.
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10.1.3 Distance

The distance function on the Poincaré ball can be computed directly as the pullback of the

distance on the hyperboloid:

Proposition 10.6. The distance in the Poincaré ball is given by

𝑑 (𝑥,𝑦) = arcosh

(
1 + 2‖𝑥 − 𝑦‖2

(1 − ‖𝑥 ‖2) (1 − ‖𝑦‖2)

)
.

Proof. Since the stereographic projection 𝑠 : H+ → 𝐵𝑛 is a Riemannian isometry, it is also a

metric isometry for the induced distances. Thus one can compute the distance on 𝐵𝑛 as the

pullback of the distance onH𝑛
: we have 𝑑𝐵𝑛 =

(
𝑠−1

)∗
𝑑H𝑛 . Concretely:

𝑑𝐵𝑛 (𝑥,𝑦) = 𝑑H𝑛

(
𝑠−1(𝑥), 𝑠−1(𝑦)

)
= arcosh

(
−〈𝑠−1(𝑥), 𝑠−1(𝑦)〉

)
The conclusion quickly follows from inputting the explicit expressions of 𝑠−1(𝑥) and 𝑠−1(𝑦),
namely

𝑠−1(𝑥) =
(

2𝑥

1 − ‖𝑥 ‖2 ,
1 + ‖𝑥 ‖2
1 − ‖𝑥 ‖2

)
and similarly for 𝑠−1(𝑦), and writing the Minkowski inner product. �

Remarkably, the metric can be rewritten almost like a Cayley–Klein metric. Let 𝑥,𝑦 ∈ 𝐵𝑛
be any two distinct points. As we shall see in  § 10.1.5 , the geodesic through 𝑥 and 𝑦 is a

Euclidean circle arc, which intersects the sphere 𝜕𝐵𝑛 orthogonally in two points. Call the two

boundary points 𝐼 and 𝐽 as in  Figure 10.2 . We have seen in the previous chapter ( Remark 9.19 )

Figure 10.2: Geodesic in the Poincaré disk.

that one can define the (unsigned) cross-ratio of any 4-tuple of distinct points inR𝑛. We claim:
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Proposition 10.7. The distance in the Poincaré ball is given by

𝑑 (𝑥,𝑦) = ln[𝑥,𝑦, 𝐽 , 𝐼 ]

= ln

|𝐽𝑥 | |𝐼𝑦 |
|𝐽𝑦 | |𝐼𝑥 |

(10.1)

It is a striking “coincidence” that the distance in the Poincaré ball can be written in such

a similar fashion as the distance in the Klein ball (see  Proposition 8.30 )! Note however two

differences: 1. There is a factor
1

2
in the Cayley–Klein distance that does not appear here, and

2. The points 𝐼 and 𝐽 are different here, and the fours points 𝐼 , 𝑥 , 𝑦, 𝐽 are not collinear in R𝑛.

Proof. We shall see in  § 10.1.4 that the isometries of the Poincaré ball are the Möbius transfor-

mations of the ball. Since Möbius transformations preserve cross-ratios (see  Theorem 9.18 ),

without loss of generality we can assume that 𝑥 = 0 by choosing an isometry that maps 𝑥

to 0 (recall that isometries act transitively on hyperbolic space). Since geodesics through the

origin are diameters (see  § 10.1.5 ), the geodesic through 𝑥 and 𝑦 is a diameter [𝐼 , 𝐽 ]. We thus

have |𝐼𝑥 | = 1, |𝐽𝑥 | = 1, |𝐼𝑦 | = 1 + 𝑟 , |𝐽𝑦 | = 1 − 𝑟 where 𝑟 = ‖𝑦‖. Therefore

ln

|𝐽𝑥 | |𝐼𝑦 |
|𝐽𝑦 | |𝐼𝑥 | = ln

1 + 𝑟
1 − 𝑟

= 2 artanh 𝑟 .

On the other hand, by  Proposition 10.6 we have

𝑑 (𝑥,𝑦) = arcosh

(
1 + 2𝑟 2

1 − 𝑟 2

)
= 2 arcosh

1

√
1 − 𝑟 2

= 2 artanh 𝑟 .

We used the identities: arcosh(2𝑥2 − 1) = 2 arcosh𝑥 and arcosh
1√
1−𝑥2

= artanh𝑥 . �

10.1.4 Isometries

In the previous chapter, we introduced Möbius transformations of the ball 𝐵𝑛.

Theorem 10.8. The group of isometries of the Poincaré ball is exactly the Möbius group of the
ball:

Isom(𝐵𝑛, 𝑔𝐵𝑛 ) = Möb(𝐵𝑛)
Isom

+(𝐵𝑛, 𝑔𝐵𝑛 ) = Möb
+(𝐵𝑛)

Proof. It is enough to prove Isom(𝐵𝑛, 𝑔𝐵𝑛 ) = Möb(𝐵𝑛), the second identity follows immedi-

ately. Let us prove the mutual inclusion:
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Isom(𝐵𝑛, 𝑔𝐵𝑛 ) ⊆ Möb(𝐵𝑛): Since isometries are conformal, any 𝑓 ∈ Isom(𝐵𝑛, 𝑔) is a
conformal automorphism of (𝐵𝑛, 𝑔𝐵𝑛 ). Since 𝑔 is conformally equivalent to the Euclidean

metric 𝑔0, 𝑓 is also a conformal automorphism of (𝐵𝑛, 𝑔0). By  Theorem 9.38 , 𝑓 is a Möbius

transformation of 𝐵𝑛.

Isom(𝐵𝑛, 𝑔𝐵𝑛 ) ⊇ Möb(𝐵𝑛): Since theMöbius group is generated by inversions, it is enough

to prove that any inversion is an isometry. This can be checked by direct computation.

Alternatively, since Möbius transformations preserves (unsigned) cross-ratios ( Theorem 9.18 ),

they preserve the distance ( 10.1 ). Conclude by remembering that distance-preserving maps

and Riemannian isometries are the same. �

The next theorem follows immediately from  Theorem 9.39 .

Theorem 10.9. Any isometry of (𝐵𝑛, 𝑔𝐵𝑛 ) uniquely extends continuously to 𝜕𝐵𝑛 = 𝑆𝑛−1, and
the boundary map is a Möbius transformation of 𝑆𝑛−1. Conversely, any Möbius transformation
𝑓 ∈ Möb(𝑆𝑛−1) extends to a unique isometry ˆ𝑓 ∈ Isom(𝐵𝑛, 𝑔𝐵𝑛 ) called the Poincaré extension
of 𝑓 .

Corollary 10.10. We have isomorphisms:

Isom(𝐵𝑛, 𝑔𝐵𝑛 ) ≈ Möb(𝑆𝑛−1) ≈ PO(𝑛, 1)
Isom

+(𝐵𝑛, 𝑔𝐵𝑛 ) ≈ Möb
+(𝑆𝑛−1) ≈ PO

+(𝑛, 1)

In dimension 2, the Poincaré disk 𝐵2 = D can be identified as a subset of
ˆC, and the

orientation-preserving Möbius group ofH is identified to PSU(1, 1) acting by fractional linear
transformations. This is also the group of complex automorphisms of D. (See  § 9.5.3 for

details.)

Corollary 10.11. The group of orientation-preserving isometries of the Poincaré disk is:

Isom
+(𝐵2, 𝑔𝐵2) ≈ Aut(D) ≈ PSU(1, 1) .

In dimension 3, the boundary 𝑆2 of Poincaré ball 𝐵3 can be identified to ˆC by stereographic

projection, or to C𝑃1 by the standard affine chart. Any isometry of 𝐵3 is uniquely determined

by its extension to the boundary, which is aMöbius transformation of 𝑆2 ≈ ˆC ≈ C𝑃1. We have

seen in  § 9.5.2 that the orientation-preserving Möbius group of 𝑆2 is identified to PSL(2,C)
acting by fractional linear transformations on

ˆC or by projective transformations of C𝑃1, and

that this is also the group of complex automorphisms of
ˆC.

Corollary 10.12. The group of orientation-preserving isometries of the 3-dimensional Poincaré
ball is:

Isom
+(𝐵3, 𝑔𝐵3) ≈ Aut( ˆC) ≈ PGL(2,C) .
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10.1.5 Geodesics

Theorem 10.13. The (unparametrized) geodesics of the Poincaré ball (𝐵𝑛, 𝑔𝐵𝑛 ) are the intersec-
tions of 𝐵𝑛 with circles in R̂𝑛 that are orthogonal to 𝜕𝐵𝑛 = 𝑆𝑛−1.

Remark 10.14. A circle in R̂𝑛 is either a Euclidean circle in R𝑛, or 𝑙 ∪ {∞} where 𝑙 is a

straight line in R𝑛. Therefore geodesics of the Poincaré ball are either arcs of Euclidean

circles orthogonal to 𝑆𝑛−1 (geodesics not going through the origin), or diameters (geodesics

through the origin). See  Figure 10.3 for a few geodesics in the Poincaré disk (𝑛 = 2).

Figure 10.3: Geodesics in the Poincaré disk.

Proof. It follows from our definition of the Poincaré ball that geodesics in 𝐵𝑛 are the image

of geodesics inH+
under the stereographic projection 𝑠 .

First let us show that geodesics through the origin are diameters. Any such geodesic is

the image of a geodesic inH+
through the point (0, . . . , 0, 1), which is the intersection ofH+
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with a vertical 2-plane 𝑃 . It is easy to see from the analytic expression of 𝑠 that the image of

𝑃 ∩H+
is 𝑃 ∩ 𝐵𝑛, which is a diameter.

Now let 𝑙 be a geodesic of 𝐵𝑛 that does not go through the origin. Let 𝑥0 ∈ 𝑙 . Since

hyperbolic isometries act transitively, there exists 𝑓 ∈ Isom(𝐵𝑛, 𝑔𝐵𝑛 ) such that 𝑓 (𝑥0) = 0.

Therefore 𝑓 (𝑙) C 𝑙′ is a geodesic through the origin, so 𝑙′ is a diameter. One can write

𝑙′ = 𝐶∩𝐵𝑛, where𝐶 is a circle of R̂𝑛 orthogonal to 𝑆𝑛−1. Since 𝑓 −1 is a Möbius transformation,

it is conformal and sphere-preserving, therefore 𝑓 −1(𝐶) is circle of R̂𝑛 orthogonal to 𝑆𝑛−1. We

conclude that 𝑙 is an arc of Euclidean circle orthogonal to 𝑆𝑛−1.

Conversely, let us argue that any diameter or arc of Euclidean circle orthogonal to 𝑆𝑛−1

is a Poincaré geodesic. Consider such an arc 𝑙 and denote its endpoints 𝐼 , 𝐽 ∈ 𝑆𝑛−1. Let 𝑙0 be
any geodesic through the origin, it is a diameter with endpoints 𝐼0, 𝐽0 ∈ 𝑆𝑛−1. There exists a
Möbius transformation 𝑓 ∈ Möb(𝑆𝑛−1) such that 𝑓 (𝐼0) = 𝐼 and 𝑓 (𝐽0) = 𝐽 . Indeed, it is not

hard to argue with a little work that Möb(𝑆𝑛−1) acts 2-transitively on 𝑆𝑛−1 (when 𝑛 = 2, it

actually acts 3-transitively by  Theorem 7.70 ). Let
ˆ𝑓 be the Poincaré extension of 𝑓 . Since

ˆ𝑓 is a Möbius transformation, it sends 𝑙0 to a circle of arc that intersects 𝑆𝑛−1 orthogonally
at 𝐼 and 𝐽 . We leave it as an exercise of Euclidean geometry to show that such an arc is

unique, therefore
ˆ𝑓 (𝑙0) = 𝑙 . On the other hand,

ˆ𝑓 (𝑙0) is a geodesic since ˆ𝑓 is an isometry of

the Poincaré ball. �

10.2 The Poincaré half-space model

10.2.1 Definition via the Cayley transform

We recall that the Cayley transform is a map 𝑐 : 𝐻𝑛 → 𝐵𝑛, where 𝐻𝑛 ⊆ R𝑛 is the upper

half-space. It is the restriction of an orientation-preserving Möbius transformation of R̂𝑛, in

particular 𝑐 is a conformal equivalence between 𝐻𝑛
and 𝐵𝑛. See  § 9.4.2 for details and the

analytic expression of the Cayley transform (also  § 9.5.4 for 𝑛 = 2).

Definition 10.15. The Poincaré upper half-plane (𝐻𝑛, 𝑔𝐻𝑛 ) is the inverse image of the

Poincaré ball (𝐵𝑛, 𝑔𝐵𝑛 ) by the Cayley transform.

As before, we immediately obtain that the Poincaré upper half-plane is a model of hyper-

bolic space:

Theorem10.16. The Poincaré half-space (𝐻𝑛, 𝑔𝐻𝑛 ) is a complete, simply-connected Riemannian
manifold of constant sectional curvature −1.
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10.2.2 Riemannian metric

The Poincaré metric 𝑔𝐻𝑛 can be computed as the pullback of 𝑔𝐵𝑛 by the Cayley transform 𝑐 .

We leave the computation as an exercise to the reader ( Exercise 10.1 ). One finds:

d𝑠2 =
d𝑥2

1
+ · · · + d𝑥2𝑛

𝑥𝑛
2

.

We note once again that 𝑔𝐻𝑛 is a conformal metric (i.e. conformally equivalent to the

Euclidean metric 𝑔0), with conformal factor 𝑓 (𝑥) = 1

𝑥2𝑛
. This was to be expected: we already

know that 𝑔𝐵𝑛 is a conformal metric in 𝐵𝑛, and the Cayley transform is a conformal map.

Remark 10.17. As expected, the Riemannian metric blows up when 𝑥𝑛 → 0, that is when 𝑥

approaches 𝜕𝐻𝑛 = R̂𝑛−1.

10.2.3 Distance

The Poincaré distance on 𝐻𝑛
can be computed explicitly as 𝑑𝐻𝑛 (𝑥,𝑦) = 𝑑𝐵𝑛 (𝑐 (𝑥), 𝑥 (𝑦)).

Indeed, since the Cayley transform is a Riemannian isometry, it is also a metric isometry.

After a few lines of calculations which we leave to the reader, one finds:

𝑑 (𝑥,𝑦) = arcosh

(
1 + ‖𝑥 − 𝑦‖2

2𝑥𝑛𝑦𝑛

)
(10.2)

Alternatively, one may again express the distance in terms of a cross-ratio:

𝑑 (𝑥,𝑦) = ln[𝑥,𝑦, 𝐽 , 𝐼 ]

= ln

|𝐽𝑥 | |𝐼𝑦 |
|𝐽𝑦 | |𝐼𝑥 | .

Here, 𝐼 , 𝐽 ∈ R̂𝑛−1 are now the ideal endpoints of the geodesic through 𝑥 and𝑦, which is a circle

arc orthogonal to R̂𝑛−1 (see  § 10.2.5 ). The proof of this identity is quickly derived from the

Poincaré ball case: since the Cayley transform is (the restriction of) a Möbius transformation

of R̂𝑛, it preserves cross-ratios.

10.2.4 Isometries

Theorem 10.18. The group of isometries of the Poincaré half-space is exactly the Möbius group
of the upper half-space:

Isom(𝐻𝑛, 𝑔𝐻𝑛 ) = Möb(𝐻𝑛)
Isom

+(𝐻𝑛, 𝑔𝐻𝑛 ) = Möb
+(𝐻𝑛)

Proof. Since (𝐻𝑛, 𝑔𝐻𝑛 ) is the inverse image of (𝐵𝑛, 𝑔𝐵𝑛 ) by the Cayley transform 𝑐 : 𝐻𝑛 → 𝐵𝑛,

the group of isometries of (𝐻𝑛, 𝑔𝐻𝑛 ) is conjugate to that of (𝐵𝑛, 𝑔𝐵𝑛 ) by the Cayley transform:

Isom(𝐻𝑛, 𝑔𝐻𝑛 ) = 𝑐−1 (Isom(𝐵𝑛, 𝑔𝐵𝑛 )) 𝑐 . On the other hand, we know that Isom(𝐵𝑛, 𝑔𝐵𝑛 ) =

Möb(𝐵𝑛), and the Cayley transform conjugates Möb(𝐻𝑛) and Möb(𝐵𝑛). �
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Corollary 10.19. We have isomorphisms:

Isom(𝐻𝑛, 𝑔𝐻𝑛 ) ≈ Möb(R̂𝑛−1) ≈ PO(𝑛, 1)
Isom

+(𝐻𝑛, 𝑔𝐻𝑛 ) ≈ Möb
+(R̂𝑛−1) ≈ PO

+(𝑛, 1)

In dimension 2, the Poincaré half-plane 𝐻 2 = H can be identified as a subset of
ˆC, and

the orientation-preserving Möbius group of H is identified to PSL(2,R) acting by fractional

linear transformations. This is also the group of complex automorphisms of H. (See  § 9.5.4 

for details.)

Corollary 10.20. The group of orientation-preserving isometries of the Poincaré half-plane is:

Isom
+(𝐻 2, 𝑔𝐵2) ≈ Aut(H) ≈ PSL(2,R) .

In dimension 3, the Poincaré half-space𝐻 3
can be identified to C×R>0, and any isometry

of 𝐻 3
is uniquely determined by its extension to the boundary 𝜕𝐻 3 = ˆC, which is a Möbius

transformation of
ˆC. We have seen in  § 9.5.2 that the orientation-preserving Möbius group of

ˆC is identified to PGL(2,C) acting by fractional linear transformations, and that this is also

the group of complex automorphisms of
ˆC.

Corollary 10.21. The group of orientation-preserving isometries of the 3-dimensional Poincaré
half-space is:

Isom
+(𝐻 3, 𝑔𝐻 3) ≈ Aut( ˆC) ≈ PGL(2,C) .

10.2.5 Geodesics

Theorem 10.22. The (unparametrized) geodesics of the Poincaré half-space (𝐻𝑛, 𝑔𝐻𝑛 ) are the
intersections of 𝐻𝑛 with circles in R̂𝑛 that are orthogonal to 𝜕𝐻𝑛 = R̂𝑛−1.

Remark 10.23. A circle in R̂𝑛 is either a Euclidean circle in R𝑛, or 𝑙 ∪ {∞} where 𝑙 is a straight
line in R𝑛. Therefore geodesics of the Poincaré half-space are either arcs of Euclidean circles

orthogonal to R̂𝑛−1, or vertical straight lines. See  Figure 10.4 for a few geodesics in the

Poincaré half-plane (𝑛 = 2).

Proof. Geodesics in 𝐻𝑛
are the inverse images of geodesics in 𝐵𝑛 by the Cayley transform,

and conversely. Since the Cayley transform is (the restriction of) a Möbius transformation of

R̂𝑛, it maps circles orthogonal to 𝜕𝐻𝑛
to circles orthogonal to 𝜕𝐵𝑛, and conversely. �
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Figure 10.4: Geodesics in the Poincaré half-plane.

10.3 Exercises

Exercise 10.1. Poincaré metric

Feel free to take 𝑛 = 2 in this exercise. You can always do the general case afterwards.

(1) Recover the expression of the stereographic projection 𝑠 : H+ → 𝐵𝑛.

(2) Recall the expressions of the Riemannian metrics 𝑔H+ and 𝑔𝐵𝑛 and recover the fact that

𝑠 is a Riemannian isometry.

(3) Recover the expression of the Cayley transform 𝑐 : 𝐻𝑛 → 𝐵𝑛.

(4) Recall the expression of the metric 𝑔𝐻𝑛 and recover that 𝑐 is a Riemannian isometry.

Exercise 10.2. Curvature of the Poincaré metric

Let Ω ⊆ R𝑛 and let 𝑔 = 𝑒2𝜑𝑔0 be a conformal metric in Ω. Let 𝑢, 𝑣 be an orthonormal pair of

vectors in R𝑛 and denote 𝑃 the plane spanned by 𝑢 and 𝑣 . The following formula (reference:

[ Kap ]) gives the sectional curvature of the metric 𝑔 at a point 𝑥 ∈ Ω in the direction of 𝑃 :

𝐾𝑃 = −𝑒−2𝜑
[
D
2𝜑 (𝑢,𝑢) + D

2𝜑 (𝑣, 𝑣) + ‖∇𝜑 ‖2 − 〈∇𝜑,𝑢〉2 − 〈∇𝜑, 𝑣〉2
]
.

(We have denoted ∇𝜑 the gradient of 𝜑 .)

(1) Recover the curvature of the Poincaré metric in 𝐵𝑛 by direct computation.
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(2) Let 𝐾 < 0. Can you find a metric of constant sectional curvature 𝐾 in 𝐵𝑛?

(3) Same questions for 𝐻𝑛
.

Exercise 10.3. Poincaré vs Klein ball

(1) Show that the natural identification between the Poincaré ball and the Beltrami–Klein

ball is given by the map

𝜑 : 𝐵𝑛
P
−→ 𝐵𝑛

K

𝑥 ↦−→ 2𝑥

1 + ‖𝑥 ‖2 .

(2) Recover that 𝜑 is a Riemannian isometry by direct computation. Feel free to take 𝑛 = 2.

Exercise 10.4. Poincaré vs Klein ball: the distance

(1) Let 𝑥, 𝑥′ be two real numbers in [0, 1) such that 𝑥′ = 2𝑥
1+𝑥2 . Show that

1+𝑥 ′
1−𝑥 ′ =

(
1+𝑥
1−𝑥

)
2

and

derive that artanh𝑥′ = 2 artanh𝑥 .

(2) Recover the fact that themap𝜑 of  Exercise 10.3 is a metric isometry, i.e.𝑑 (𝜑 (𝑥), 𝜑 (𝑦)) =
𝑑 (𝑥,𝑦), in the case 𝑦 = 0.

Exercise 10.5. Poincaré vs Klein ball: isometries

PO(𝑛, 1) acts by isometries on the Klein ball and the Poincare ball. Is this the same action on

𝐵𝑛? Show that the map 𝜑 of  Exercise 10.3 conjugates the two actions.

Exercise 10.6. Hemisphere model

Let 𝑆𝑛 be the unit sphere in R𝑛+1 and denote 𝑆𝑛+ the upper hemisphere (with 𝑥𝑛+1 > 0). We

also denote 𝑆 = (0, . . . , 0,−1) the “South pole” of 𝑆𝑛. We recall that the Poincaré ball may be

seen as the unit ball in 𝑅𝑛 ⊆ 𝑅𝑛+1.

(1) Consider the stereographic projection 𝑠 : 𝑆𝑛 → R̂𝑛. Find its analytic expression. Show
that 𝑠 restricts to a diffeomorphism 𝑆𝑛+ → 𝐵𝑛.

(2) By definition, the hemisphere model (𝑆𝑛+, 𝑔𝑆𝑛+ ) of hyperbolic space is the inverse image

of the Poincaré ball (𝐵𝑛, 𝑔𝐵𝑛 ) by the stereographic projection 𝑠 . Prove that 𝑔𝑆𝑛+ can be

written:

d𝑠2 =
d𝑥2

1
+ · · · + d𝑥2𝑛+1
𝑥2
𝑛+1

.

In what sense is the hemisphere model a conformal model?

Exercise 10.7. Relations between models
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(1) Show that the differentmodels of hyperbolic space are related as showed by the diagram

in  Figure 10.5 .

(2) Show that geodesics in the hemisphere model are semi-circles that are orthogonal to

the equator. Explain  Figure 10.6 .

(3) Recover that geodesics in the Poincaré half-space model are semi-circles that are or-

thogonal to the boundary.

Exercise 10.8. Matrix model of hyperbolic 3-space

Let𝐻 denote the set of 2×2matrices with complex coefficients that are Hermitian symmetric:

𝐻 = {𝐴 ∈ M2×2(C) | 𝐴∗ = 𝐴}

where we denote 𝐴∗ = 𝐴T
.

(1) Let 𝑞(𝐴) = − det(𝐴). Show that 𝑞(𝐴) is a quadratic form on 𝐻 , with associated sym-

metric bilinear form 𝑏 (𝐴, 𝐵) = −1

2
tr(𝐴Comat(𝐵)T).

(2) Show that (𝐻,𝑏) is isomorphic to R3,1 via

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦→
[
𝑥1 + 𝑥4 𝑥2 + 𝑖𝑥3
𝑥2 − 𝑖𝑥3 𝑥1 − 𝑥4

]
.

(3) Let 𝐻1 = 𝐻 ∩ SL(2,C). Show that 𝐻1 is a model of hyperbolic 3-space. What is the

Riemannian metric?

(4) Show that SL(2,C) acts on 𝐻1 by isometries via𝑀 ·𝐴 = 𝑀𝐴𝑀∗
. What is the stabilizer

of 𝐼2? Recover that Isom
+(H3) ≈ PSL(2,C) and H3 ≈ PSL(2,C)/PSU(2).

Exercise 10.9. Hyperbolic subspace

Propose a definition of a hyperbolic subspace of a hyperbolic space 𝑋 = H𝑛, and describe the

hyperbolic subspaces in all the different models of H𝑛.
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𝑂

𝑙

𝑘

𝑗

ℎ

𝑝

𝑆

𝑂

𝑆

Hyperboloid

Poincaré ball

Poincaré half-space

Klein ball

Hemisphere

Figure 10.5: Relation between models of hyperbolic space.

Figure 10.6: Geodesics in Poincaré ball, Klein ball, and hemisphere models.
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Part V

Ideal boundary and classification of isometries

“The way I see the picture,” said Gromov, “is that . . . we took two different, but
sometimes overlapping, routes: Thurston concentrated on the most beautiful and
difficult aspects of the field (hyperbolic 3-manifolds) and myself on the most general
ones (hyperbolic groups).”

– Mikhail Gromov 

2
 

2
Simons foundation, 2014.  www.simonsfoundation.org/2014/12/22/mikhail-gromov/ 

www.simonsfoundation.org/2014/12/22/mikhail-gromov/


CHAPTER 11

Ideal boundary of hyperbolic space

Disclaimer: This chapter is a draft.

In this chapter, we introduce the ideal boundary of hyperbolic space and study some of its

most important properties. For instance, we will see that any geodesic is uniquely determined

by its pair of ideal endpoints. We will also discuss the related notions of Busemann functions

and horospheres. In the next chapter, we will make critical use of the ideal boundary in order

to classify isometries of hyperbolic space.

The ideal boundary is not strictly speaking part of hyperbolic space: its points are “at

infinity”. Nevertheless, it can be defined intrinsically from hyperbolic space, and offers a

compactification of it that is geometrically meaningful.

Most of the notions of this chapter are naturally defined in a much more general frame-

work, namely metric spaces of nonpositive curvature. Specifically, we shall use properties

of hyperbolic space that hold more generally in CAT(0) metric spaces and/or Gromov hy-

perbolic metric spaces. For the reader interested to learn more about this point of view, I

recommend [ BH ]. Other excellent references include [ BBI ;  CDP ;  GH ].

11.1 Metric properties of hyperbolic space

11.1.1 Basic properties

Throughout this chapter, let (𝑋,𝑑) B H𝑛 denote the metric space that is 𝑛-dimensional

hyperbolic space H𝑛 with its distance function. (We take 𝑛 > 2, although 𝑛 = 1 is also

acceptable.) We can alternatively use any of the models of hyperbolic space, since they are

all isometric.
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Let us point out that the notion of geodesic makes sense in a metric space: it is defined

as map 𝛾 : 𝐼 → 𝑋 , where 𝐼 ⊆ R is an interval, such that for any sufficiently close 𝑡0, 𝑡1 ∈ 𝐼 ,
𝑑 (𝛾 (𝑡0), 𝛾 (𝑡1)) = 𝑣 |𝑡1 − 𝑡0 | for some constant 𝑣 > 0 (the speed of the geodesic). When

(𝑋,𝑑) is a manifold with the distance induced from a Riemannian metric, geodesics in (𝑋,𝑑)
coincides with Riemannian geodesics (it is a fundamental theorem of Riemannian geometry

that geodesics can be characterized as locally length-minimizing curves.)

Proposition 11.1. Hyperbolic space (𝑋,𝑑) = H𝑛 enjoys the following properties:
(i) It is a complete metric space.
(ii) It is a proper metric space: any closed ball is compact.
(iii) For any two distinct points 𝑥,𝑦 ∈ 𝑋 , there exists a unique geodesic 𝛾 from 𝑥 to 𝑦 up to

reparametrization, moreover 𝑑 (𝑥,𝑦) = 𝐿(𝛾) (length of 𝛾).

Remark 11.2. Property  (iii) is sometimes called strong geodesic convexity. It implies that

(𝑋,𝑑) is uniquely geodesic, which is the slightly weaker version: for any two distinct points

𝑥,𝑦 ∈ 𝑋 , there exists a unique geodesic 𝛾 from 𝑥 to 𝑦 up to reparametrization such that

𝑑 (𝑥,𝑦) = 𝐿(𝛾). This implies in turn that 𝑋 is a length space: the distance between any two

points is equal to the infimum of the lengths of rectifiable curves between them. Note that

by definition, the Riemannian distance makes any Riemannian manifold a length space.

Proof. For  (i) , we use the famous Hopf-Rinow theorem of Riemannian geometry: a Rieman-

nian manifold is complete as a metric space if and only if it is geodesically complete, i.e. all

geodesics are defined on R. We have seen that hyperbolic geodesics are defined on R in  § 5.4 

(see  Corollary 5.10 ).

One way to prove  (ii) is the following: let 𝐵 = {𝑥 ∈ 𝑋 | 𝑑 (𝑥, 𝑥0) 6 𝑟 } be a closed ball and
consider the Riemannian exponential map exp𝑥0

: T𝑥0 𝑋 → 𝑋 . By geodesic completeness,

exp𝑥0
is globally well-defined on T𝑥0 𝑋 . It follows immediately from  (iii) and the definition of

the Riemannian exponential that 𝐵 = exp(𝐵E) where 𝐵E = {𝑣 ∈ T𝑥0 𝑋 | ‖𝑣 ‖ 6 𝑟 }. Of course,
𝐵E is compact as a closed bounded set in a Euclidean space, therefore 𝐵 = exp(𝐵E) is compact

by continuity of exp𝑥0
. Let us mention that a more intrinsic proof consists in arguing that

any complete and locally compact length space is proper: see [ BH , Cor. 3.8 in Chap. I.3].

We have already proved  (iii) in the hyperboloid model: see  Corollary 5.11 . �

11.1.2 Convexity of the distance function

Consider the distance function on 𝑋 : it is a map

𝑑 : 𝑋 × 𝑋 → [0, +∞) .

It is a general feature of CAT(0) metric spaces that the distance function is convex on 𝑋 ×𝑋 .
We shall not discuss CAT(0) metric spaces in general, because we are essentially interested

in this particular property. Let us only mention that by definition, a CAT(0) metric space
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1
 is a space where geodesic triangles are thinner than Euclidean triangles with the same

side lengths: see  Figure 11.1 . Any Hadamard manifold (complete, simply connected, with

nonpositive sectional curvature) is a CAT(0) metric space. For a precise definition and a

systematic treatment of CAT(𝑘) spaces, we refer to [ BH ].

Figure 11.1: In a CAT(0) metric space, geodesic triangles are “slimmer” than Euclidean trian-

gles with the same side lengths: in this schematic picture, we have 𝑑𝑋 (𝑥,𝑦) 6 𝑑R2 (𝑥′, 𝑦′).

The fact that the distance function is convex translates concretely as follows:

Theorem 11.3. Let 𝛾1 and 𝛾2 be any two geodesics in 𝑋 = H𝑛, not necessarily with same speed.
The function 𝑡 ↦→ 𝑑 (𝛾1(𝑡), 𝛾2(𝑡)) is convex on R.

We give a direct proof below of  Theorem 11.3 , using the explicit expression of the distance

function in the hyperboloid model. (Another direct proof can be found in [ Thu , Theorem

2.5.8].) Let us nevertheless give a sketch of what a more intrinsic proof would look like. First

of all, it is very straightforward to show that the distance function is convex in any CAT(0)
metric space: see [ BH , Prop. 2.2 in Chap II.2] 

2
 . Secondly, one can show [ BH , Ex 1.9d in Chap.

II.1] that the CAT(0) condition is equivalent to the property that, for any geodesic triangle

with side lengths 𝑎, 𝑏, 𝑐 and opposite angles 𝛼 , 𝛽 , 𝛾 , we have:

𝑐2 > 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝛾 .

(Note that the equality case is the law of cosines in Euclidean geometry.) When 𝑋 = H𝑛 is

hyperbolic space, this inequality can be derived (see e.g. [ Duc , Prop. 3.4]) from the hyperbolic

1
Quoting [ BH ]: The terminology "CAT(𝑘)" was coined by M. Gromov [ Gro , p. 119]. The initials are in

honour of E. Cartan, A.D. Alexandrov and V.A. Toponogov, each of whom considered similar conditions in

varying degrees of generality.

2
It is incorrectly assumed in [ BH ] that the two geodesics have same (unit) speed, but the proof works without

any changes for arbitrary geodesics.
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law of cosines ( Theorem 14.8 ). Of course, writing the details of this proof involves significantly

more work than our direct proof below, but this proof can be extended to show the much

more general fact that any Riemannian manifold of sectional curvature 6 𝑘 is locally CAT(𝑘).
This was originally proved by Cartan in 1928 [ Car2 ] for 𝑘 = 0 and Alexandrov [ Ale ] in the

general case. We refer to [ BH , Chap. II.1 Appendix] for details.

Proof of  Theorem 11.3 . We work in the hyperboloid model. We know ( Theorem 5.8 ) that the

geodesics 𝛾𝑖 (𝑖 ∈ {1, 2}) are of the form:

𝛾𝑖 (𝑡) = cosh(‖𝑣𝑖 ‖𝑡)𝑝𝑖 + sinh(‖𝑣𝑖 ‖𝑡)
𝑣𝑖

‖𝑣𝑖 ‖

where 𝑝𝑖 is a point on the hyperboloid, i.e. 𝑝𝑖 ∈ R𝑛,1 with 〈𝑝𝑖, 𝑝𝑖〉 = −1, and 𝑣𝑖 is a tangent
vector to the hyperboloid at 𝑝𝑖 , i.e. 𝑝𝑖 ∈ R𝑛,1 with 〈𝑣𝑖, 𝑝𝑖〉 = 0.

The distance between 𝛾1(𝑡) and 𝛾2(𝑡) is given by:

𝑑 (𝑡) = arcosh (−〈𝛾1(𝑡), 𝛾2(𝑡)〉) .

It is straightforward to compute 𝑑 (𝑡) and see that it is a C∞
function of 𝑡 , except possibly at

𝑡 = 0 if 𝑝1 = 𝑝2. If 𝑝1 ≠ 𝑝2, we can show that 𝑑 is convex by proving that 𝑑′′(𝑡) > 0 for all 𝑡 .

It is sufficient to show that 𝑑′′(0) > 0, since the other cases are obtained by reparametrizing

the geodesics. As for the case 𝑝1 = 𝑝2, one can easily argue convexity by passing to the limit

in the convexity inequality when 𝑝2 → 𝑝1. In summary, we can assume 𝑝1 ≠ 𝑝2 and we want

to show that 𝑑′′(0) > 0.

By direct computation, one finds:

𝑑′′(0) =
√
1 + 𝑐2 𝐴 − 𝐵

𝑐

where

𝐴 = ‖𝑣1‖2 + ‖𝑣2‖2 − 2

〈𝑣1, 𝑣2〉√
1 + 𝑐2

𝐵 =
(〈𝑝1, 𝑣2〉 + 〈𝑣1, 𝑝2〉)2

𝑐2

and we have denoted 𝑐2 = 〈𝑝1, 𝑝2〉2 − 1. (Note: these computations are guided by the fact that

when 𝑐 → 0, we approach the Euclidean scenario.) Thus it remains to show that 𝐴 > 𝐵. Let
us introduce the vectors:

𝑢 =
1

𝑐

(
〈𝑝1, 𝑝2〉𝑝1 + 𝑝2

)
𝑤2 =

〈𝑝1, 𝑣2〉
−1 − 〈𝑝1, 𝑝2〉

(𝑝1 − 𝑝2) − 𝑣2 .

It is immediate to check that 〈𝑢, 𝑝1〉 = 〈𝑤2, 𝑝1〉 = 0, therefore these are two tangent vectors

to the hyperboloid at 𝑝1. Moreover, ‖𝑢‖ = 1 and ‖𝑤2‖ = ‖𝑣2‖. (Note: 𝑢 is the initial velocity
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of the unit geodesic from 𝑝1 to 𝑝2, and 𝑤2 is the inverse parallel transport of 𝑣2 along that

geodesic). It is straightforward to check that 𝐵 = 〈𝑢, 𝑣1−𝑤2〉2, and we leave it as an exercise to
show that 𝐴 > ‖𝑣1 −𝑤2‖2 (with equality if and only if the vectors 𝑣1,𝑤2, and 𝑢 are collinear).

We conclude that 𝐴 > 𝐵 by the Cauchy-Schwarz inequality (in the tangent space T𝑝1 H+
,

which is positive definite). �

Tracing the equality case in the proof above, we can improve the previous theorem:

Theorem 11.4. Given any two geodesics 𝛾1 and 𝛾2 in𝑋 = H𝑛 (not necessarily with same speed),
the function 𝑡 ↦→ 𝑑 (𝛾1(𝑡), 𝛾2(𝑡)) is convex on R. Moreover, it is strictly convex unless 𝛾1 and 𝛾2
are the same unoriented geodesic up to reparametrization.

Proof. In the proof of  Theorem 11.3 , we see that 𝑑′′(0) > 0 unless 𝐴 = ‖𝑣1 − 𝑤2‖2, which
occurs if and only if the vectors 𝑣1,𝑤2, and𝑢 are collinear. Since𝑢 is the initial tangent vector

of the unit geodesic 𝛾 from 𝑝1 to 𝑝2, the fact that 𝑣1 is parallel to 𝑢 means that 𝛾1 = 𝛾 up to

reparametrization. On the other hand, since𝑤2 is the inverse transport of 𝑣2 along 𝛾 , and 𝑢

is the inverse parallel transport of the tangent vector 𝑢2 to 𝛾 at 𝑝2, the fact that𝑤2 is parallel

to 𝑢 implies that 𝑣2 is parallel to 𝑢2. This means that 𝛾2 = 𝛾 up to reparametrization. We

conclude that 𝛾1 = 𝛾 = 𝛾2 up to reparametrization. �

Note that if 𝛾1 and 𝛾2 are two parametrizations of the same unoriented geodesics, one can

write𝛾1(𝑡) = 𝛾2(𝑎𝑡+𝑏), with𝑎 ∈ R−{0} and𝑏 ∈ R. We then have𝑑 (𝛾1(𝑡), 𝛾2(𝑡)) = | (𝑎𝑡+𝑏)−𝑡 |.
This is a (piecewise) linear function of 𝑡 , and it is constant if and only if 𝑎 = 1. The case 𝑎 = 1

means that 𝛾1 and 𝛾2 have same orientation and same speed, equivalently 𝛾1(𝑡) = 𝛾2(𝑡 − 𝑡0)
for some 𝑡0 ∈ R.

Corollary 11.5. Let 𝛾1 and 𝛾2 be two complete geodesics in 𝑋 = H𝑛 such that 𝑑 (𝛾1(𝑡), 𝛾2(𝑡)) is
bounded. Then 𝛾1 = 𝛾2 up to a reparametrization 𝑡 ↦→ 𝑡 − 𝑡0.

Proof. By  Theorem 11.4 , the function 𝑡 ↦→ 𝑑 (𝛾1(𝑡), 𝛾2(𝑡)) is strictly convex unless 𝛾1 and 𝛾2
are the same unoriented geodesic up to reparametrization. Since a strictly convex function

on R cannot be bounded, we conclude that 𝛾1 and 𝛾2 are the same unoriented geodesic up to

reparametrization. Moreover, the discussion above shows that we must be in the case 𝑎 = 1,

otherwise 𝑑 (𝛾1(𝑡), 𝛾2(𝑡)) is again not bounded. �

Remark 11.6.  Theorem 11.4 and  Corollary 11.5 reflect the fact that 𝑋 = H𝑛 has negative

curvature (bounded away from zero), in contrast to any CAT(0) space: for instance, two
distinct parallel lines in the Euclidean plane furnish a counter-example to  Corollary 11.5 .

It is not hard to extend  Theorem 11.3 to the case where one of the geodesics has zero

speed, i.e. is a constant curve, although technically this is not called a geodesic.

Corollary 11.7. For any fixed 𝑦 ∈ 𝑋 = H𝑛, the function 𝑥 ↦→ 𝑑 (𝑥,𝑦) is convex on 𝑋 . In other
words, the function 𝑡 ↦→ 𝑑 (𝛾 (𝑡), 𝑦) is convex on R for any geodesic 𝛾 . Moreover, it is strictly
convex unless 𝛾 goes through 𝑦.
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Proof. Let 𝑣 be any tangent vector at 𝑦. For any 𝜀 > 0, the function 𝑡 ↦→ 𝑑 (𝛾 (𝑡), 𝛾𝜀𝑣 (𝑡)) is
convex by  Theorem 11.3 . By passing to the limit in the convexity inequality when 𝜀 → 0, we

obtain that 𝑡 ↦→ 𝑑 (𝛾 (𝑡), 𝑦) is also convex.
Alternatively, we could write a direct proof from scratch using the explicit expression

of 𝑑 (𝛾 (𝑡), 𝑦) in the hyperboloid model. The proof is then a simpler version of the proof of

 Theorem 11.3 . It is also the best way to argue strict convexity. We leave out the details as an

exercise. �

11.1.3 Gromov hyperbolicity

Let (𝑋,𝑑) be a geodesic metric space (there exists a length-minimizing geodesic between any

two points). Consider a geodesic triangle, which consists of three vertices and three sides, i.e.

length-minimizing geodesics between the vertices. Such a triangle is called 𝛿-slim (where

𝛿 > 0) if any side is contained in the 𝛿-neighborhood of the union of the other two sides. See

 Figure 11.2 .

Definition 11.8. A geodesic metric space (𝑋,𝑑) is called Gromov hyperbolic if there exists
𝛿 > 0 such that any geodesic triangle is 𝛿-slim.

Figure 11.2: A 𝛿-slim triangle: any of its side is contained in the 𝛿-neighborhood of the union

of the other two sides.

Example 11.9. Any geodesic metric space of bounded diameter is Gromov hyperbolic. The

Euclidean plane is not Gromov hyperbolic: bigger and bigger triangles of the same aspect

ratio require larger and larger 𝛿’s.

Remark 11.10. Contrary to the CAT(0) property or the convexity of the distance function,

Gromov hyperbolicity only reflects negative curvature on a large scale, as opposed to an

infinitesimal or local scale. One says that Gromov hyperbolicity is a coarse property.

Theorem 11.11. The hyperbolic space 𝑋 = H𝑛 is Gromov hyperbolic.

Proof. See  Exercise 14.6 . �
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11.2 The ideal boundary

11.2.1 Visual boundary and ideal boundary

Let us call geodesic ray in𝑋 = H𝑛 a unit geodesic defined on an interval of the form [𝑡0, +∞).

Definition 11.12. Two geodesic rays 𝑟1 and 𝑟2 are called asymptotic when the distance

𝑑 (𝑟1(𝑡), 𝑟2(𝑡)) is bounded when 𝑡 → +∞.

Remark 11.13. The Hausdorff distance between two subsets 𝐴, 𝐵 ⊆ 𝑋 is the infimum of

all 𝛿 > 0 such that 𝐴 is contained in the 𝛿-neighborhood of 𝐵 and conversely. (This is not

a proper distance, because it can be infinite and it is equal to zero whenever 𝐴 and 𝐵 have

same closure.) It is easy to show that two geodesic rays are asymptotic if and only if they

have finite Hausdorff distance.

Being asymptotic defines an equivalence relation ∼ on the set of all geodesic rays. Let

us denote 𝑟 (+∞) the equivalence class of a geodesic ray 𝑟 . If 𝛾 is a complete geodesic, we

also let 𝛾 (+∞) denote the equivalence class of the ray 𝑡 ∈ [0, +∞) ↦→ 𝛾 (𝑡), and 𝛾 (−∞) the
equivalence class of the ray 𝑡 ∈ [0, +∞) ↦→ 𝛾 (−𝑡).

Definition 11.14. The ideal boundary (or Gromov boundary, or boundary at infinity)
of 𝑋 = H𝑛 is the set of all equivalence classes of geodesic rays, denoted 𝜕∞𝑋 .

The Gromov boundary can be defined for any metric space, and enjoys some good proper-

ties when𝑋 is Gromov hyperbolic. On the other hand, we have the notion of visual boundary

(“boundary at infinity in the vision of an observer”), which is best suited to CAT(0) spaces:

Definition 11.15. Let 𝑥0 ∈ 𝑋 = H𝑛. The visual boundary 𝜕𝑥0∞𝑋 is the set of all equivalence

classes of geodesic rays starting from 𝑥0.

Given our definition of the ideal boundary and the visual boundary, it is clear that 𝜕
𝑥0
∞𝑋 is

a subset of 𝜕∞𝑋 . In a general metric space, the two can be different, but in our case of interest

𝑋 = H𝑛 they are the same.

Lemma 11.16. Let 𝑥0 ∈ 𝑋 = H𝑛. Any geodesic ray 𝑟 in 𝑋 is asymptotic to a unique geodesic
ray 𝑟 starting from 𝑥0.

Proof. Let us first show uniqueness: assume that 𝑟1 and 𝑟2 are two geodesic rays defined

on [0, +∞) with 𝑟1(0) = 𝑟2(0) = 𝑥0, and are asymptotic. By  Theorem 11.3 , the function

𝑓 : 𝑡 ∈ [0, +∞) ↦→ 𝑑 (𝑟1(𝑡), 𝑟2(𝑡)) is convex. Moreover, 𝑓 is nonnegative, and by assumption

𝑓 is bounded and 𝑓 (0) = 0. Such a function must be constant equal to zero. This shows that

𝑟1 = 𝑟2.

Let us now show existence. Let 𝑟𝑛 be the geodesic ray starting from 𝑥0 that goes through

𝑟 (𝑛). Since 𝑋 is proper, any closed ball 𝐵(𝑥0, 𝑅) is compact, and we can apply the Arzèla-

Ascoli theorem to find a subsequence of 𝑟𝑛 that converges uniformly on such balls to some
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limit 𝑟 . It is easy to argue that 𝑟 is also a geodesic ray. It remains to show that 𝑟 is asymptotic

to 𝑟 . Consider the geodesic triangle with vertices 𝑥0, 𝑟 (0), and 𝑟 (𝑛). The fact that it is 𝛿-slim
implies that the side [𝑥0, 𝑟 (𝑛)] is contained in the 𝛿′-neighborhood of the side [𝑟 (0), 𝑟 (𝑛)]
where 𝛿′ = 𝛿 + 𝑑 (𝑥0, 𝑟 (0)), and conversely. In other words, the segments [𝑥0, 𝑟 (𝑛)] and
[𝑟 (0), 𝑟 (𝑛)] are within Hausdorff distance 6 𝛿′. Passing to the limit when 𝑛 → +∞, we

obtain that the geodesic rays 𝑟 and 𝑟 are within Hausdorff distance 6 𝛿′, therefore they are

asymptotic. �

Remark 11.17. The uniqueness part of the proof works in any CAT(0) metric space. The

existence part works in any proper Gromov hyperbolic space, but a different argument exists

for complete CAT(0) metric spaces: see [ BH , Prop. 8.2].

Theorem 11.18. For any 𝑥0 ∈ H𝑛, we have an identification 𝜕∞𝑋 ≈ 𝜕
𝑥0
∞𝑋 . Moreover, 𝜕𝑥0∞𝑋 can

be identified to the unit tangent space T1

𝑥0
𝑋 B {𝑢 ∈ T𝑥0 𝑋 | ‖𝑢‖ = 1}.

Proof. It is clear that 𝜕𝑥0∞𝑋 is a subset of 𝜕∞𝑋 . In order to show that they are the same, we

need to show that the map 𝜕
𝑥0
∞𝑋 → 𝜕∞𝑋 is surjective, which is to say that any geodesic ray

𝑟 starting from some point 𝑥 ∈ 𝑋 is asymptotic to some ray 𝑟 starting from 𝑥0. This follows

from the existence part of  Lemma 11.16 .

For the second assertion, first observe that the uniqueness part of  Lemma 11.16 says that

the equivalence relation on geodesic rays starting from 𝑥0 is trivial, in other words there is

a unique geodesic ray representing each element of 𝜕
𝑥0
∞𝑋 . Such a geodesic ray is uniquely

determined by its initial tangent vector 𝑢 ∈ T
1

𝑥0
𝑋 . �

11.2.2 Topology

Let 𝑋 = H𝑛 and let us denote 𝑋∞ B 𝑋 t 𝜕∞𝑋 . There is a natural topology on 𝑋∞
such

that, for any geodesic ray 𝑟 in 𝑋 , 𝑟 (𝑡) → 𝑟 (+∞) when 𝑡 → +∞. There are various ways to

define this topology, here is one of them. Fix 𝑥0 in 𝑋 . For any 𝑥 ∈ 𝑋∞
, there is a unique

geodesic segment (when 𝑥 ∈ 𝑋 ) or ray (when 𝑥 ∈ 𝜕∞𝑋 ), which we denote 𝑟𝑥 , from 𝑥0 to 𝑥 .

By definition, we say that 𝑥𝑛 → 𝑥 in 𝑋∞
when 𝑟𝑥𝑛 → 𝑟𝑥 locally uniformly. We leave as an

exercise to the reader to show that this is a well-defined topology on 𝑋∞
and that it does not

depend on the choice of 𝑥0.

Theorem 11.19. Let 𝑋 = H𝑛 and consider 𝑋∞ = 𝑋 t 𝜕∞𝑋 with the topology defined above.
(i) The identifications 𝜕∞𝑋 ≈ 𝜕

𝑥0
∞𝑋 ≈ T

1

𝑥0
𝑋 are homeomorphisms. In particular, 𝜕∞𝑋 is a

topological (𝑛 − 1)-sphere.
(ii) The inclusion 𝑋 → 𝑋∞ is a compactification of 𝑋 : it is a homeomorphism to its image,

which is dense, and 𝑋∞ is compact. Topologically, 𝑋∞ is a closed 𝑛-ball.

We leave the proof of  Theorem 11.19 as an exercise for the most diligent readers.
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Remark 11.20. There are various ways to compactify a topological space, the simplest being

the one-point compactification. However, depending on the context, one may seek com-

pactifications where the points at infinity retain some interesting information, so that the

compactified space is insightful. The compactification of hyperbolic space (or more generally,

a CAT(0) or a Gromov hyperbolic metric space) is an example of compactification that is

geometrically meaningful. Other important examples include: the end compactification of a

topological space, the Stone-Čech compactification of a topological space, and the projective

compactification of a vector space. We have seen the latter in  Chapter 7 : embedding K𝑛 as

an affine hyperplane in K𝑃𝑛 is indeed a compactification (where K = R or C).

11.2.3 Essential properties

Let us put on the record a couple of essential properties of the ideal boundary, in addition to

 Theorem 11.18 and  Theorem 11.19 .

Theorem 11.21. Let 𝑋 = H𝑛. For any two distinct points 𝑥,𝑦 ∈ 𝑋∞, there exists a unique
geodesic from 𝑥 to 𝑦.

Proof. When 𝑥 and𝑦 are both in𝑋 , we already know that there exists a unique geodesic from

𝑥 to 𝑦 (see  Proposition 11.1  (iii) ). When 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝜕∞𝑋 , the existence and uniqueness of
a geodesic ray 𝑟 starting from 𝑥 such that 𝑟 (+∞) = 𝑦 is the content of  Lemma 11.16 . Finally,

when 𝑥 and 𝑦 are both ideal points, the proof of the existence and uniqueness of a geodesic

such that 𝛾 (−∞) = 𝑥 and 𝛾 (+∞) = 𝑦 can be conducted similarly to the proof of  Lemma 11.16 ;

we leave out the details. �

Considering the case where 𝑥 and 𝑦 are both ideal points, we immediately get:

Corollary 11.22. Any complete geodesic 𝛾 : R→ 𝑋 is uniquely determined by its pair of ideal
points {𝛾 (−∞), 𝛾 (+∞)}.

The next theorem will be important in the next chapter:

Theorem 11.23. Let 𝑋 = H𝑛. Any isometry 𝑓 : 𝑋 → 𝑋 uniquely extends to a continuous map
ˆ𝑓 : 𝑋∞ → 𝑋∞, and the restriction of ˆ𝑓 to 𝜕∞𝑋 is a homeomorphism 𝜕∞𝑋 → 𝜕∞𝑋 .

Proof. It is a straightforward exercise to check that themap
ˆ𝑓 defined on 𝜕∞𝑋 by

ˆ𝑓 (𝑟 (+∞)) B
(𝑓 ◦ 𝑟 ) (+∞) is well-defined and extends 𝑓 continuously. Moreover, 𝑓 −1 = ˆ𝑓 −1, therefore ˆ𝑓 is

a homeomorphism of 𝑋∞
, and it restricts to a homeomorphism of 𝜕∞𝑋 . �

Remark 11.24. As we shall see below, in the Poincaré ball model 𝑋 = 𝐵𝑛, the ideal boundary

is 𝜕∞𝑋 = 𝜕𝐵𝑛 = 𝑆𝑛−1. We already know from  Theorem 10.9 that any isometry 𝑓 : 𝑋 → 𝑋

uniquely extends to 𝜕𝐵𝑛 = 𝑆𝑛−1. This provides an alternative proof of  Theorem 11.23 . This

proof is much more specific to 𝑋 = H𝑛 (as opposed to 𝑋 being any Gromov hyperbolic

metric space), but it also gives more information:  Theorem 10.9 additionally tells us that the

boundary map is a Möbius transformation of 𝑆𝑛−1, and uniquely determines 𝑓 .
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11.3 The ideal boundary in each model

One way to describe the ideal boundary of hyperbolic space in each of the different models

is to choose our favorite base point in the model, and associate a natural “point at infinity” to

each geodesic ray from that point, thus providing an identification of the visual boundary.

11.3.1 Ideal boundary of the hyperboloid model

Choose the base point 𝑝0 = (0, . . . , 0, 1) ∈ H+
. Any geodesic ray starting from 𝑝0 is of the

form 𝑟 (𝑡) = cosh(𝑡)𝑝0 + sinh(𝑡)𝑣 , where 𝑣 is a unit tangent vector at 𝑝0. When 𝑡 → +∞,

𝑟 (𝑡) ∼ 𝑒𝑡𝑢 where 𝑢 = 𝑝0 + 𝑣 is a lightlike vector. Thus the geodesic ray 𝑟 (𝑡) is asymptotic to

the lightlike line 𝑙 = R𝑢. Conversely, any lightlike line 𝑙 can be written 𝑙 = R𝑢 where 𝑢 is a

lightlike vector of the form 𝑢 = (𝑣0, 1). Letting 𝑣 = (𝑣0, 0), we have that the geodesic ray 𝑟 (𝑡)
as above is asymptotic to 𝑙 . In conclusion:

Theorem 11.25. The ideal boundary of the hyperboloid modelH+ ⊆ R𝑛,1 may be identified to
the set of lightlike lines in R𝑛,1.

Note that the set of lightlike lines in R𝑛,1 is called the projectivized light cone, which we

have encountered several times in this course. As a projective quadric, it is called an ellipsoid,

and it is a topological sphere as expected.

11.3.2 Ideal boundary of the Klein model

We recall that there are two variations of the Klein model: the Cayley-Klein model, which is

a projective model, and the Beltrami-Klein model, which is the Cayley-Klein model projected

in an affine chart.

The Cayley-Klein model is the interior Ω−
of an ellipsoidQ in projective space P = R𝑃𝑛,

and geodesics are projective lines (or rather chords, i.e. projective lines restricted to Ω−
). It

is clear that given any base point 𝑥0 ∈ Ω−
, each geodesic ray starting from 𝑥 is uniquely

determined by its intersection withQ. In conclusion:

Theorem 11.26. The ideal boundary of the Cayley-Klein model Ω− ⊆ P is the ellipsoidQ.

Remark 11.27. The ellipsoid Q is none other than the projectivized light cone of R𝑛,1. The

hyperboloidH+ ⊆ R𝑛,1 and the Cayley-Klein model Ω− ⊆ P(R𝑛,1) thus have the same ideal

boundary. Can you explain this “coincidence”? See  Exercise 11.2 .

Let us now turn to the Beltrami-Klein model. This is the unit ball 𝐵𝑛 ⊆ R𝑛 equipped with
a Riemannian metric such that the geodesics in 𝐵𝑛 are the chords (intersection of 𝐵𝑛 with

Euclidean straight lines in R𝑛). Taking 𝑥0 = 0 (the Euclidean center of 𝐵𝑛), a geodesic ray

starting from 𝑥0 is a Euclidean radius of 𝐵𝑛. Clearly, each such ray is uniquely determined by

its intersection with 𝜕𝐵𝑛 = 𝑆𝑛−1. See  Figure 11.3 . In conclusion:
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Theorem 11.28. The ideal boundary of the Beltrami-Klein ball 𝐵𝑛 ⊆ R𝑛 is the sphere 𝜕𝐵𝑛 =

𝑆𝑛−1.

Figure 11.3: Visual boundary of the Beltrami-Klein disk (or the Poincaré disk) seen from the

origin.

11.3.3 Ideal boundary of the Poincaré models

The Poincaré ball is the unit ball 𝐵𝑛 ⊆ R𝑛 equipped with a Riemannian metric such that

the geodesics in 𝐵𝑛 are arcs of Euclidean circles orthogonal to the boundary 𝜕𝐵𝑛 = 𝑆𝑛−1,
and Euclidean diameters of 𝐵𝑛. Taking 𝑥0 = 0 (the Euclidean center of 𝐵𝑛), a geodesic ray

starting from 𝑥0 is a Euclidean radius of 𝐵
𝑛
, just like in the Beltrami-Klein model (although the

parametrization is different). Clearly, each such ray is uniquely determined by its intersection

with 𝜕𝐵𝑛 = 𝑆𝑛−1 (again, see  Figure 11.3 ). In conclusion:

Theorem 11.29. The ideal boundary of the Poincaré ball 𝐵𝑛 ⊆ R𝑛 is 𝜕𝐵𝑛 = 𝑆𝑛−1.

As for the Poincaré half-space 𝐻𝑛 ⊆ R𝑛, geodesics are Euclidean half-circles orthogonal

to the boundary 𝜕𝐻𝑛 = R̂𝑛−1. One can show again that each geodesic ray starting from some

point 𝑥0 ∈ 𝐻𝑛
is uniquely determined by its intersection with 𝜕𝐻𝑛

. One could either prove

this directly,or derive it from the Poincaré ball case using the Cayley transform. In conclusion:

Theorem 11.30. The ideal boundary of the Poincaré half-space 𝐻𝑛 ⊆ R𝑛 is 𝜕𝐻𝑛 = R̂𝑛−1.
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11.4 Busemann functions and horospheres

11.4.1 Busemann functions

Let 𝑋 = H𝑛. For any geodesic ray 𝑟 : [0, +∞) → 𝑋 , let us define the Busemann function
(relative to 𝑟 ) as:

𝐵𝑟 : 𝑋 → R
𝑥 ↦→ lim

𝑡→+∞
(𝑑 (𝑥, 𝑟 (𝑡)) − 𝑡) .

Proposition 11.31. For any geodesic ray 𝑟 , the Busemann function 𝐵𝑟 : 𝑋 → R is well-defined,
Lipschitz continuous with constant 1, and convex on𝑋 . Moreover 𝐵𝑟1 and 𝐵𝑟2 differ by an additive
constant if and only if 𝑟1(+∞) = 𝑟2(+∞).

Proof. For any 𝑥 ∈ 𝑋 , the function 𝑔 : 𝑡 ↦→ 𝑑 (𝑥, 𝑟 (𝑡)) − 𝑡 is nonincreasing. Indeed, for

𝑠 6 𝑡 we have 𝑔(𝑡) − 𝑔(𝑠) = 𝑑 (𝑥, 𝑟 (𝑡)) − 𝑑 (𝑥, 𝑟 (𝑠)) − (𝑡 − 𝑠); by the triangle inequality

𝑑 (𝑥, 𝑟 (𝑡)) − 𝑑 (𝑥, 𝑟 (𝑠)) 6 𝑑 (𝑟 (𝑡), 𝑟 (𝑠)) = 𝑡 − 𝑠 so we obtain 𝑔(𝑡) − 𝑔(𝑠) 6 0. Moreover, 𝑔(𝑡)
is bounded below by −𝑑 (𝑥, 𝑟 (0)), since 𝑡 = 𝑑 (𝑟 (0), 𝑟 (𝑡)) 6 𝑑 (𝑟 (0), 𝑥) + 𝑑 (𝑥, 𝑟 (𝑡)). It follows
that 𝑔(𝑡) converges when 𝑡 + ∞ to some limit 𝐵𝑟 (𝑥). By Dini’s theorem, the convergence is

locally uniform.

It follows from the triangle inequality that |𝐵𝑟 (𝑥) − 𝐵𝑟 (𝑦) | 6 𝑑 (𝑥,𝑦), i.e. 𝐵𝑟 is Lipschitz
continuous with constant 1. The convexity of 𝐵𝑟 is immediately derived from the convexity

of the distance function on 𝑋 = H𝑛 ( Theorem 11.3 ).

If 𝐵𝑟1 and 𝐵𝑟2 differ by an additive constant, we may assume that 𝐵𝑟1 = 𝐵𝑟2 C 𝐵 after

reparametrizing 𝑟1 or 𝑟2. Let 𝑡0 ∈ [0, +∞) and consider the closed convex set 𝐶 B {𝐵 6
−𝑡0} ⊆ 𝑋 . Note that 𝐵(𝑟1(𝑡0)) = −𝑡0, therefore 𝑟1(𝑡0) ∈ 𝐶 . In fact, for 𝑡 > 𝑡0, 𝑟1(𝑡0) is the
projection of 𝑟1(𝑡) on 𝐶 . Let us admit the previous point (see [ BH , Prop. 8.22 in Chap. II.8])

or leave it as an exercise. Similarly, 𝑟2(𝑡0) is the projection of 𝑟2(𝑡) on𝐶for 𝑡 > 𝑡0. It follows
that 𝑑 (𝑟1(𝑡), 𝑟2(𝑡)) 6 𝑑 (𝑟1(𝑡0), 𝑟2(𝑡0)) is bounded for 𝑡 > 𝑡0, hence 𝑟1 and 𝑟2 are asymptotic.

Conversely, assume that 𝑟1 and 𝑟2 are asymptotic, and let us show that 𝐵𝑟1 − 𝐵𝑟2 is constant.
The function 𝑡 ↦→ 𝑑 (𝑟1(𝑡), 𝑟2(𝑡)) is convex and bounded, therefore it has a finite limit when

𝑡 → +∞. After reparametrizing of 𝑟1 or 𝑟2, we can assume that lim𝑡→+∞ 𝑑 (𝑟1(𝑡), 𝑟2(𝑡)) = 0.

By the triangle inequality, |𝐵𝑟1 (𝑥) − 𝐵𝑟2 (𝑥) | 6 lim𝑡→+∞ 𝑑 (𝑟1(𝑡), 𝑟2(𝑡)), so we conclude that

𝐵𝑟1 = 𝐵𝑟2 . �

Let now 𝜉 ∈ 𝜕∞𝑋 and let us define the Busemann function (relative to 𝜉) as:

𝐵𝜉 : 𝑋 × 𝑋 → R
(𝑥,𝑦) ↦→ lim

𝑡→+∞
(𝑑 (𝑥, 𝑟 (𝑡)) − 𝑑 (𝑦, 𝑟 (𝑡)))

where 𝑟 is any geodesic ray with 𝑟 (+∞) = 𝜉 . In other words, 𝐵𝜉 (𝑥,𝑦) = 𝐵𝑟 (𝑥) − 𝐵𝑟 (𝑦).
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Proposition 11.32. For any 𝜉 ∈ 𝜕∞𝑋 , the Busemann function 𝐵𝜉 : 𝑋 × 𝑋 → R is well-defined
and continuous.

Proof. As pointed out above, 𝐵𝜉 (𝑥,𝑦) = 𝐵𝑟 (𝑥)−𝐵𝑟 (𝑦). It follows from the previous proposition

that 𝐵𝜉 (𝑥,𝑦) is independent of the choice of geodesic ray 𝑟 such that 𝑟 (+∞) = 𝜉 . Moreover,

𝐵𝜉 is clearly continuous since 𝐵𝑟 is continuous. �

As an example, let us compute a Busemann function in the Poincaré half-space 𝑋 = 𝐻𝑛
.

Proposition 11.33. In the Poincaré half-space 𝐻𝑛 ⊆ R𝑛, the Busemann function relative to the
ideal point 𝜉 = ∞ ∈ 𝜕𝐻𝑛 is:

𝐵𝜉 (𝑥,𝑦) = ln(𝑦𝑛) − ln(𝑥𝑛) .

Proof. Let us choose a geodesic ray 𝑟 in𝐻𝑛
such that 𝑟 (+∞) = 𝜉 . Recall that geodesics having

∞ as an endpoint in the Poincaré half-space model are Euclidean vertical straight lines. We

can take 𝑟 (𝑡) = (0, . . . , 0, 𝑒𝑡 ). Indeed, 𝑟 (𝑡) parametrizes the vertical straight line from 0 to

∞, and it is immediate to check that 𝑟 ′(𝑡) = (0, . . . , 0, 𝑒𝑡 ) has unit norm with respect to the

Poincaré metric

d𝑥2
1
+... d𝑥2𝑛
𝑥2𝑛

, hence 𝑟 (𝑡) is a geodesic ray.
The distance from a point 𝑥 = (𝑥1, . . . 𝑥𝑛) is given by (see ( 10.2 )) 𝑑 (𝑥, 𝑟 (𝑡)) = arcosh𝐴(𝑡)

where

𝐴(𝑡) = 1 +
𝑥2
1
+ · · · + 𝑥2𝑛−1 + (𝑥𝑛 − 𝑒𝑡 )2

2𝑥𝑛𝑒
𝑡

=
𝑥2
1
+ · · · + 𝑥2𝑛 + 𝑒2𝑡

2𝑥𝑛𝑒
𝑡

= 𝑒𝑡𝑎(𝑡)

with 𝑎(𝑡) = 1

2𝑥𝑛

(
1 + 𝑒−2𝑡

(
𝑥2
1
+ · · · + 𝑥2𝑛

) )
. Since arcosh(𝐴(𝑡)) = ln

(
𝐴(𝑡) +

√︁
𝐴(𝑡)2 − 1

)
,

when 𝑡 → +∞ we have

𝑑 (𝑥, 𝑟 (𝑡)) ≈ ln (2𝐴(𝑡))) = 𝑡 + ln(2𝑎(𝑡))

≈ 𝑡 + ln

(
1

𝑥𝑛

)
.

We conclude that 𝐵𝑟 (𝑥) = − ln𝑥𝑛, and 𝐵𝜉 (𝑥,𝑦) = 𝐵𝑟 (𝑥) − 𝐵𝑟 (𝑦) = ln(𝑦𝑛) − ln(𝑥𝑛). �

11.4.2 Horospheres

Definition 11.34. A horosphere in𝑋 = H𝑛 is a level set of a Busemann function 𝐵𝑟 for some

geodesic ray 𝑟 . When 𝑛 = 2, a horosphere is also called horocycle.

One says that a horosphere given by a level set of 𝐵𝑟 is centered at 𝜉 B 𝑟 (+∞). The next
proposition follows immediately from the discussion of the previous subsection:
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Proposition 11.35. For any 𝜉 ∈ 𝜕∞𝑋 and any 𝑥0 ∈ 𝑋 , there exists a unique horosphere centered
at 𝜉 going through 𝑥0; it is the set {𝑥 ∈ 𝑋 | 𝐵𝜉 (𝑥, 𝑥0) = 0}.

The next proposition is also an immediate consequence of the discussion of the previous

subsection:

Proposition 11.36. Let 𝜉 ∈ 𝜕∞𝑋 . Any geodesic 𝛾 with 𝛾 (+∞) = 𝜉 intersects each horosphere
centered at 𝜉 exactly once.

Proof. Let 𝑥0 = 𝛾 (𝑡0). We know that there exists a horosphere 𝑆 centered at 𝜉 going through

𝑥0. Let us show that 𝑥0 is the only intersection of 𝑆 and 𝛾 . Let 𝑟 (𝑡) = 𝛾 (𝑡) for 𝑡 ∈ [𝑡0, +∞).
Since 𝑟 is a geodesic ray with endpoint 𝜉 , horospheres centered at 𝜉 are level sets of the

Busemann function 𝐵𝑟 . Note that for any 𝑥 = 𝛾 (𝑡1) on the geodesic, 𝑑 (𝑥, 𝑟 (𝑡)) = |𝑡 − 𝑡1 | − 𝑡 ,
we easily derive that 𝐵𝑟 (𝑥) = −𝑡1. In particular, 𝑆 is the −𝑡0 level set of 𝐵𝑟 , and it does not go
through 𝑥 = 𝑟 (𝑡1) unless 𝑡1 = 𝑡0. �

Proposition 11.37. Let 𝑓 be an isometry of 𝑋 , and still denote 𝑓 its extension to 𝜕∞𝑋 . For any
𝜉 ∈ 𝜕∞𝑋 , 𝑓 maps bijectively horospheres centered at 𝜉 to horospheres centered at 𝑓 (𝜉).

Proof. Let 𝑟 be a geodesic ray with 𝑟 (+∞) = 𝜉 , then 𝑓 ◦ 𝑟 is a geodesic ray with 𝑓 ◦ 𝑟 (+∞) =
𝑓 (𝜉). The fact that 𝑓 is an isometry implies that 𝐵 𝑓 ◦𝑟 = 𝐵 ◦ 𝑓 −1. It follows that 𝑆 ⊆ 𝑋 is

a level set of 𝐵𝑟 if and only if 𝑓 (𝑆) is a level set of 𝐵 𝑓 ◦𝑟 . In other words, 𝑆 is a horosphere

centered at 𝜉 if and only if 𝑓 (𝑆) is a horosphere centered at 𝑓 (𝜉). �

Now let us describe horospheres in the Poincaré models.

Theorem 11.38. In the Poincaré ball 𝑋 = (𝐵𝑛, 𝑔𝐵𝑛 ) or in the Poincaré half-space ball 𝑋 =

(𝐻𝑛, 𝑔𝐻𝑛 ), the horospheres centered at any 𝜉 ∈ 𝜕∞𝑋 are the Euclidean hyperspheres of R𝑛

contained in 𝑋 that are tangent to 𝜕∞𝑋 at 𝜉 .

 Figure 11.4 and  Figure 11.5 feature a few horocycles in the Poincaré disk and in the

Poincaré half-plane respectively.

Remark 11.39. In the Poincaré half-space 𝑋 = 𝐻𝑛
, recall that 𝜕𝐻𝑛 = R̂𝑛−1. In the case where

𝜉 = ∞,  Theorem 11.38 must be understood as: Horospheres centered at 𝜉 are horizontal

hyperplanes, i.e. subsets {𝑥𝑛 = 𝑐} with 𝑐 > 0. See  Figure 11.6 .

Proof of  Theorem 11.38 . First we argue that it is enough to show the theorem for one particular

ideal point 𝜉0 ∈ 𝜕∞𝑋 . Recall that if 𝑋 is the Poincaré ball or the Poincaré half-space, then any

isometry 𝑓 ∈ Isom(𝑋 ) is uniquely determined by its extension to 𝜕∞𝑋 , which we abusively

still denote 𝑓 , and which is a Möbius transformation of 𝜕∞𝑋 . Since the Möbius group acts

transitively on 𝜕∞𝑋 , if 𝜉 ∈ 𝜕∞𝑋 is any other ideal point, we can find an isometry 𝑓 ∈ Isom(𝑋 )
such that 𝑓 (𝜉0) = 𝜉 . By  Proposition 11.37 , 𝑓 maps horospheres centered at 𝜉0 to horospheres

centered at 𝜉 . On the other hand, 𝑓 is a Möbius transformation of 𝑋 , therefore it is sphere-

preserving (see  Theorem 9.18 ), and it also preserves tangency to 𝜕∞𝑋 . In conclusion, it is
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Figure 11.4: Horocycles in the Poincaré disk.

enough to show the theorem at 𝜉0. Moreover it is enough to do the case 𝑋 = 𝐻𝑛
, because the

case 𝑋 = 𝐵𝑛 can then be derived using the Cayley transform.

Thus we take 𝑋 = 𝐻𝑛 ⊆ R𝑛 and let us pick 𝜉0 = ∞ ∈ 𝜕∞𝑋 . In this case, the (generalized)

Euclidean hyperspheres tangent to 𝜉0 are the horizontal Euclidean hyperplanes in 𝐻𝑛
. We

want to show that such are the horospheres centered at 𝜉0. For any 𝑥 ∈ 𝐻𝑛
, the horosphere

through 𝑥 is 𝑆 = {𝑦 ∈ 𝐻𝑛 | 𝐵𝜉0 (𝑥,𝑦) = 0}. By  Proposition 11.33 , we immediately find

𝑆 = {𝑦 ∈ 𝐻𝑛 | 𝑦𝑛 = 𝑥𝑛}. In other words, 𝑆 is the horizontal hyperplane through 𝑥 . �

We leave as an exercise (rather, several exercises) to the curious reader to describe horo-

spheres in the other models of hyperbolic space. In  Chapter 5 , there was an exercise that

claims to describe horocycles on the hyperboloid when 𝑛 = 2: see  Exercise 5.4 .  Exercise 11.6 

proposes to prove an analogous result in any dimension. As for the Klein models, a charac-

terization is suggested in  Exercise 11.7 .

Let us conclude this chapter with the following important property of horospheres:

Theorem 11.40. Any horosphere 𝑆 ⊆ H𝑛 is a Euclidean space. In other words, any horosphere
𝑆 ⊆ H𝑛 is a complete simply-connected hypersurface with vanishing curvature. Equivalently,
there exists an isometry 𝑆 ∼−→ R𝑛.
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Figure 11.5: Horocycles in the Poincaré half-plane.

Figure 11.6: Horocycles centered at 𝜉 = ∞ in the Poincaré half-plane.

Proof. Since all models of H𝑛 are isometric, it is enough to do the proof in the Poincaré half-

space model. Moreover, since horospheres at some ideal point 𝜉0 are mapped isometrically

to horospheres at all other ideal points (see proof of  Theorem 11.38 ), it is enough to consider

horospheres at 𝜉0.

Let us 𝜉0 = ∞. We have seen that horospheres at 𝜉0 are horizontal hyperplanes contained

in 𝐻𝑛
. Consider such a horosphere 𝑆 = {𝑥 ∈ H𝑛 | 𝑥𝑛 = 𝑐} (where 𝑐 > 0 is a constant). Recall
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that the hyperbolic metric in 𝐻𝑛
is:

𝑔𝐻𝑛 =
d𝑥2

1
+ · · · + d𝑥2𝑛−1 + d𝑥2𝑛

𝑥2𝑛
.

Clearly (𝑥1, . . . , 𝑥𝑛−1) offer a global system of coordinates on 𝑆 , and the induced metric on 𝑆

is simply:

𝑔𝑆 =
d𝑥2

1
+ · · · + d𝑥2𝑛−1

𝑐2
.

Up to the constant scaling factor
1

𝑐2
, this is the standard Euclidean metric 𝑔0 on R

𝑛−1
. Regard-

less, this is a complete Euclidean metric (in fact, 𝑔𝑆 is isometric to 𝑔0 via 𝑥 ↦→ 𝑥/𝑐). �
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11.5 Exercises

Exercise 11.1. (*) Quasi-isometric spaces

Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) be metric spaces. A map 𝑓 : 𝑋 → 𝑌 is called a quasi-isometry if:

(i) 𝑓 is coarsely Lipschitz: there exists 𝐴 > 1, 𝐵 > 0 such that for all 𝑥1, 𝑥2 ∈ 𝑋 :

1

𝐴
𝑑𝑋 (𝑥1, 𝑥2) − 𝐵 6 𝑑𝑌 (𝑓 (𝑥1), 𝑓 (𝑥2)) 6 𝐴𝑑𝑋 (𝑥1, 𝑥2) + 𝐵 .

(ii) 𝑓 is coarsely surjective: there exists 𝐶 > 0 such that for all 𝑦 ∈ 𝑌 , there exists 𝑥 ∈ 𝑋
such that 𝑑 (𝑓 (𝑥), 𝑦) 6 𝐶 .

When there exists a quasi-isometry 𝑓 : 𝑋 → 𝑌 , one says that the metric spaces 𝑋 and 𝑌

are quasi-isometric.

(1) Show that any metric space of finite diameter is quasi-isometric to a point.

(2) Show that R2 and H2
are not quasi-isometric.

(3) Show that any quasi-isometry 𝑓 : H𝑚 → H𝑛 extends to a homeomorphism 𝜕∞H𝑚 →
𝜕∞H𝑛. Conclude that H𝑚 is quasi-isometric to H𝑛 if and only if𝑚 = 𝑛.

Exercise 11.2. Ideal boundary of the hyperboloid and the Cayley–Klein models

We identified both the ideal boundary of the hyperboloid model H+ ⊆ R𝑛,1 and the ideal

boundary of the Cayley–Klein model Ω− ⊆ P(R𝑛,1) as the projectivized light cone of R𝑛,1.

Can you explain this “coincidence”?

Exercise 11.3. Busemann function in the Poincaré disk

Let 𝑋 = (𝐵2, 𝑔𝐵2) be the Poincaré disk. We use the complex coordinate 𝑧 on the unit disk

D ≈ 𝐵2.
(1) For any 𝜉 ∈ 𝜕∞𝑋 = {𝑧 ∈ C | |𝑧 | = 1}, check that the geodesic ray 𝑟𝜉 : [0, +∞) → 𝑋

such that 𝑟 (0) = 0 and 𝑟 (+∞) = 𝜉 has the expression: 𝑟 (𝑡) = tanh(𝑡/2) 𝜉 .
(2) Show that the Busemann function 𝐵𝑟 is given by

𝐵𝑟 (𝑧) = − ln

(
1 − |𝑧 |2
|𝑧 − 𝜉 |2

)
.

(3) Recover the fact that horocycles centered at 𝜉 are Euclidean circles tangent to 𝜕∞𝑋 at

𝜉 .

Exercise 11.4. Horospheres as limit of spheres

Let 𝑥0 ∈ H𝑛 and let 𝑃 ⊆ T𝑥0 H
𝑛
be a hyperplane.
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(1) Show that for all 𝑟 > 0, there exists exactly two hyperspheres 𝑆1(𝑟 ) and 𝑆2(𝑟 ) in H𝑛
that go through 𝑥0 and are tangent to 𝑃 .

(2) Show that there exists exactly two horospheres 𝑆1 and 𝑆2 in H
𝑛
that go through 𝑥0 and

are tangent to 𝑃 .

(3) Show that {lim𝑟→+∞ 𝑆1(𝑟 ), lim𝑟→+∞ 𝑆2(𝑟 )} = {𝑆1, 𝑆2}.

Exercise 11.5. Horospheres as hypersurfaces with asymptotic normal geodesics

(1) Let 𝑆 be a horosphere centered at 𝜉 ∈ 𝜕∞H𝑛. Show that for any 𝑥0 ∈ 𝑆 , the geodesic
going through 𝑥 and with ideal endpoint 𝜉 intersects 𝑆 orthogonally. Show that it is

also orthogonally transverse to any other horosphere centered at 𝜉 .

(2) Show that a complete hypersurface 𝑆 ⊆ H𝑛 is a horosphere if and only if all geodesics

that intersect 𝑆 orthogonally share an ideal endpoint.

Exercise 11.6. Horospheres in the hyperboloid model

Show that in the hyperboloid model H+ ⊆ R𝑛,1, horospheres are given by the intersection

ofH+
with hyperplanes of R𝑛,1 whose normal lies in the light cone. Show that when 𝑛 = 2,

these are parabolas (also see  Exercise 5.4 ).

Exercise 11.7. Horospheres in the Klein model

Show that in the Beltrami–Klein disk 𝐵2 ⊆ R2, the horocycles centered at 𝜉 ∈ 𝑆1 are the

Euclidean ellipses contained in 𝐵2 that have a contact of order 4 with 𝑆1 at 𝜉 . Suggest and

prove an analogous characterization in higher dimensions. Argue that this characterization

also makes sense in the Cayley–Klein model.

Exercise 11.8. Isometries fixing an ideal point

Let 𝑋 = H𝑛 and 𝜉 ∈ 𝜕∞𝑋 .
(1) Show that if 𝑓 ∈ Isom(𝑋 ) fixes 𝜉 , then 𝑓 maps any horosphere 𝑆 centered at 𝜉 to some

other such horosphere 𝑆′. Optional: in what case do we have 𝑆′ = 𝑆?

(2) Recall that any horosphere 𝑆 is isometric to R𝑛−1. Recall explicitly the isometric identi-

fication 𝑆 ≈ R𝑛−1 when 𝑆 is a horosphere centered at 𝜉 = ∞ in the Poincaré half-space

model. Show that 𝑓 induces an affine similarity of R𝑛−1.

(3) Recover the fact that the subgroup of the Möbius group of 𝑆𝑛−1 fixing a point is isomor-

phic to the group of affine similarities of R𝑛−1 (see  Exercise 9.6 ).
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Isometries of hyperbolic space

Disclaimer: This chapter is a draft.

In this chapter, we study the isometries of hyperbolic space and establish a classification

thereof. We have already described the group of isometries in the different models (hyper-

boloid, Klein models, Poincaré models), and how it acts on each model; however we have yet

to analyze the geometric behavior of isometries.

As an analogy, consider the group E
+(3) = Isom

+(R3) of motions (orientation-preserving

isometries) of Euclidean space. As a group, this is E
+(3) ≈ SO(3) nR3, acting on R3 by affine

transformations. But what do Euclidean isometries actually look like? As is well-known, they

fall into distinct types: translations, rotations, and screw rotations (to include orientation-

reversing isometries, there is also reflections, glide reflections, and rotation-reflections). This

classification is easily generalized in any dimension.

The goal of this chapter is to present a similar classification of isometries of hyperbolic

space H𝑛. In order to do so, we will make a crucial use of the ideal boundary of hyperbolic

space introduced in the previous chapter. Essentially, isometries can be classified according

to their dynamics, which can be read off their extended action on the ideal boundary of

hyperbolic space. Just like the notion of ideal boundary, this paradigm to classify isometries

holds in a broad class of metric spaces. We attempt a presentation that is suggestive of this

generality 

1
 , but also discuss the specific features of the case of hyperbolic space.

After studying the isometries of hyperbolic space in arbitrary dimensions, we specialize to

the 2- and 3-dimensional cases. We shall see that in the Poincaré half-spacemodel, orientation-

preserving isometries can be concretely described and characterized usingmatrices in SL(2,R)
1
To learn more about the classification of isometries in metric spaces of nonpositive curvature, I recommend

[ BH ] (for CAT(0) spaces) and [ GH ] (for Gromov hyperbolic spaces).
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(in the 2-dimensional case) or SL(2,C) (in the 3-dimensional case).

12.1 Geometric classification

In this section, we give a geometric classification of isometries. Essentially, the idea is to

classify them according to their dynamics on the ideal boundary. The advantage of this

approach is that -we learn important dynamical properties -it generalizes to much more

general spaces (Gromov hyperbolic and/or CAT)

Let (𝑋,𝑑) be a metric space and let 𝑓 : 𝑋 → 𝑋 be an isometry. By definition, the

displacement function of 𝑓 is 𝑑 𝑓 (𝑥) B 𝑑 (𝑥, 𝑓 (𝑥)), and the translation length of 𝑓 is

𝑙 𝑓 B inf𝑥∈𝑋 𝑑 𝑓 (𝑥).

Definition 12.1. An isometry 𝑓 : 𝑋 → 𝑋 is called:

• elliptic if 𝑙 𝑓 = 0 is attained, i.e. 𝑓 has a fixed point.

• hyperbolic (or loxodromic) if 𝑙 𝑓 > 0 and is attained.

• parabolic if 𝑙 𝑓 is not attained.

Remark 12.2. A quick note about the terminology: for isometries of the second type, we will

favor the term hyperbolic when 𝑋 is a generic metric space, and loxodromic when 𝑋 = H𝑛 is

hyperbolic space. There are two reasons to avoid using “hyperbolic” when 𝑋 = H𝑛: 1. Any

isometry of H𝑛 could reasonably be called a “hyperbolic isometry”, just like any isometry

of R𝑛 is called a Euclidean isometry, and 2. It is common in the math literature to call

“hyperbolic isometry” a subclass of loxodromic isometries, althoughwe find this a poor choice

of terminology (we will use instead the term “translation”, see  Definition 12.15 ).

Example 12.3. In Euclidean space R𝑛, every isometry is either hyperbolic (translations, screw

rotations, glide reflections) or elliptic (rotations, reflections, rotation-reflections). An isometry

that is either elliptic or hyperbolic is called semisimple, hence every Euclidean isometry is

semisimple (i.e. there are no parabolics).

The main goal of this section is to present a characterization of elliptic, hyperbolic, and

parabolic isometries of hyperbolic space, which we condense in the following three theorems.

We postpone the definition of all the new terms appearing in these theorems (orbit, limit set,

attracting/repelling/neutral fixed points, translation axis) until after their statement.

Theorem 12.4. Let 𝑋 = H𝑛 and let 𝑓 : 𝑋 → 𝑋 be an isometry. The following are equivalent:
(i) 𝑓 is elliptic.
(ii) Some/every orbit of 𝑓 is bounded.
(iii) 𝑓 has 0, 2, or infinitely many fixed points on 𝜕∞𝑋 , all of which are neutral fixed points.

Theorem 12.5. Let 𝑋 = H𝑛 and let 𝑓 : 𝑋 → 𝑋 be an isometry. The following are equivalent:
(i) 𝑓 is hyperbolic.
(ii) 𝑓 has a translation axis.
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(iii) 𝑓 has exactly two fixed points on 𝜉−, 𝜉+ ∈ 𝜕∞𝑋 , one attracting (𝜉+) and one repelling (𝜉−).

Theorem 12.6. Let 𝑋 = H𝑛 and let 𝑓 : 𝑋 → 𝑋 be an isometry. The following are equivalent:
(i) 𝑓 is parabolic.
(ii) 𝑓 preserves some/any horosphere 𝑆 centered at some point 𝜉 ∈ 𝜕∞𝑋 , and has no fixed

points in 𝑆 .
(iii) 𝑓 has exactly one fixed point 𝜉 ∈ 𝜕∞𝑋 .

Before proving these theorems let us define all the terms involved.

Orbits of 𝑓 . By definition, an orbit of 𝑓 is a subset of 𝑋 of the form {𝑓 𝑛 (𝑥0), 𝑛 ∈ Z} for
some 𝑥0 ∈ 𝑋 . Here we denote 𝑓 𝑛 the 𝑛-th iterate of 𝑓 under composition, and 𝑓 −𝑛 is the

inverse of 𝑓 𝑛.

Fixed points of 𝑓 at infinity.We have seen ( Theorem 11.23 ) that any isometry 𝑓 : 𝑋 → 𝑋

extends to the ideal boundary 𝜕∞𝑋 , and we still denote 𝑓 the extension to the boundary.

Therefore it makes sense to talk about fixed points of 𝑓 on 𝜕∞𝑋 .

Attracting and repelling fixed points. A fixed point 𝜉 ∈ 𝜕∞𝑓 is called aracting if there

exists a neighborhood 𝑈 of 𝜉 in 𝜕∞𝑋 such that, for any neighborhood 𝑉 of 𝜉 , we have

𝑓 𝑛 (𝑈 ) ⊆ 𝑉 for 𝑛 sufficiently large. The fixed point 𝜉 is called repelling if 𝜉 is an attracting

fixed points of 𝑓 −1. The fixed point 𝜉 is called neutral if it is neither attracting nor repelling
 

2
 .

Remark 12.7. Assume that 𝑓 has two fixed points 𝜉+, 𝜉−, with 𝜉+ attracting and 𝜉− repelling.

If in the definition of attracting [resp. repelling] fixed point one may take for 𝑈 any neigh-

borhood of 𝜉+ that avoids a neighborhood of 𝜉− (resp. any neighborhood of 𝜉− that avoids a

neighborhood of 𝜉+), one says that 𝑓 has North-South dynamics on 𝜕∞𝑋 . We will see that

any hyperbolic isometry of 𝑋 = H𝑛 has North-South dynamics on 𝜕∞𝑋 .

Translation axis. A geodesic in 𝑋 is called a translation axis for an isometry 𝑋 if 𝑓

preserves the geodesic but does not fix it pointwise. Concretely, if 𝛾 : R → 𝑋 is such a

geodesic, then there exists a real number 𝑙 ≠ 0 such that 𝑓 (𝛾 (𝑡)) = 𝛾 (𝑡 + 𝑙) for all 𝑡 ∈ R. We

shall see that |𝑙 | = 𝑙 𝑓 must be the translation length of 𝑓 , and that 𝑓 admits a translation axis

if and only if it is a hyperbolic isometry. Moreover, the two fixed points 𝜉−, 𝜉+ ∈ 𝜕∞𝑋 are the

endpoints of its translation axis; in particular, the translation axis is unique by  Theorem 11.21 .

In order to prove  Theorem 12.4 , we shall use the notion of minimal bounding ball:

Definition 12.8. Let 𝐴 ⊆ 𝑋 be a bounded set. A bounding ball for 𝐴 is a closed ball 𝐵 ⊆ 𝑋
containing 𝐴, and aminimal bounding ball is a bounding ball of minimal radius.

Lemma 12.9. For any nonempty bounded subset 𝐴 ⊆ 𝑋 = H𝑛, there exists a unique minimal
bounding ball.

2
There is a better definition of attracting, repelling, and neutral fixed points of 𝑓 : these are respectively fixed

points 𝜉 where 𝑓 ′(𝜉) is < 1, > 1, or = 1. However defining the metric derivative 𝑓 ′(𝜉) requires more work,

especially since we have not defined any metric on 𝜕∞𝑋 . To learn more on this, we refer to [ GH ] or [ DSU ]. Our

definition of attracting and repelling fixed points is weaker in general, but equivalent in the case 𝑋 = H𝑛 .
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Proof. Consider the function 𝑅 : 𝑋 → [0, +∞) defined by 𝑅(𝑥) B sup𝑦∈𝐴 𝑑 (𝑥,𝑦)2. Clearly, a
minimum bounding ball is a closed ball whose center minimizes 𝑅. It is easy to see that 𝑅 is a

proper function on𝑋 , therefore it admits minimizers: this proves the existence of a minimum

bounding ball.

Let us now prove uniqueness by arguing that 𝑅 is a strictly convex function on𝑋 . Clearly,

𝑅(𝑥) = sup𝑦∈𝐴 𝑑 (𝑥,𝑦)2 is an equivalent definition of 𝑅, where𝐴 indicates the closure of𝐴. By

compactness of 𝐴 (because 𝑋 is a proper metric space: see  Proposition 11.1 ), the supremum

is attained in the definition of 𝑅. For any fixed 𝑦 ∈ 𝑋 , the function 𝑥 ↦→ 𝑑 (𝑥,𝑦)2 is strictly
convex on𝑋 : this can be proved by direct computation in the hyperboloidmodel; it is an easier

version of  Corollary 11.7 . Therefore 𝑅 is strictly convex on𝑋 as a maximum of strictly convex

functions. Conclude by uniqueness of the minimizer of any strictly convex function. �

And another useful couple of lemmas, regarding fixed points and ideal fixed points of

isometries of 𝑋 = H𝑛:

Lemma 12.10. Let 𝑋 = H𝑛 and let 𝑓 : 𝑋 → 𝑋 be an isometry. Then 𝑓 has at least one fixed
point or ideal fixed point.

Proof. Recall that𝑋∞ = 𝑋 ∪𝜕∞𝑋 is a topological closed𝑛-ball, as is illustrated by the Poincaré

ball model for instance. The celebrated Brouwer fixed point theorem precisely says that any

continuous map from a closed 𝑛-ball to itself has at least one fixed point. �

Lemma 12.11. Let 𝑋 = H𝑛 and let 𝑓 : 𝑋 → 𝑋 be an isometry. The fixed point set 𝐹 ⊆ 𝑋 of
𝑓 is either empty, or reduced to a point, or is a hyperbolic subspace of 𝑋 . In other words, 𝐹 is a
subset of 𝑋 that is stable under taking the complete geodesic through any two of its points.

Proof. Assume 𝐹 has at least two points, otherwise the lemma is vacuously true. Let 𝑥,𝑦 be

two distinct points in 𝐹 , and let 𝛾 : R→ 𝑋 be the geodesic such that 𝛾 (0) = 𝑥 and 𝛾 (1) = 𝑦.
Since 𝑓 is an isometry, the curve 𝑓 ◦𝛾 is also a geodesic in 𝑋 . Moreover, 𝑓 ◦𝛾 (0) = 𝑓 (𝑥) = 𝑥
and 𝑓 ◦ 𝛾 (1) = 𝑓 (𝑦) = 𝑦. By uniqueness of the geodesic through 𝑥 and 𝑦, we must have

𝑓 ◦ 𝛾 = 𝛾 . In other words, 𝛾 (𝑡) ∈ 𝐹 for all 𝑡 ∈ R. �

Lemma 12.12. Let 𝑋 = H𝑛 and let 𝑓 : 𝑋 → 𝑋 be an isometry.
(i) If 𝜉1, 𝜉2 ∈ 𝜕∞𝑋 are two distinct ideal fixed points, then the geodesic with endpoints 𝜉1 and

𝜉2 is preserved by 𝑓 .
(ii) If 𝛾 is any unit geodesic preserved by 𝑓 , then 𝑓 (𝛾 (𝑡)) = 𝛾 (𝑡 + 𝑙) for all 𝑡 ∈ R, where |𝑙 | is

the translation length of 𝑓 .

Proof. Since 𝑓 is an isometry, 𝑓 ◦ 𝛾 is a geodesic, moreover it has the same endpoints as 𝛾

therefore we have 𝑓 ◦𝛾 parametrizes the same geodesic as 𝛾 by  Theorem 11.21 . Since 𝑓 ◦𝛾 is a
reparametrization of 𝛾 with same speed and orientation, we have 𝑓 (𝛾 (𝑡)) = 𝛾 (𝑡 + 𝑙) for some

𝑙 ∈ R. We must now show that |𝑙 | is the translation length of 𝑓 . Define the projection 𝑃 to the

geodesic parametrized by 𝛾 by putting that for any 𝑥 ∈ 𝑋 , 𝑃 (𝑥) is the unique minimizer of
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the function 𝑡 ↦→ 𝑑 (𝑥,𝛾 (𝑡))2. Since this function is strictly convex, the map 𝑃 is well-defined.

Moreover, 𝑃 is distance nonincreasing, we leave the proof of this claim as an exercise (there

are several possible approaches, one may for instance compute the second derivative of 𝑃

along any geodesic). It is straightforward to argue that 𝜋 (𝑓 (𝑥)) = 𝑓 (𝜋 (𝑥)), therefore we
obtain 𝑑 (𝑥, 𝑓 (𝑥)) 6 𝑑 (𝜋 (𝑥), 𝜋 (𝑓 (𝑥)) = 𝑑 (𝜋 (𝑥), 𝑓 (𝜋 (𝑥))) = |𝑙 |. This proves that 𝑙 is the
translation distance of 𝑓 . �

We are now ready to prove the characterizations of elliptic isometries, hyperbolic, and

parabolic isometries.

Proof of  Theorem 12.4 . It is obvious that 𝑓 is an elliptic isometry if and only if 𝑓 has a fixed

point in 𝑋 . In particular, 𝑓 has a bounded orbit, since any fixed point is an orbit. More

generally, if 𝑥0 is a fixed point, then 𝑑 (𝑓 𝑛 (𝑥), 𝑥0) = 𝑑 (𝑥, 𝑥0) for any 𝑛 ∈ Z by immediate

induction, therefore the orbit of any point 𝑥 ∈ 𝑋 is bounded. Conversely, assume that the

orbit 𝑆 of some point 𝑥 ∈ 𝑋 is bounded. One can consider the unique minimal bounded ball 𝐵

for 𝑆 (see  Lemma 12.9 ). Since 𝑓 (𝑆) = 𝑆 , we have that 𝑓 (𝐵) = 𝐵, which means that the center

of 𝐵 must be fixed by 𝑓  

3
 .

For the second characterization, first assume that 𝑓 is elliptic. By  Lemma 12.11 , the fixed

set 𝐹 is either empty, or reduced to a point, or is a hyperbolic subspace. It follows that the

intersection of 𝜕∞𝑋 with the closure of 𝐹 in 𝑋 ∪ 𝜕∞𝑋 is either empty (when 𝐹 is empty or

reduced to a point), or consists of two points (when 𝐹 is a geodesic), or infinitely many points

(when 𝐹 is a hyperbolic subspace of dimension > 2). Moreover, it is straightforward to prove

that such points are neutral fixed points of 𝑓 . To conclude that  (ii) implies  (iii) , we show that

𝑓 has no other fixed points in 𝜕∞𝑋 . Let 𝜉 ∈ 𝜕∞𝑋 be a fixed point. Since 𝑓 is elliptic, it has a

fixed point 𝑥 ∈ 𝑋 . The geodesic ray from 𝑥 to 𝜉 must be fixed by 𝑓 , therefore 𝜉 is indeed in

the closure of 𝐹 .

Let us finally show that  (iii) implies that 𝑓 is elliptic. First note that by  Lemma 12.10 , if 𝑓

has no ideal fixed points, then 𝑓 must have a fixed point in 𝑋 . Now assume that 𝑓 has two

or more neutral ideal fixed points. For any two such fixed points 𝜉1 and 𝜉2, the geodesic with

endpoints 𝜉1 and 𝜉2 is preserved by 𝑓 by  Lemma 12.12 . Using the notations of  Lemma 12.12 ,

if 𝑙 ≠ 0 then the geodesic is a translation axis of 𝑓 (by definition). However we shall see in

the proof of  Theorem 12.5 that an isometry that has a translation axis is hyperbolic, and has

no neutral ideal fixed points. In conclusion we must have 𝑙 = 0, in other words the geodesic

is fixed pointwise, therefore 𝑓 is elliptic. �

Proof of  Theorem 12.5 . Assume that 𝑓 is hyperbolic. Let 𝑥0 be a point where 𝑙 = min𝑑 𝑓 is

attained. We claim that the geodesic through 𝑥0 and 𝑓 (𝑥0) is a translation axis for 𝑓 . Indeed,

let 𝛾 be the unit parametrization of this geodesic so that 𝛾 (0) = 𝑥0 and 𝛾 (𝑙) = 𝑓 (𝑥0). Consider
3
The idea of this proof goes back to Cartan [ Car2 ], who used the center of mass in place of the center of

the minimal bounding sphere to show the existence of a fixed point for the action of any compact group of

isometries of a complete and simply connected manifold of nonpositive sectional curvature. This is known as

the Cartan fixed point theorem.
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the geodesic 𝑓 ◦ 𝛾 . By definition of the translation length, we have 𝑑 (𝛾 (𝑡), 𝑓 (𝛾 (𝑡))) 6 𝑙 for
all 𝑡 ∈ R. On the other hand, 𝑑 (𝛾 (𝑡), 𝑓 (𝛾 (𝑡))) = 𝑙 when 𝑡 = 0 and 𝑡 = 𝑙 . Since the function

𝑡 ↦→ 𝑑 (𝛾 (𝑡), 𝑓 (𝛾 (𝑡))) is convex and has two distinct minimizers, it must be constant. This

implies that 𝑓 ◦ 𝛾 and 𝛾 are the same geodesic up to parametrization (see  Corollary 11.5 ), in

fact we must have 𝑓 (𝛾 (𝑡)) = 𝛾 (𝑡 + 𝑙) for all 𝑡 ∈ R. This proves that 𝛾 is a translation axis for

𝑓 . Note that such a translation axis is unique: if 𝛾2 is another translation axis, parametrized

by unit speed so that 𝑓 (𝛾2(𝑡)) = 𝛾2(𝑡 + 𝑙) for all 𝑡 ∈ R (same translation parameter by

 Lemma 12.12 ), then one argues similarly as before that 𝑑 (𝛾 (𝑡), 𝛾2(𝑡)) is bounded, and that 𝛾
and 𝛾2 parametrize the same geodesic. Conversely, if 𝑓 admits a translation axis, then 𝑓 is a

hyperbolic isometry by  Lemma 12.12 .

Now let us prove that when 𝑓 is hyperbolic, the induced map (still denoted 𝑓 ) on the

ideal boundary 𝜕∞𝑋 has North-South dynamics. We know that 𝜕∞𝑋 is a compact Hausdorff

topological space, and that 𝑓 has exactly two fixed points 𝜉−, 𝜉+ ∈ 𝜕∞𝑋 (the endpoints of

its axis). In such a situation, it is enough to show that for any 𝜉 ∈ 𝜕∞𝑋 − {𝜉−}, the point
𝜉− is not an accumulation point of the sequence (𝑓 𝑛 (𝜉))𝑛∈N: this is an exercise of general

topology that we leave to the diligent reader. By contradiction, assume that there exists

𝜉 ≠ 𝜉− and a sequence of integers 𝑛𝑘 → +∞ such that lim𝑘→+∞ 𝑓
𝑛𝑘 (𝜉) = 𝜉−. Let 𝑟 be the

geodesic ray from 𝑥0 to 𝜉 , where 𝑥0 is some point on the axis of 𝑓 , and denote 𝑦0 = 𝑟 (𝑙 𝑓 ).
Clearly, 𝑓 𝑛 (𝜉) is the endpoint of the geodesic ray from 𝑓 𝑛 (𝑥0) that goes through 𝑓 𝑛 (𝑦0) at
time 𝑡 = 𝑙 𝑓 . On the other hand, 𝜉− is the endpoint of the geodesic ray from 𝑓 𝑛 (𝑥0) that goes
through 𝑓 𝑛−1(𝑥0) at time 𝑡 = 𝑙 𝑓 . The topology on 𝜕∞𝑋 implies that if lim𝑘→+∞ 𝑓

𝑛𝑘 (𝜉) = 𝜉−,
then 𝑑 (𝑓 𝑛𝑘 (𝑦0), 𝑓 𝑛𝑘−1(𝑥0)) → 0. However this distance is constant equal to 𝑑 (𝑦0, 𝑓 −1(𝑥0)),
hence the contradiction.

Finally, let us show that if 𝑓 has two ideal fixed points 𝜉−, 𝜉+ on the boundary, which

are not neutral, then 𝑓 has a translation axis. By  Lemma 12.12 , the geodesic with endpoints

𝜉− and 𝜉+ is preserved by 𝑓 , and either entirely consists of fixed points, in which case 𝑓 is

elliptic, or is a translation axis for 𝑓 . In the first case, we have seen that 𝜉− and 𝜉+ are neutral
fixed points, so it is excluded. �

Proof of  Theorem 12.6 . Let 𝑓 be a parabolic isometry. Since 𝑓 has no fixed points in𝑋 , 𝑓 must

have at least one ideal fixed point 𝜉 ∈ 𝜕∞𝑋 . There can be no other ideal fixed point, for

otherwise 𝑓 would be elliptic or hyperbolic by  Lemma 12.12 . Conversely, if 𝑓 has a unique

ideal fixed point, then 𝑓 must be parabolic because  Theorem 12.4 and  Theorem 12.5 rule out

𝑓 being elliptic or hyperbolic.

By  Proposition 11.37 , 𝑓 must send any horosphere 𝑆 centered at 𝜉 to another such horo-

sphere 𝑆′; let us show that if 𝑆′ ≠ 𝑆 then 𝑓 cannot be parabolic 

4
 . Let 𝑥0 ∈ 𝑆 be a point that

minimizes 𝑑 (𝑥, 𝑓 (𝑥)) for all 𝑥 ∈ 𝑆 . Such a minimizer exists: indeed, consider a minimizing

sequence (𝑥𝑛)𝑛∈N. By compactness of 𝑆 ∪ {𝜉}, one can extract a converging subsequence in

𝑆 ∪ {𝜉}. The limit cannot be 𝜉 , since 𝑑 (𝑥𝑛, 𝑓 (𝑥𝑛)) → +∞ whenever 𝑥𝑛 ∈ 𝑆 → 𝜉 , we leave

4
Refer to [ BH , Chap. II.8, Prop. 8.25] for an alternative proof that uses the convexity of the displacement

function.
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this claim as an exercise. Let 𝛾 be the geodesic through 𝑥0 with endpoint 𝜉 . Call 𝑆𝑡 is the

horosphere centered at 𝜉 going through 𝛾 (𝑡), so that 𝑆0 = 𝑆 and 𝑆𝑑 = 𝑆′ where 𝑑 = 𝑑 (𝑥, 𝑓 (𝑥0)).
Repeat the same procedure as before to find a minimizer 𝑥𝑡 ∈ 𝑆𝑡 of 𝑑 (𝑥, 𝑓 (𝑥)) for all 𝑥 ∈ 𝑆𝑡 .
Since 𝑓 𝑛 (𝑆0) = 𝑆𝑛𝑑 for all 𝑛 ∈ Z, we may find a global minimum of 𝑡 ∈ R ↦→ 𝑑 (𝑥𝑡 , 𝑓 (𝑥𝑡 ))
in the interval [0, 𝑑]. It is straightforward to conclude that this is a minimum of 𝑑 (𝑥, 𝑓 (𝑥))
over all 𝑥 ∈ 𝑋 . This proves that the translation distance of 𝑓 is attained, so that 𝑓 cannot be

parabolic.

It remains to show that if an isometry 𝑓 preserves some horosphere 𝑆 and has no fixed

points in 𝑆 , then 𝑓 is parabolic. First of all, it is clear that 𝑓 fixes the center 𝜉 ∈ 𝜕∞𝑋 of 𝑆 ,

since 𝜉 is the only ideal point in the closure of 𝑆 . Secondly, it is immediate from the definition

of a horosphere that 𝑓 must actually preserve any horosphere centered at 𝜉 . If 𝑓 was elliptic,

it would have a fixed point 𝑥0 ∈ 𝑋 . The whole geodesic through 𝑥0 and with endpoint 𝜉

would then have to be pointwise fixed. This geodesic intersects each horosphere centered

at 𝜉 (once), therefore we would find a fixed point of 𝑓 in 𝑆 , contrary to the assumption. If 𝑓

was hyperbolic, by  Theorem 12.5 it would have another endpoint 𝜉′ ∈ 𝜕∞𝑋 , and the geodesic
with endpoints 𝜉 and 𝜉′ would be its axis. Let 𝛾 be a unit parametrization of this geodesic, so

that 𝑓 (𝛾 (𝑡)) = 𝛾 (𝑡 + 𝑙) for all 𝑡 ∈ R, where |𝑙 | is the translation length of 𝑓 . Such a geodesic

intersects 𝑆 at a unique point 𝑥0 = 𝛾 (𝑡0), therefore 𝑓 (𝑥0) = 𝛾 (𝑡0 + 𝑙) cannot belong to 𝑆 ,

contrary to the assumption that 𝑓 preserves 𝑆 . �

12.2 Algebraic classification

To be completed.

12.3 Description

The classification established in the previous section is fundamental, but let us characterize

in more detail the elliptic, loxodromic, and parabolic isometries of hyperbolic space H𝑛. In

the next section, we shall give even more explicit descriptions when 𝑛 = 2 and 𝑛 = 3.

For many purposes, it is good enough to understand isometries up to conjugation, in other

words to classify conjugacy classes of isometries. Indeed, one can easily derive the properties

of an isometry from that of a conjugate: for instance, if 𝑓 is a loxodromic isometry with axis

𝐿, then 𝑔𝑓 𝑔−1 is a loxodromic with axis 𝑔(𝐿) and same translation length, etc.

12.3.1 Elliptic isometries

Let 𝑓 be an elliptic isometry of H𝑛. We have seen that the set of fixed points 𝐹 of 𝑓 is a

hyperbolic subspace of H𝑛, in other words 𝐹 is a copy (totally geodesic embedding) of H𝑘

inside H𝑛. Note that we allow 𝑘 = 0 (𝐹 is reduced to a point) and 𝑘 = 1 (𝐹 is a geodesic).
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Let 𝑥0 be any point in 𝐹 . The fact thatH
𝑛
is uniquely geodesic implies that 𝑓 is completely

determined by its derivative d𝑓𝑥0 . Indeed, for any 𝑥 ∈ H𝑛, we have 𝑓 (𝑥) = 𝛾d𝑓𝑥
0
(𝑢) (1), where

𝑥 = 𝛾𝑢 (1) (in other words 𝑓 is conjugate to d𝑓𝑥0 by the Riemannian exponential map exp𝑥0
).

The linear map d𝑓𝑥0 is a linear isometry of the Euclidean vector space T𝑥0 𝑀 , and its +1-
eigenspace (a.k.a fixed point set) is the tangent subspace to 𝐹 . Thus the “interesting” part of

the action of 𝑓 resides in the behavior of d𝑓 in the orthogonal complement. Let us record

these simple observations:

Theorem 12.13. Any elliptic isometry of H𝑛 is uniquely determined by:
(1) Its set of fixed points 𝐹 ⊆ H𝑛, which is a hyperbolic subspace.
(2) For some 𝑥0 ∈ 𝐹 , a Euclidean isometry of T𝑥0 H

𝑛, whose +1-eigenspace is T𝑥0 𝐹 .

In this description, the splitting of d𝑥0H
𝑛
as 𝑉 ⊕ 𝑉⊥

corresponds to two orthogonally

transverse hyperbolic subspaces of H𝑛 through 𝑥0, the first (𝐹 ) being fixed by 𝑓 , and the

second being preserved by 𝑓 with 𝑥0 as the unique fixed point.

Alternatively to this infinitesimal approach, one can realize that 𝑓 is adequately described

by its set of fixed points 𝐹 and by a Euclidean isometry by looking at its action on horospheres

orthogonally transverse to 𝐹 . Indeed, it is immediate that any such horosphere 𝑆 must be

preserved by 𝑓 (why?). Moreover, we recall the important fact that the hyperbolic metric

restricts to a Euclidean metric on any horosphere ( Theorem 11.40 ). Therefore 𝑓 acts by

Euclidean isometries on 𝑆 .

Example 12.14. Consider an elliptic isometry 𝑓 ∈ Isom
+(H3) in the Poincaré upper half-

space model 𝐻 3
, whose set of fixed points is the geodesic 𝐹 with endpoints 0 and∞. Then 𝑓

preserves each horosphere centered at∞, which is a horizontal plane in𝐻 3
, and is orthogonal

to 𝐹 . Per the above discussion, 𝑓 acts in such a plane by Euclidean rotations. In the coordinates

(𝑧 = 𝑥1 + 𝑖𝑥2, 𝑥3) ∈ 𝐻 3
, the map 𝑓 is written 𝑓 (𝑧, 𝑥3) = (𝑒𝑖𝜃𝑧, 𝑥3) for some real number 𝜃 .

Note that horospheres centered at 0 are also orthogonal to 𝐹 and preserved by 𝑓 , as expected.

See  Figure 12.1 and  Figure 12.2 .

12.3.2 Loxodromic isometries

Let us now turn to loxodromic isometries of hyperbolic space. We called such isometries

hyperbolic in a general metric space 𝑋 (see  Definition 12.1 ), but the term loxodromic should
be preferred when 𝑋 = H𝑛.

Translations

Translations are the “nicest” loxodromic isometries.

Definition 12.15. A loxodromic isometry 𝑓 : H𝑛 → H𝑛 is called a translation if it preserves

some/any equidistant curve from its axis.

The fact that “some” and “any” are equivalent in the definition above will be apparent in

the proof of  Proposition 12.18 .
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Figure 12.1: An elliptic isometry of the Poincaré half-space and its action by Euclidean rota-

tions on horospheres centered at 𝜉 = ∞.

Remark 12.16. It is quite common in the literature to use the term hyperbolic isometry instead

of translation. Such authors will also typically exclude translations from loxodromic isome-

tries. I recommend not using this terminology (see  Remark 12.2 ), or at least saying “purely

hyperbolic” for translations and “purely loxodromic” for other loxodromic elements, to avoid

any confusion.

Example 12.17. For any 𝜆 > 0, the map 𝑧 ↦→ 𝜆𝑧 defines a translation in the Poincaré half-plane.

In fact, the next characterization of translations shows that any translation is conjugate to a

map of this form.

Proposition 12.18. Let 𝑓 : H𝑛 → H𝑛. The following are equivalent:
(i) 𝑓 is a loxodromic isometry and preserves some/any equidistant curve from its axis.
(ii) 𝑓 is conjugate to the transformation of the Poincaré half-space given by 𝑥 ∈ 𝐻𝑛 ↦→ 𝑒𝑙𝑥 ,

where 𝑙 is the translation length of 𝑓 .
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Figure 12.2: The same elliptic isometry as in  Figure 12.1 , acting on horospheres centered at

𝜉 = 0.

Proof. This is the content of  Exercise 12.4 . �

A translation is uniquely determined by its axis and translation length:

Theorem 12.19. For any oriented geodesic line 𝐿 ⊆ H𝑛 and 𝑙 > 0, there exists a unique
translation with axis 𝐿 and translation length 𝑙 .

Proof. Denote by 𝑓0 the transformation of the Poincaré half-space given by 𝑥 ∈ 𝐻𝑛 ↦→ 𝑒𝑙𝑥 (as

in  Proposition 12.18 ). This is a translation with axis 𝐿0, the geodesic line with endpoints 0 and

∞, and with translation length 𝑙 . Let 𝜑 : H𝑛 → 𝐻𝑛
be any isometry that sends the endpoints

of 𝐿 to 𝐿0, preserving orientation (why does this exist?). Then 𝜑 𝑓 𝜑−1
is a translation with

axis 𝐿 and translation length 𝑙 . This shows existence.

For uniqueness, assume that 𝑓1 and 𝑓2 are two translationswith same axis 𝐿 and translation

length 𝑙 . 𝑔 B 𝑓2 ◦ 𝑓 −11
fixes 𝐿 pointwise, so that 𝑔 is an elliptic transformation whose set of
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fixed points contains 𝐿. In particular, 𝑔 preserves the horospheres centered at∞, which are

the horizontal hyperplanes in 𝐻𝑛 ⊆ R𝑛. On the other hand, 𝑔 must preserve the equidistant

lines from 𝐿0, which are the Euclidean straight half-lines starting from 0. Since any such

half-line intersects any aforementioned horosphere exactly once, �

General loxodromic transformations

A general loxodromic transformation is determined by the data of an axis, a translation length,

and a Euclidean isometry. More precisely:

Theorem 12.20. Let 𝑓 : 𝐻𝑛 → 𝐻𝑛. The following are equivalent:
(i) 𝑓 is a loxodromic isometry with axis 𝐿 and translation length 𝑙 .
(ii) 𝑓 = 𝑡 ◦ 𝑟 where 𝑡 is the translation with axis 𝐿 and translation length 𝑙 , and 𝑟 is an elliptic

isometry whose set of fixed points contains 𝐿.

Remark 12.21. The decomposition 𝑓 = 𝑡 ◦ 𝑟 in  Theorem 12.20 is unique, since 𝑡 is uniquely

determined by 𝐿 and 𝑙 ( Theorem 12.19 ).

Proof. Let 𝑓 be a loxodromic isometry with axis 𝐿 and translation length 𝑙 and let 𝑡 be the

unique translation with axis 𝐿 and length 𝑡 . It is immediate that 𝑟 B 𝑓 ◦ 𝑡−1 is an isometry

that fixes 𝐿 pointwise, therefore 𝑟 is an elliptic isometry.

Conversely, assume 𝑓 = 𝑟 ◦ 𝑡 where 𝑟 and 𝑡 are as before. Clearly, 𝑓 is translates by 𝑙

in restriction to 𝐿. By  Theorem 12.5 , since 𝑓 has an axis, it is a loxodromic isometry. More

precisely, 𝑓 is a loxodromic isometry with translation length 𝑙 by  Lemma 12.12 . �

We shall see examples of loxodromic isometries in  § 12.4 and  § 12.5 , e.g.  Figure 12.6 .

12.3.3 Parabolic isometries

A parabolic isometry is determined by the choice of an ideal fixed point and a Euclidean

isometry without fixed points. More precisely:

Theorem 12.22. Any parabolic isometry with ideal fixed point 𝜉 ∈ 𝜕∞H𝑛 acts as a Euclidean
isometry in any horosphere with center 𝜉 . Conversely, given a Euclidean isometry 𝑓0 in some
horosphere 𝑆0 centered at 𝜉 , without any fixed points, there exist a unique parabolic isometry
whose restriction to 𝑆0 coincides with 𝑓0.

Proof. Let 𝑓 be a parabolic isometry with fixed point 𝜉 ∈ 𝜕∞𝑋 . By  Theorem 12.6 , 𝑓 preserves

any horosphere with center 𝜉 . Recall that any horosphere with its induced metric is isometric

to Euclidean space ( Theorem 11.40 ). It follows that 𝑓 must act as a Euclidean isometry in any

horosphere with center 𝜉 .

Conversely, let us show that any Euclidean isometry 𝑓0 of some horosphere 𝑆0 centered

at 𝜉 uniquely extends as a parabolic isometry. For any 𝑥 ∈ H𝑛 and 𝑡 ∈ R, let 𝜑𝑡 (𝑥) denote the
point through which the unit geodesic starting from 𝑥 and with endpoint 𝜉 goes at time 𝑡 .
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Such a geodesic is orthogonally transverse to all horospheres centered at 𝜉 (see  Exercise 11.5 ).

Moreover, for any horosphere 𝑆 centered at 𝜉 , there exists a unique 𝑡 ∈ R such that 𝜑𝑡 (𝑆0) = 𝑆
(𝑡 is the signed distance between 𝑆0 and 𝑆). One can show that any parabolic isometry 𝑓 with

fixed point 𝜉 commutes with 𝜑𝑡 for any 𝑡 ∈ R, let us leave this claim as an exercise. It easily

follows that 𝑓 is uniquely determined by its restriction to any horosphere 𝑆 centered at 𝜉 . �

12.4 Isometries of H2

We shall now describe isometries even more concretely in dimensions 2 and 3. For simplicity,

we shall only consider orientation-preserving isometries. We recall that in the Poincaré

models of hyperbolic space, isometries can be described as Möbius transformations; moreover

in dimensions 2 and 3 these are identified to fractional linear transformations.

12.4.1 Isometries of the Poincaré half-plane

Let us favor the Poincaré half-plane model H ⊆ C. The group of orientation-preserving

isometries of H2
is identified to PSL(2,R), acting on H by fractional linear transformations.

Let us briefly recall how this works: any matrix

𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
∈ SL(2,R)

induces an isometry of H given by

𝑓𝑀 : 𝑧 ↦→ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 .

The assignment𝑀 → 𝑓𝑀 is a group homomorphism from SL(2,R) to Isom(H), whose image

is Isom
+(H) and whose kernel is {−𝐼2, 𝐼2}, so that it induces an isomorphism PSL(2,R) =

SL(2,R)/{±𝐼2} ∼−→ Isom
+(H).

As a consequence of this discussion, the trace of an orientation-preserving isometry of H

is well-defined up to sign.

12.4.2 Elliptic isometries

Theorem 12.23. Let 𝑓 : H → H be an orientation-preserving isometry, represented by 𝑀 ∈
SL(2,R). Assume 𝑓 ≠ id. The following are equivalent:

(i) 𝑓 is an elliptic isometry.
(ii) 𝑓 has a unique fixed point in H.
(iii) tr𝑀 ∈ (−2, 2).

(iv) 𝑀 is conjugate in SL(2,R) to ±𝑅𝜃 for some 𝜃 ∈ R−2𝜋Z, where 𝑅𝜃 =
[
cos( 𝜃

2
) sin( 𝜃

2
)

− sin( 𝜃
2
) cos( 𝜃

2
)

]
.
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(v) 𝑓 is conjugate in Isom
+(H) to 𝑓𝜃 for some 𝜃 ∈ R − 2𝜋Z, where 𝑓𝜃 (𝑧) =

(cos( 𝜃
2
))𝑧+sin( 𝜃

2
)

−(sin( 𝜃
2
))𝑧+cos( 𝜃

2
) .

Before proving this theorem, let us establish an elementary yet useful lemma.

Lemma 12.24. Let𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
∈ SL(2,R) and denote 𝑓 : 𝑧 ↦→ 𝑎𝑧+𝑏

𝑐𝑧+𝑑 the associated fractional

linear transformation of ˆC.
• If (tr𝑀)2 > 4, then 𝑓 has two fixed points, both of which lie in ˆR ⊆ ˆC.
• If (tr𝑀)2 < 4, then 𝑓 has two fixed points, one inH and the other is its complex conjugate.
• If (tr𝑀)2 = 4, then either 𝑓 is the identity, or 𝑓 has a unique fixed point, which lies in

ˆR ⊆ ˆC.

Proof. This is a nice exercise: see  Exercise 12.5 . �

Proof of  Theorem 12.23 . The fact that  (i) ⇔  (ii) ⇔  (iii) immediately follows from  Lemma 12.24 .

The implication  (iv) ⇒  (iii) is trivial, as is  (iv) ⇔  (v) .

Finally, let us prove  (ii) ⇒  (v) . Assume 𝑓 has a unique fixed point 𝑧0 ∈ H. Since Isom+(H)
acts transitively on H, there exists 𝑔 ∈ Isom

+(H) such that 𝑔(𝑧0) = 𝑖. Then 𝑓1 B 𝑔𝑓 𝑔−1

is a fractional linear transformation of H that fixes 𝑖. It is elementary to check by direct

computation that 𝑧 ↦→ 𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1 fixes 𝑖 if and only if 𝑑1 = 𝑎1 and 𝑏1 = −𝑐1. Since 𝑎1𝑑1 − 𝑏1𝑐1 =

1 = 𝑎2
1
+ 𝑐2

1
, there exists 𝜃 ∈ R such that 𝑎1 = cos( 𝜃

2
) and 𝑐1 = − sin( 𝜃

2
). We conclude that

𝑓1 = 𝑓𝜃 . �

Remark 12.25. We can alternatively write a proof of  (iii) ⇒  (iv) using only linear algebra. The

characteristic polynomial of 𝑀 ∈ SL(2,R) is 𝜒𝑀 (𝜆) = 𝜆2 − (tr𝑀)𝜆 + 1, with discriminant

Δ = (tr𝑀)2 − 4. If tr𝑀 ∈ (−2, 2), then 𝜒𝑀 has two non-real complex conjugate roots, and

since their product is 1 they must be 𝜆 = 𝑒±𝑖
𝜃
2 for some 𝜃 ∈ R−2𝜋Z. It follows that𝑀 has two

distinct eigenvalues 𝜆 = 𝑒±𝑖
𝜃
2 , therefore 𝑀 is conjugate in SL(2,C) to 𝐷𝜃 = diag(𝑒𝑖 𝜃2 , 𝑒−𝑖 𝜃2 ).

On the other hand, the matrix 𝑅𝜃 is also conjugate to 𝐷𝜃 in SL(2,C). We therefore find

that𝑀 is conjugate to 𝑅𝜃 in SL(2,C). Conclude with the standard–albeit non-trivial–fact of

linear algebra that two matrices in SL(2,R) are conjugate in SL(2,C) if and only if they are

conjugate in SL(2,R).

A representation of the “standard” elliptic isometry 𝑓𝜃 is shown in  Figure 12.3 .

Corollary 12.26. The conjugacy class of an elliptic element of Isom+(H) is uniquely determined
by its trace (which is a real number defined up to sign).

12.4.3 Loxodromic isometries

Theorem 12.27. Let 𝑓 : H → H be an orientation-preserving isometry, represented by 𝑀 ∈
SL(2,R). The following are equivalent:

(i) 𝑓 is a loxodromic isometry.

229



CHAPTER 12. ISOMETRIES OF HYPERBOLIC SPACE

Figure 12.3: An elliptic isometry of the Poincaré half-plane.

(ii) 𝑓 has no fixed points in H, and two distinct fixed points in 𝜕∞H = ˆR.
(iii) tr𝑀 ∈ R − [−2, 2].

(iv) 𝑀 is conjugate in SL(2,R) to ±𝑇𝑙 for some 𝑙 ∈ R − {0}, where 𝑇𝑙 =
[
𝑒𝑙/2 0

0 𝑒−𝑙/2

]
.

(v) 𝑓 is conjugate in Isom
+(H) to 𝑓𝑙 for some 𝑙 ∈ R − {0}, where 𝑓𝑙 (𝑧) = 𝑒𝑙𝑧.

(vi) 𝑓 is a translation.
The absolute value of the number 𝑙 in  (iv) and  (v) is the translation length of 𝑓 .

Proof. The equivalence  (i) ⇔  (ii) is general: see  Theorem 12.5 .  Lemma 12.24 shows that  (ii) 

⇔  (iii) . The equivalence  (iii) ⇔  (iv) is elementary linear algebra (it is an easier version of

 Remark 12.25 , since𝑀 is diagonalizable over R). The equivalence  (iv) ⇔  (v) is immediate. To

prove that  (v) implies  (vi) , it suffices to check that 𝑓𝑙 is a translation, since the conjugate of any

translation is a translation. The fact that 𝑓𝑙 is a translation is a special case of  Proposition 12.18 .

Finally,  (vi) ⇒  (i) is trivial. �

Remark 12.28. We emphasize that there are no “purely loxodromic” isometries of H2
: this is

just a way to rephrase  (i) ⇔  (vi) .

A representation of the “standard” translation 𝑓𝑙 is shown in  Figure 12.4 .

Corollary 12.29. The conjugacy class of a loxodromic element of Isom+(H) is uniquely deter-
mined by its trace (which is a real number defined up to sign).
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Figure 12.4: A translation of the Poincaré half-plane.

12.4.4 Parabolic isometries

Theorem 12.30. Let 𝑓 : H → H be an orientation-preserving isometry, represented by 𝑀 ∈
SL(2,R). Assume 𝑓 ≠ id. The following are equivalent:

(i) 𝑓 is a parabolic isometry.
(ii) 𝑓 has no fixed points in H, and one fixed point in 𝜕∞H = ˆR.
(iii) tr𝑀 = ±2.

(iv) 𝑀 is conjugate in SL(2,R) to ±𝑃 , where 𝑃 =

[
1 1

0 1

]
.

(v) 𝑓 is conjugate in Isom
+(H) to 𝑧 ↦→ 𝑧 + 1.

Proof. The equivalence  (i) ⇔  (ii) is general: see  Theorem 12.6 .  Lemma 12.24 shows that  (ii) 

⇔  (iii) . The fact that  (iii) implies  (iv) is elementary linear algebra: one quickly shows that𝑀

has +1 as a repeated eigenvalue (or −1, but in that case consider −𝑀), moreover 𝑀 cannot

be diagonalizable otherwise we would have𝑀 = 𝐼2 and 𝑓 = id, therefore the Jordan normal

form of𝑀 must be 𝑃 . The converse  (iv) ⇒  (iii) is trivial. Finally, the equivalence  (iv) ⇔  (v) is

trivial. �

We emphasize that there is only one conjugacy class of parabolic isometries of H2
:

Corollary 12.31. Any parabolic element of Isom+(H) has trace±2, and is conjugate to 𝑧 ↦→ 𝑧+1.
Conversely, any 𝑓 ∈ Isom

+(H) of trace ±2 is parabolic, provided 𝑓 ≠ id.

A representation of the “standard” parabolic isometry 𝑧 ↦→ 𝑧 + 1 is shown in  Figure 12.5 .
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Figure 12.5: A parabolic isometry of the Poincaré half-plane.

12.4.5 Conjugacy classes and trace

As a consequence of  Corollary 12.26 ,  Corollary 12.29 , and  Corollary 12.31 , we obtain:

Theorem 12.32. The conjugacy class of an element of 𝑓 ∈ Isom
+(H) − {id} is uniquely

determined by its trace (which is a real number defined up to sign).

More precisely, summarizing previous results:

• If tr(𝑓 ) = ±2 cos( 𝜃
2
) ∈ [2, 2], then 𝑓 is elliptic and conjugate to 𝑧 ↦→ (cos( 𝜃

2
))𝑧+sin( 𝜃

2
)

−(sin( 𝜃
2
))𝑧+cos( 𝜃

2
) .

• If tr(𝑓 ) = ±2 cosh(𝑙/2) ∈ R − [2, 2], then 𝑓 is a translation and conjugate to 𝑧 ↦→ 𝑒𝑙𝑧.

• If tr(𝑓 ) = ±2 and 𝑓 ≠ id, then 𝑓 is parabolic and conjugate to 𝑧 ↦→ 𝑧 + 1.

Remark 12.33. Although it is unambiguous from the definition that 𝑓 = id is an elliptic

isometry, it is quite special: it has the same trace as parabolic isometries. Moreover, it can be

approached by translations as well as by non-trivial rotations. Informally speaking, 𝑓 = id is

at the junction between elliptic, loxodromic, and parabolic isometries.

12.5 Isometries of H3

12.5.1 Isometries of the Poincaré half-space

Let us favor the Poincaré half-space model 𝐻 3 = C × [0,∞) ⊆ R3. We shall use coordinates

(𝑧 = 𝑥1 + 𝑖𝑥2, 𝑥3). The group of orientation-preserving isometries of H3
is identified to

PGL(2,C), acting on 𝜕∞𝐻 3 = ˆC by fractional linear transformations, and acting in 𝐻 3
by via
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the Poincaré extension. Let us recall how this works: any matrix

𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
∈ GL(2,C)

induces a orientation-preserving Möbius transformation of
ˆC given by

𝑓𝑀 : 𝑧 ↦→ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 .

Any such Möbius transformation uniquely extends as a Möbius transformation of 𝐻 3
(this

is called the Poincaré extension, see  Theorem 9.30 ), which we still denote 𝑓𝑀 , and which

is an isometry of 𝐻 3
. Conversely, any orientation-preserving isometry of 𝐻 3

is a Möbius

transformation, and is uniquely determined by its continuous extension to 𝜕∞𝐻 3 = ˆC, which

is an orientation-preservingMöbius transformation of
ˆC. The latter coincideswith a fractional

linear transformation as above.

The assignment𝑀 → 𝑓𝑀 is a group homomorphism from GL(2,C) to Isom(𝐻 3), whose
image is Isom

+(𝐻 3) and whose kernel is the group of homotheties C∗𝐼2, so that it induces an
isomorphism PGL(2,C) = GL(2,C)/C∗𝐼2 ∼−→ Isom

+(𝐻 3).
Instead of PGL(2,C), in this section we will favor PSL(2,C) B SL(2,C)/{−𝐼2, 𝐼2}, which

is basically the same group (there is a natural isomorphism PSL(2,C) ∼−→ PGL(2,C)). Es-
sentially, any matrix in GL(2,C) can be multiplied by some 𝜆 ∈ C∗ so that the resulting

matrix has determinant 1, and the associated fractional linear transformations are the same.

More precisely, the story above can be repeated for SL(2,C): the assignment 𝑀 → 𝑓𝑀 is

a group homomorphism from SL(2,C) to Isom(𝐻 3), whose image is still Isom
+(𝐻 3) and

whose kernel is C∗𝐼2 ∩ SL(2,C) = {−𝐼2, 𝐼2}, so that it induces an isomorphism PSL(2,C) =
SL(2,C)/{−𝐼2, 𝐼2} ∼−→ Isom

+(𝐻 3).
The benefits of SL(2,C) over GL(2,C) is that not only it will be useful in this section to

assume that all matrices have determinant 1, it is especially convenient that we can associate

a matrix 𝑀 ∈ SL(2,C) unique up to sign to any 𝑓 ∈ Isom
+(𝐻 3). In particular, the trace of

𝑓 ∈ Isom
+(𝐻 3) is well-defined complex number up to sign.

12.5.2 Elliptic isometries

Theorem 12.34. Let 𝑓 : 𝐻 3 → 𝐻 3 be an orientation-preserving isometry, represented by𝑀 ∈
SL(2,C). Assume 𝑓 ≠ id. The following are equivalent:

(i) 𝑓 is an elliptic isometry.
(ii) The set of fixed points of 𝑓 in 𝐻 3 is a geodesic.
(iii) tr𝑀 ∈ (−2, 2) ⊆ R ⊆ C.

(iv) 𝑀 is conjugate in SL(2,C) to ±𝑅𝜃 for some 𝜃 ∈ R − 2𝜋Z, where 𝑅𝜃 =

[
𝑒𝑖

𝜃
2 0

0 𝑒−𝑖
𝜃
2

]
.

(v) 𝑓 is conjugate in Isom
+(H) to 𝑓𝜃 for some 𝜃 ∈ R − 2𝜋Z, where 𝑓𝜃 is given by (𝑧, 𝑥3) ↦→

(𝑒𝑖𝜃𝑧, 𝑥3).
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Before writing the proof of this theorem, we show the useful lemma:

Lemma 12.35. Let𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
∈ SL(2,C) and denote 𝑓 : 𝑧 ↦→ 𝑎𝑧+𝑏

𝑐𝑧+𝑑 the associated fractional

linear transformation of ˆC.
• If tr𝑀 ∈ C − (−2, 2), then 𝑓 has exactly two fixed points in ˆC, one attracting and one
repelling.

• If tr𝑀 ∈ (−2, 2), then 𝑓 has exactly two fixed points in ˆC, both neutral.
• If (tr𝑀)2 = 4, then either 𝑓 is the identity, or 𝑓 has a unique fixed point in ˆC, which is
neutral.

Proof. Firstly, one readily shows that a fixed point 𝑧0 ∈ C is attracting [resp. repelling, resp.

neutral] in the sense defined in  § 12.1 if and only if the “multiplier” |𝑓 ′(𝑧0) | is < 1 [resp. > 1,

resp. = 1]. For 𝑧0 = ∞, take |𝑔′(0) | instead, where 𝑔(𝑧) = 1/𝑓 (1/𝑧).
If 𝑐 ≠ 0, a fixed point of 𝑓 is a root of the quadratic polynomial 𝑐𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏, with

discriminant Δ = (tr𝑀)2−4. The derivative of 𝑓 is 𝑓 ′(𝑧) = 1

(𝑐𝑧+𝑑)2 , and at the two fixed points

we have 𝑓 ′(𝑧) = 4

(tr𝑀±
√
Δ)2

. Notice that the product 𝑓 ′(𝑧1) 𝑓 ′(𝑧2) is equal to 1, so that 𝑧1 and
𝑧2 are either distinct and attracting/repelling, or distinct and neutral, or equal and neutral.

The conclusion quickly follows.

If 𝑐 = 0, one must have 𝑑 = 1

𝑎
≠ 0, and the fixed points of 𝑓 solve 𝑎(𝑎𝑧 +𝑏) = 𝑧. If 𝑎 ≠ 1, 𝑓

has two fixed points: 𝑧1 =
𝑎𝑏
𝑎2−1 and 𝑧2 = ∞, with multipliers 𝑎2 and 1/𝑎2. Therefore 𝑧1 and 𝑧2

are either attracting and repelling, or repelling and attracting, or both neutral, depending on

whether |𝑎 | > 1, |𝑎 | < 1, or |𝑎 | = 1. The first two cases correspond to tr𝑀 = 𝑎+ 1

𝑎
∈ C−(−2, 2),

and the third case to tr𝑀 = 𝑎 + 1

𝑎
∈ (−2, 2). Finally, if 𝑎 = 𝑑 = 1: we have tr𝑀 = 2, and

either 𝑏 = 0 and 𝑓 is the identity map, or 𝑏 ≠ 0 and 𝑓 admits∞ as a unique fixed point with

multiplier 1. �

Proof of  Theorem 12.34 . Assume that 𝑓 is elliptic. By  Lemma 12.11 , the set of fixed points 𝐹

of 𝑓 in 𝐻 3
is either a point, or a geodesic, or a 2-dimensional hyperbolic subspace. If 𝑓 had a

unique fixed point 𝑝0 ∈ 𝐻 3
, then 𝑓 could not have any ideal fixed point 𝑧 ∈ ˆC, for otherwise

the geodesic through 𝑝0 with endpoint 𝑧 would be fixed. However  Lemma 12.35 shows that

𝑓 has at least one ideal fixed point. If 𝐹 was a two-dimensional hyperbolic subspace, then 𝑓

would have infinitely many fixed points in
ˆC; again this is ruled out by  Lemma 12.35 . Thus

we proved that  (i) implies  (ii) , and the converse is trivial.

The equivalence  (i) ⇔  (iii) is an immediate consequence of  Theorem 12.4 and  Lemma 12.35 .

The equivalence  (iii) ⇔  (iv) is elementary linear algebra.

Finally, let us prove  (iv) ⇔  (v) . It is clear that 𝑀 is conjugate to 𝑅𝜃 if and only if the

restriction of 𝑓 to ˆC is conjugate to 𝑧 ↦→ 𝑒𝑖𝜃 . It remains to show that 𝑓𝜃 : (𝑧, 𝑥3) ↦→ (𝑒𝑖𝜃𝑧, 𝑥3)
is the Poincaré extension of 𝑧 ↦→ 𝑒𝑖𝜃 . It is enough to realize that 𝑓𝜃 is an isometry of 𝐻 3

(it

clearly preserves the Riemannian metric), and that its continuous extension to
ˆC is indeed

𝑧 ↦→ 𝑒𝑖𝜃 . �
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The “standard” elliptic isometry 𝑓𝜃 is shown in  Figure 12.1 and  Figure 12.2 . I also recom-

mend checking out the website [ Nel ] for cool animations of elliptic, “hyperbolic”, loxodromic,

and parabolic isometries in the Poincaré half-space model.

Corollary 12.36. The conjugacy class of an elliptic element of Isom+(𝐻 3) is uniquely deter-
mined by its trace (which is a complex number defined up to sign).

12.5.3 Loxodromic isometries

Theorem 12.37. Let 𝑓 : 𝐻 3 → 𝐻 3 be an orientation-preserving isometry, represented by𝑀 ∈
SL(2,C). The following are equivalent:

(i) 𝑓 is a loxodromic isometry.
(ii) 𝑓 has no fixed points in 𝐻 3, and two distinct fixed points in 𝜕∞𝐻 3 = ˆC, one attracting and

one repelling.
(iii) tr𝑀 ∈ C − [−2, 2].

(iv) 𝑀 is conjugate in SL(2,R) to ±𝑇𝑙 for some 𝑙 ∈ C − 𝑖R, where 𝑇𝑙 =
[
𝑒𝑙/2 0

0 𝑒−𝑙/2

]
.

(v) 𝑓 is conjugate in Isom
+(𝐻 3) to 𝑓𝑙 for some 𝑙 ∈ C − 𝑖R, where 𝑓𝑙 (𝑧, 𝑥3) = (𝑒𝑙𝑧, 𝑥3).

The absolute value of the complex number 𝑙 in  (iv) and  (v) is the translation length of 𝑓 .

Proof. The fact that  (i) ⇔  (ii) ⇔  (iii) is an application of  Theorem 12.20 and  Lemma 12.35 .

The equivalence  (iii) ⇔  (iv) is elementary linear algebra. Finally, the proof of  (iv) ⇔  (v) is the

same as in  Theorem 12.34 . �

Among loxodromic isometries, translations are special:

Corollary 12.38. Let 𝑓 : 𝐻 3 → 𝐻 3 be an orientation-preserving isometry, represented by
𝑀 ∈ SL(2,C). The following are equivalent:

(i) 𝑓 is a translation.
(ii) tr𝑀 ∈ R − [−2, 2] ⊆ C.

(iii) 𝑀 is conjugate in SL(2,C) to ±𝑇𝑙 for some 𝑙 ∈ R − {0}, where 𝑇𝑙 =
[
𝑒𝑙/2 0

0 𝑒−𝑙/2

]
.

(iv) 𝑓 is conjugate in Isom
+(𝐻 3) to 𝑓𝑙 for some 𝑙 ∈ R − {0}, where 𝑓𝑙 (𝑧, 𝑥3) = (𝑒𝑙𝑧, 𝑒Re(𝑙)𝑥3).

The absolute value of the real number 𝑙 in  (iv) and  (v) is the translation length of 𝑓 .

A representation of the “standard” loxodromic isometry 𝑓𝑙 (𝑙 ∈ C − (𝑖R ∪ R)) and the

“standard” translation 𝑓𝑙 (𝑙 ∈ R − {0}) are shown in  Figure 12.6 and  Figure 12.7 . I also

recommend checking out the website [ Nel ].

Corollary 12.39. The conjugacy class of a loxodromic element of Isom+(𝐻 3) is uniquely deter-
mined by its trace (which is a complex number defined up to sign).
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Figure 12.6: A loxodromic isometry of the Poincaré half-plane.

12.5.4 Parabolic isometries

Theorem 12.40. Let 𝑓 ∈ Isom
+(𝐻 3), represented by 𝑀 ∈ SL(2,C). Assume 𝑓 ≠ id. The

following are equivalent:
(i) 𝑓 is a parabolic isometry.
(ii) 𝑓 has no fixed points in 𝐻 3, and one fixed point in 𝜕∞𝐻 3 = ˆC.
(iii) tr𝑀 = ±2.

(iv) 𝑀 is conjugate in SL(2,C) to ±𝑃 , where 𝑃 =

[
1 1

0 1

]
.

(v) 𝑓 is conjugate in Isom
+(𝐻 3) to (𝑧, 𝑥3) ↦→ (𝑧 + 1, 𝑥3).

Proof. The fact that  (i) ⇔  (ii) ⇔  (iii) is an application of  Theorem 12.6 and  Lemma 12.35 . The

proof of  (iii) ⇔  (iv) is elementary linear algebra, it is the same as in  Theorem 12.30 . Finally,

the proof of  (iv) ⇔  (v) is the same as in  Theorem 12.34 . �

As in the two-dimensional case, there is only one conjugacy class of orientation-preserving
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Figure 12.7: A translation of the Poincaré half-space.

parabolic isometries of H3
:

Corollary 12.41. Any parabolic element of Isom+(𝐻 3) has trace ±2, and is conjugate to
(𝑧, 𝑥3) ↦→ (𝑧 + 1, 𝑥3). Conversely, any 𝑓 ∈ Isom

+(𝐻 3) of trace ±2 is parabolic, provided
𝑓 ≠ id.

A representation of the “standard” parabolic isometry (𝑧, 𝑥3) ↦→ (𝑧 + 1, 𝑥3) is shown in

 Figure 12.8 .

12.5.5 Conjugacy classes and trace

As a consequence of  Corollary 12.36 ,  Corollary 12.39 , and  Corollary 12.41 , we obtain:

Theorem 12.42. The conjugacy class of an element of 𝑓 ∈ Isom
+(𝐻 3) − {id} is uniquely

determined by its trace (which is a real number defined up to sign).

More precisely, summarizing previous results:
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Figure 12.8: A parabolic isometry of the Poincaré half-space.

• If tr(𝑓 ) = ±2 cos( 𝜃
2
) ∈ [2, 2], then 𝑓 is elliptic and conjugate to (𝑧, 𝑥3) ↦→ (𝑒𝑖𝜃𝑧, 𝑥3).

• If tr(𝑓 ) = ±2 cosh(𝑙/2) ∈ C − [2, 2], then 𝑓 is a translation and conjugate to (𝑧, 𝑥3) ↦→
(𝑒𝑙𝑧, 𝑥3).

• If tr(𝑓 ) = ±2 and 𝑓 ≠ id, then 𝑓 is parabolic and conjugate to (𝑧, 𝑥3) ↦→ (𝑒𝑙𝑧, 𝑒Re(𝑙)𝑥3).
Remark 12.43.  Remark 12.33 also holds for 𝐻 3

.
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12.6 Exercises

Exercise 12.1. Characterization of translation length

(borrowed from [ BH , Chap. II.6].)
Let 𝑋 be a metric space and let 𝑓 : 𝑋 → 𝑋 .

(1) Show that for any 𝑥 ∈ 𝑋 , the sequence 1

𝑛
𝑑 (𝑥, 𝑓 𝑛 (𝑥)) converges in [0, +∞). Hint: First

show that 𝑑 (𝑥, 𝑓 𝑛 (𝑥)) is a sub-additive function of 𝑛. Then show that 𝑔(𝑛)
𝑛

converges for
any sub-additive function 𝑔 : N→ R.

(2) Show that lim𝑛→+∞
1

𝑛
𝑑 (𝑥, 𝑓 𝑛 (𝑥)) is independent of 𝑥 .

(3) Show that if 𝑓 is semi-simple (elliptic or hyperbolic), then 𝑙 𝑓 = lim𝑛→+∞
1

𝑛
𝑑 (𝑥, 𝑓 𝑛 (𝑥)).

Exercise 12.2. Parabolic fixed point

Let 𝑓 be a parabolic isometry of 𝑋 = H𝑛. Denote 𝜉 ∈ 𝜕∞𝑋 its ideal endpoint.

(1) Show that for any 𝑥 ∈ 𝑋 ∪ 𝜕∞𝑋 , lim𝑛→+∞ 𝑓 𝑛 (𝑥) = 𝜉 . Is 𝜉 an attracting fixed point?

(2) Show that for any compact set 𝐾 ⊆ 𝜕∞𝑋 − {𝜉} and for any neighborhood 𝑈 of 𝜉 in

𝜕∞𝑋 , 𝑓 𝑛 (𝐾) ⊆ 𝑈 for 𝑛 sufficiently large. Is 𝜉 an attracting fixed point?

Exercise 12.3. Translation length of a parabolic

Let 𝑓 be a parabolic isometry of 𝑋 = H𝑛. Show that 𝑓 has zero translation length.

Exercise 12.4. Equidistant curves and translations

(1) Let 𝐿 ⊆ H𝑛 be a geodesic line. How would you define an equidistant curve from 𝐿?

Show that for any 𝑥0 ∈ H𝑛, there exists a unique equidistant curve from 𝐿.

(2) Let 𝐿 be the geodesic line with ideal endpoints 0 and∞ in the Poincaré half-space 𝐻𝑛
.

Show that the equidistant curves from 𝐿 are the Euclidean straight half-lines starting

from 0.

(3) Prove  Proposition 12.18 : 𝑓 : H𝑛 → H𝑛 is a translation if and only if there exists an

isometry 𝜑 : H𝑛 → 𝐻𝑛
such that 𝜑 𝑓 𝜑−

1 is 𝑥 ∈ 𝐻𝑛 ↦→ 𝑒𝑙𝑥 , where 𝑙 is the translation

length of 𝑓 .

Exercise 12.5. Fixed points and trace

Recall  Lemma 12.24 : Let 𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
∈ SL(2,R) and denote 𝑓 : 𝑧 ↦→ 𝑎𝑧+𝑏

𝑐𝑧+𝑑 the associated

fractional linear transformation of
ˆC.

• If (tr𝑀)2 > 4, then 𝑓 has two fixed points, both of which lie in
ˆR ⊆ ˆC.
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• If (tr𝑀)2 < 4, then 𝑓 has two fixed points, one in H and the other is its complex

conjugate.

• If (tr𝑀)2 = 4, then either 𝑓 is the identity, or 𝑓 has a unique fixed point, which lies in

ˆR ⊆ ˆC.

(1) Prove the lemma by direct computation, solving the equation
𝑎𝑧+𝑏
𝑐𝑧+𝑑 = 𝑧.

(2) Consider the projective transformation
ˆ𝑓 : C𝑃1 → C𝑃1 associated to𝑀 . Explain why

the fixed points of
ˆ𝑓 are the eigenlines of𝑀 . Recover the lemma.

Exercise 12.6. Surjectivity of the exponential map

This is a draft.

Let 𝐺 = O
++(𝑛, 1) ≈ Isom

+(H𝑛) and 𝔤 = 𝔬(𝑛, 1) the Lie algebra of 𝐺 . We recall that the

matrix exponential induces a map exp: 𝔤 → 𝐺 (see ??). The goal of this exercise is to show

that exp is surjective.

(1) Prove that 𝑔 ∈ 𝐺 is the image of exp if and only if there exists a one-parameter subgroup
of𝐺 containing 𝑔, meaning a continuous group homomorphism 𝜑 : R→ 𝐺 such that

𝜑 (1) = 𝑔. (Use  Theorem 3.110 ).

(2) Prove that if 𝑔 ∈ 𝐺 is semisimple, then it belongs to the image of exp.

(3) Prove that any hyperbolic or elliptic isometry belongs to a one-parameter subgroup of

𝐺 . Recover the previous result.

(4) Prove that any parabolic isometry belongs to a one-parameter subgroup of𝐺 . Conclude.

Exercise 12.7. Limits of loxodromics

(1) Recall the “standard form” of orientation-preserving elliptic, loxodromic, and parabolic

isometries of H3
in the Poincaré half-space model.

(2) Using the previous question, show that any elliptic element of Isom
+(H3) can be ob-

tained as a limit of loxodromic elements.

(3) Prove more generally that any elliptic isometry of H𝑛 can be obtained as a limit of

loxodromic isometries.

(4) Going back to H3
, write a different proof using matrices. Prove in fact that loxodromic

elements are dense in Isom
+(H3).

Exercise 12.8. A baby character variety

Let us work in the Poincaré half-space model H ⊆ C of the hyperbolic plane H2
. We denote

𝐺 = Isom
+(H) the group of orientation-preserving isometries, which can be identified to

PSL(2,R) = SL(2,R)/{±𝐼2} equipped with the quotient topology.

(1) Show that 𝑓0 = id ∈ 𝐺 is in the closure of the conjugacy class 𝐶 ⊆ Isom
+(H) of

240



12.6. EXERCISES

some/any parabolic isometry.

(2) Let𝐺 act on itself by conjugation. Derive from the previous question that the quotient

R is not Hausdorff.

(3) (*) We recall that an element of 𝐺 is called semisimple (or completely reducible, or
polystable, depending on context) if it is not parabolic. Let X ⊆ R denote the subset of

conjugacy classes of semisimple elements. Show that X is Hausdorff.

Exercise 12.9. Trace relations

We let𝐺 = SL(2,C) in this exercise.

(1) Show that for any 𝐴, 𝐵 ∈ 𝐺 , tr(𝐴𝐵) + tr(𝐴𝐵−1) = tr𝐴 tr𝐵.

(2) Show that the trace of any element of the subgroup of𝐺 generated by 𝐴 and 𝐵 can be

expressed as a polynomial in tr𝐴, tr𝐵, and tr𝐴𝐵 with integer coefficients.

(3) Optional. Show that any polynomial function of (𝐴, 𝐵) ∈ 𝐺 ×𝐺 that is invariant by con-

jugation (that is, invariant by (𝐴, 𝐵) ↦→ (𝑔𝐴𝑔−1, 𝑔𝐵𝑔−
1) for all 𝑔 ∈ 𝐺) can be expressed

as a polynomial function of tr𝐴, tr𝐵, and tr𝐴𝐵.

Exercise 12.10. Classification in O
+(𝑛, 1)

Recall that Isom(H𝑛) ≈ O
+(𝑛, 1), e.g. via the hyperboloid model. Using linear algebra, find a

characterization of elliptic, loxodromic, and parabolic elements of O
+(𝑛, 1).
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Part VI

Plane hyperbolic geometry

[. . . ] the way in which I have proceeded does not lead to the desired goal, the
goal that you declare you have reached, but instead to a doubt of the validity of
[Euclidean] geometry. I have certainly achieved results which most people would
look upon as proof, but which in my eyes prove almost nothing; if, for example, one
can prove that there exists a right triangle whose area is greater than any given
number, then I am able to establish the entire system of [Euclidean] geometry with
complete rigor. Most people would certainly set forth this theorem as an axiom; I
do not do so, though certainly it may be possible that, no matter how far apart one
chooses the vertices of a triangle, the triangle’s area still stays within a finite bound.
I am in possession of several theorems of this sort, but none of them satisfy me.

– Carl Friedrich Gauß 

5
 

5
Gauss to Farkas Bolyai; Helmstedt, 16 December 1799.Werke, Band VIII [ Gau ]. Gauss (age 22) is answering’s

Bolyai’s claim to have “proved” Euclidean geometry. Translation copied from [ Gre ].



CHAPTER 13

Recap of 2D models

This is not a chapter.
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13.1. HYPERBOLOID MODEL

13.1 Hyperboloid model

Name Hyperboloid

Definition

H+ = H ∩ {𝑧 > 0}
is the upper sheet of the hyperboloid

H =
{
(𝑥,𝑦, 𝑧) | 𝑥2 + 𝑦2 − 𝑧2 = −1

}
= {𝑝 ∈ R2,1 | 〈𝑝, 𝑝〉 = −1} ⊆ R2,1

Riem. metric
d𝑠2 = d𝑥2 + d𝑦2 − d𝑧2

(restricted to the tangent plane toH+
, given by T𝑝 H+ = {𝑝}⊥)

Distance 𝑑 (𝑝, 𝑞) = ](𝑝, 𝑞) (hyperbolic angle) i.e. 𝑑 (𝑝, 𝑞) = arcosh(−〈𝑝, 𝑞〉)

Geodesics

Hyperbolas 𝛾 = H+ ∩ 𝑃 where

𝑃 is a vector plane in R2,1

They are nicely parametrized:

𝛾 (𝑡) = cosh(‖𝑣 ‖𝑡)𝑝 + sinh(‖𝑣 ‖𝑡)𝑣

Isometries
O
+(2, 1) acting linearly on R2,1 (in restriction toH+

)

Orientation-preserving isometries: SO
+(2, 1) (= O0(2, 1))

Curvature 𝐾 ≡ −1

Ideal boundary
The hyperboloid model is not best suited to see the ideal boundary.

It can be described as the set of future-directed isotropic half-lines in R2,1,

which is essentially the same as the projectivized light cone (see  § 13.2 ).

Horocycles
Parabolas𝐶 = H+ ∩ 𝑃 where 𝑃 is

an affine plane with isotropic normal

(See  Exercise 5.4 ,  Exercise 11.6 )
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13.2 Cayley–Klein model

Name Cayley–Klein model or Projective model

Definition
Ω− = P ({𝑞 < 0}) ⊆ P

(
R2,1

)
i.e.

Ω− = {lines inside the light cone}

Riem. metric (See  § 13.3 for expression in affine chart)

Distance 𝑑 (𝑝, 𝑞) = 1

2

ln[𝑝, 𝑞, 𝐽 , 𝐼 ] i.e. 𝑑 ( [𝑢], [𝑣]) = arcosh

(
−𝑏 (𝑢, 𝑣)√︁
𝑞(𝑢)𝑞(𝑣)

)

Geodesics
Projective lines 𝑙 ⊆ P(R2,1)
intersected with Ω−

(i.e. chords in Ω−
)

Isometries
PO(2, 1) acting projective linearly on P(R2,1) (in restriction to Ω−

)

Orientation-preserving isometries: PSO(2, 1)

Curvature 𝐾 ≡ −1

Ideal boundary
𝜕Ω− = P ({𝑞 = 0}) ⊆ P

(
R2,1

)
(projectivized light cone)

Note: this is a circle (more precisely, a projective ellipse)

Horocycles
Projective ellipses tangent to

𝜕D to order 2

(See  Exercise 11.7 ,  § 13.3 )
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13.3 Beltrami–Klein model

Name Beltrami–Klein disk or Klein disk

Definition {𝑥2 + 𝑦2 − 𝑧2 < 0} ∩ {𝑧 = 1} ⊆ R3

≈ D = {𝑥2 + 𝑦2 < 1} ⊆ R2

Riem. metric d𝑠2 =
d𝑥2 + d𝑦2

1 − 𝑥2 − 𝑦2 +
(𝑥 d𝑥 + 𝑦 d𝑦)2
(1 − 𝑥2 − 𝑦2)2

Distance 𝑑 (𝑝, 𝑞) = 1

2

ln[𝑝, 𝑞, 𝐽 , 𝐼 ] i.e. 𝑑 (𝑝, 𝑞) = arcosh

(
1 − 〈𝑝, 𝑞〉√︁

(1 − ‖𝑝 ‖2) (1 − ‖𝑞‖2)

)

Geodesics Chords in D

Isometries
PO(2, 1) acting by fractional linear transformations on R2

Orientation-preserving isometries: PSO(2, 1)

Curvature 𝐾 ≡ −1

Ideal boundary 𝜕∞D = 𝜕D = {|𝑧 | = 1}

Horocycles
Ellipses tangent to 𝜕D to order 2

(See  Exercise 11.7 )
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13.4 Poincaré disk model

Name Poincaré disk

Definition D =
{
(𝑥,𝑦) | 𝑥2 + 𝑦2 < 1

}
⊆ R2

= {𝑧 ∈ C | |𝑧 | < 1} ⊆ C

Riem. metric d𝑠2 = 4

d𝑥2 + d𝑦2

(1 − 𝑥2 − 𝑦2)2
= 4

|d𝑧 |2

(1 − |𝑧 |2)2

Distance 𝑑 (𝑧1, 𝑧2) = arcosh

(
1 + 2|𝑧1 − 𝑧2 |2

(1 − |𝑧1 |2) (1 − |𝑧2 |2)

)
= ln[𝑧1, 𝑧2, 𝐽 , 𝐼 ]

Geodesics Circle arcs ⊥ to 𝜕D

(including diameters)

Isometries

PSU(1, 1) = PU(1, 1) acting by fractional linear transformations:

𝑧 ↦→ 𝑎𝑧 + 𝑏
¯𝑏𝑧 + 𝑎

with |𝑎 |2 − |𝑏 |2 = 1

i.e.

𝑧 ↦→ 𝑢
𝑧 − 𝑎
1 − 𝑎𝑧

with |𝑢 | = 1, |𝑎 | < 1

(for orientation-reversing isometries, replace 𝑧 by 𝑧)

Curvature 𝐾 ≡ −1

Ideal boundary 𝜕∞D = 𝜕D = {|𝑧 | = 1}

Horocycles Euclidean circles tangent to 𝜕D
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13.5 Poincaré half-plane model

Name Poincaré half-plane

Definition H = {(𝑥,𝑦) | 𝑦 > 0} ⊆ R2

= {𝑧 ∈ C | Im𝑧 > 0} ⊆ C

Riem. metric d𝑠2 =
d𝑥2 + d𝑦2

𝑦2
=

|d𝑧 |2

(Im𝑧)2

Distance 𝑑 (𝑧1, 𝑧2) = arcosh

(
1 + |𝑧1 − 𝑧2 |2

2𝑦1𝑦2

)
= ln[𝑧1, 𝑧2, 𝐽 , 𝐼 ]

Geodesics Circle arcs ⊥ to 𝜕H

(including vertical lines)

Isometries

PSL(2,R) acting by fractional linear transformations:

𝑧 ↦→ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 with 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, 𝑎𝑑 − 𝑏𝑐 = 1

(for orientation-reversing isometries, replace 𝑧 by −𝑧)

Curvature 𝐾 ≡ −1

Ideal boundary 𝜕∞H = ˆR = R ∪ {∞}

Horocycles

Euclidean circles tangent to 𝜕∞H (including horizontal lines)
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13.6 Exercises

Exercise 13.1. Comparison of 2D models

Discuss the advantages and disadvantages of each of the 2-dimensional models. Do you have

a favorite?
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CHAPTER 14

Hyperbolic trigonometry

Disclaimer: This chapter is a draft.

Trigonometry, in the literal sense 

1
 , is the study of measurements in triangles, especially

the relations between side lengths and angles at the vertices. Such relations are fundamental

because not only they are inherent to the geometry of the “universe” (e.g. Euclidean, spherical,

or hyperbolic space), they completely characterize it.

After reviewing the basics of triangles in the hyperbolic plane, we shall see that relations

between sides and angles are incarnated by the hyperbolic law of cosines. Two direct appli-

cations of this formula set hyperbolic geometry uniquely apart from Euclidean geometry:

the fact that two triangles with the same angles are congruent, and the notion of angle of

parallelism. Next, we turn to the strikingly simple relation between the area of a hyperbolic

triangle and the sum of its interior angles. This is a trivial consequence of the Gauss—Bonnet

theorem, but we present an elegant alternative proof, also due to Gauss. We conclude the

chapter by showing that H2
is a hyperbolic metric space in the sense of Gromov, a feature

that we have used in  Chapter 11 . It will appear in these discussions that the notion of ideal
triangle, i.e. triangle with vertices are “at infinity”, is very useful in hyperbolic geometry.

A chapter on hyperbolic trigonometry could verywell be the first in a course of hyperbolic

geometry. It is therefore somewhat amusing (or suspicious!) that it arrives so late in our pre-

sentation 

2
 . This is a consequence of my decision to go for a “clean and modern” presentation

of hyperbolic geometry, which assumes notions of Riemannian geometry, Minkowski spaces,

1
The word trigonometry is derived from the Greek 𝜏𝜌𝜄𝛾o𝜈o𝜈 (trigōnon), triangle, and 𝜇𝜀𝜏𝜌o𝜈 (metron), mea-

sure.

2
This is the last chapter of the course that I taught at TU Darmstadt, although I initially planned for two

additional chapters: the next would contain more plane hyperbolic geometry, including tessellations of H2
, and

the final chapter would discuss hyperbolic structures on surfaces.
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projective geometry and Möbius transformations. Among the benefits of this approach, be-

yond the fact that all the theorems of this chapter will be given concise and rigorous proofs,

it will be elegant and effective to juggle the different models of the hyperbolic plane. For

instance, the hyperbolic law of cosines is easily derived from the hyperboloid model, while

the dual law of cosines can be understood in the Klein model via projective duality, and the

Poincaré models are best suited to study ideal triangles and compute areas.

14.1 Hyperbolic triangles

In the whole chapter, let H2
denote the hyperbolic plane, not favoring a particular model

unless otherwise stated.

Basic definitions

By definition, a hyperbolic triangle consists of three points typically denoted 𝐴, 𝐵, 𝐶 , the

vertices, and the three geodesic segments between them, denoted 𝐴𝐵, 𝐵𝐶 , 𝐶𝐴, the sides
(or edges). We allow degenerate triangles, where the three vertices are collinear (lie on a

geodesic), including the cases where two or three vertices are equal. We typically denote the

side lengths by 𝑎 = 𝑑 (𝐵,𝐶), 𝑏 = 𝑑 (𝐶,𝐴), 𝑐 = 𝑑 (𝐴, 𝐵), and the interior angles by𝐴, �̂�,𝐶 , i.e.

the unoriented angles between the sides 

3
 . See  Figure 14.1 .

Remark 14.1. If two of the vertices are equal, say𝐴 = 𝐵, then the angles𝐴 and �̂� are undefined

(and 𝐶 = 0, unless 𝐶 = 𝐴 = 𝐵). In the rest of this chapter, any identity involving 𝐴 implicitly

assumes that it only applies to triangles where 𝐴 is distinct from 𝐵 and𝐶 .

As in the Euclidean plane, we call right triangle a triangle that has a right angle, isoceles
triangle a triangle that has two equal side lengths, etc.

Congruent triangles

Two triangles are called congruent if there exists an isometry that takes one to the other. It

is enough to require that the isometry maps the vertices of the first triangle to the vertices

of the second; such an isometry automatically maps the sides to the sides. It is clear that

congruence is an equivalence relation on the set of hyperbolic triangles.

Theorem 14.2. Given 𝑎, 𝑏, 𝑐 ∈ [0, +∞), there exists a hyperbolic triangle with side lengths 𝑎, 𝑏,
𝑐 if and only if the triangle inequalities 𝑎 6 𝑏 + 𝑐 , 𝑏 6 𝑐 + 𝑎, 𝑐 6 𝑎 + 𝑏 are satisfied. Moreover,
any two hyperbolic triangles are congruent if and only if they have the same side lengths.

3
Let us recall that the angle between two intersecting geodesics, in fact between any two intersecting curves,

is defined as the angle between their tangent vectors at the intersection. This works in any Riemannianmanifold,

as we saw in  § 9.1 .
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Figure 14.1: A typical hyperbolic triangle in the Poincaré disk model.

Proof. It is clear that if there exists a triangle with side lengths 𝑎, 𝑏, 𝑐 , then the triangle

inequalities are satisfied. This is because H2
is a genuine metric space, as is any connected

Riemannian manifold with the induced distance.

Conversely, assume that 𝑎, 𝑏, 𝑐 satisfy the triangle inequalities. Let us show both the

existence of a triangle 𝐴𝐵𝐶 with side lengths 𝑎, 𝑏, 𝑐 and its uniqueness up to congruence at

the same time. We shall work in the Poincaré disk model D ⊆ C of the hyperbolic plane.

First choose the position of 𝐴 and 𝐵 in D so that 𝑑 (𝐴, 𝐵) = 𝑐 . After applying a translation,

we can assume that 𝐴 is the origin 0 ∈ D, and after applying a rotation we can assume that 𝐵

lies on a the ray [0, 1). It is clear that under these conditions, the position of 𝐵 is completely

determined by the condition 𝑑 (𝐴, 𝐵) = 𝑐 .
Now let us look for the position of𝐶 . After applying the reflection 𝑧 ↦→ 𝑧 if necessary, we

can assume that Im(𝐶) > 0. Let us show that the position of𝐶 is now completely determined

by 𝑑 (𝐴,𝐶) = 𝑏 and 𝑑 (𝐵,𝐶) = 𝑎. In other words, we need to show that the circles 𝐶 (𝐴,𝑏)
and 𝐶 (𝐵, 𝑎) have a unique point of intersection 𝐶 with Im(𝐶) > 0. These two circles are

Euclidean circles by  Lemma 14.3 , whose centers lie on the same line as 𝐴 and 𝐵.

There is a limited number of configurations of two circles in the Euclidean plane: either

one is contained in the interior of the other, or they are each contained in the exterior of
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the other, or they intersect in two (possibly equal) points. In our situation, 𝑎 6 𝑏 + 𝑐 and
𝑏 6 𝑎 + 𝑐 rule out the first configuration, and 𝑐 6 𝑎 + 𝑏 rules out the second configuration.

Therefore we must be in the third configuration where the circles intersect. Moreover, their

two (possibly equal) points of intersection are symmetric with respect to the line (−1, 1), due
to the invariance of our configuration under the isometry 𝑧 ↦→ 𝑧. The conclusion follows. �

Lemma 14.3. Let𝐶 = 𝐶 (𝐴, 𝑅) denote the circle with center 𝐴 and radius 𝑅 > 0 in the Poincaré
disk, i.e. the set of points in D at distance 𝑅 from 𝐴. Then𝐶 is a Euclidean circle.

Remark 14.4. Be careful: the Euclidean center of 𝐶 is different from 𝐴. That is, unless 𝐴 = 0.

Also, the Euclidean radius of𝐶 is different from 𝑅.

Proof of  Lemma 14.3 . If 𝐴 = 0, it is easy to see from the expression of the hyperbolic distance

that 𝐶 is a Euclidean circle centered at 0 (and with Euclidean radius 𝑟 = tanh(𝑅/2)). If

𝐴 ≠ 0, one can always use an isometry to send 𝐴 to 0 (isometries act transitively). The

conclusion follows from the fact that isometries ofD are Möbius transformations, andMöbius

transformations map Euclidean circles to Euclidean circles. �

Triangles with ideal vertices

It is convenient to allow hyperbolic triangles to have one or more ideal vertices. For instance,

if𝐴 ∈ 𝜕∞H2
is an ideal point and 𝐵,𝐶 ∈ H2

are “interior” points, the triangle𝐴𝐵𝐶 still consists

of the three vertices 𝐴, 𝐵, 𝐶 and the three sides 𝐴𝐵, 𝐵𝐶 , 𝐶𝐴; however now the sides 𝐴𝐵 and

𝐶𝐴 are semi-infinite geodesic lines (i.e. geodesic rays) with ideal endpoint 𝐴. A triangle with

1 ideal vertex is called 1/3 ideal. Similarly, we have obvious definitions of triangles having

2 ideal vertices, called 2/3 ideal triangles, and 3 ideal vertices, called ideal triangles. An
ideal triangle is shown in  Figure 14.2 (and another in  Figure 14.3 ).

Clearly, there is only one sensible (i.e. continuous) to extend the notion of side length and

interior angles for triangles with one or more ideal vertices: the sides adjacent to an ideal

vertex have side length +∞, and the interior angle at an ideal vertex is zero. Indeed, in the

Poincaré disk model, recall that angles in H2
are equal to Euclidean angles (the Poincaré disk

model is conformal). At an ideal vertex, the two adjacent sides are both orthogonal to the

boundary, therefore the Euclidean angle between them is zero.

14.2 The hyperbolic law of cosines

Review: the Euclidean case

Before we jump to the hyperbolic law of cosines, let us quickly review the Euclidean case.

A good starting point is the celebrated Pythagorean theorem: a triangle 𝐴𝐵𝐶 has a right

angle at𝐶 if and only if we have the identity 𝑐2 = 𝑎2 + 𝑏2. The Euclidean law of cosines is a

generalization:
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Figure 14.2: An ideal triangle in the Poincaré disk model.

Theorem 14.5 (Euclidean law of cosines). For any triangle 𝐴𝐵𝐶 , with angles denoted 𝐴, �̂�,𝐶
and opposite side lengths 𝑎, 𝑏, 𝑐 , we have:

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝐶 .

Proof. There are many proofs of the Euclidean law of cosines. A modern proof with vector

calculus is elementary: starting with 𝑐 = ‖−→𝐴𝐵‖, we have

𝑐2 = ‖−→𝐴𝐶 + −→
𝐶𝐵‖2

= ‖−→𝐴𝐶 ‖2 + ‖−→𝐶𝐵‖2 + 2〈−→𝐴𝐶,−→𝐶𝐵〉 .

The conclusion follows, since 〈−→𝐴𝐶,−→𝐶𝐵〉 = −〈−→𝐶𝐴,−→𝐶𝐵〉 = −𝑏𝑎 cos𝐶 . �

Remark 14.6. The Euclidean law of cosines is also known as Al-Kashi’s theorem (for instance,

this is the name that I learned as a high-schooler in France in the early 2000s), after the Persian

mathematician Jamshid al-Kashi who proved the theorem in 1427 

4
 . It must be noted an

4
It is contained in Al Kashi’s main mathematical work,Miftāh. al-H. isab (Key to Arithmetic). This work, which

consists of five books, is recently being translated to English with commentary: [ AH ].
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equivalent version of this theorem is proved in Euclid’s Elements  

5
 (3rd century BC), although

without using trigonometric functions.

Next we have the law of sines. First, for a triangle 𝐴𝐵𝐶 with a right angle at𝐶 , we have

sin𝐴 =
𝑎

𝑐
sin �̂� =

𝑏

𝑐

so that
sin𝐴
𝑎

= sin �̂�
𝑏

= 1

𝑐
. More generally, the law of sines says that for any triangle 𝐴𝐵𝐶 , we

have

sin𝐴

𝑎
=
sin �̂�

𝑏
=
sin𝐶

𝑐
.

We leave the proof of the law of sines as an exercise of elementary Euclidean geometry.

Remark 14.7. It can be useful to memorize the additional equalities:

sin𝐴

𝑎
=
sin �̂�

𝑏
=
sin𝐶

𝑏
=

1

2𝑅
=

2𝑆

𝑎𝑏𝑐

where 𝑅 is the radius of the circumscribed circle and 𝑆 is the area of the triangle.

Hyperbolic law of cosines, dual law of cosines, and law of sines

Let us go back to triangles the hyperbolic plane H2
.

Theorem 14.8. For any hyperbolic triangle 𝐴𝐵𝐶 with 𝐶 ≠ 𝐴 and 𝐶 ≠ 𝐵, we have the hyper-
bolic law of cosines:

cosh 𝑐 = cosh𝑎 cosh𝑏 − sinh𝑎 sinh𝑏 cos𝐶 . (14.1)

Proof. It is easiest to prove the hyperbolic law of cosines in the hyperboloid modelH+ ⊆ R2,1.
Let 𝛾𝑢 [resp. 𝛾𝑣] be the unit geodesic from 𝐶 to 𝐴 [resp. from 𝐶 to 𝐵]. Our notation indicates

that𝑢 [resp. 𝑣] is the initial tangent vector to the geodesic. Since 𝛾𝑢 (𝑡) is a length-minimizing

geodesic parametrized by arclength, it reaches𝐴when 𝑡 = 𝑑 (𝐶,𝐴), in other words: 𝐴 = 𝛾𝑢 (𝑏).
For the same reason, 𝐵 = 𝛾𝑣 (𝑎). Given the explicit expression of geodesics in the hyperboloid

model (see  Theorem 5.8 ), namely 𝛾𝑢 (𝑡) = (cosh 𝑡)𝐶 + (sinh 𝑡)𝑢, we find that:

𝐴 = (cosh𝑏)𝐶 + (sinh𝑏)𝑢
𝐵 = (cosh𝑎)𝐶 + (sinh𝑎)𝑣 .

On the other hand, we have cosh 𝑐 = cosh𝑑 (𝐴, 𝐵) = −〈𝐴, 𝐵〉 where 〈• , •〉 indicates the inner
product in Minkowski space R2,1 (see  Theorem 5.12 ). Substituting the expressions of 𝐴 and 𝐵

above, we find:

cosh 𝑐 = − 〈(cosh𝑏)𝐶 + (sinh𝑏)𝑢 , (cosh𝑎)𝐶 + (sinh𝑎)𝑣〉 .
5
[ Euc , Book 2, Propositions 12 and 13].
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Now simply expand this inner product, noticing that: 〈𝐶,𝐶〉 = −1 since 𝐶 is on the hyper-

boloid, 〈𝐶,𝑢〉 = 〈𝐶, 𝑣〉 = 0 since 𝑢 and 𝑣 are tangent vectors at 𝐶 , and 〈𝑢, 𝑣〉 = cos𝐶 by

definition of the angle at𝐶 . What comes out is the desired identity. �

Next we have the dual hyperbolic law of cosines and the hyperbolic law of sines:

Theorem 14.9. For any hyperbolic triangle𝐴𝐵𝐶 , we have the dual hyperbolic law of cosines:

cos𝐶 = − cos𝐴 cos �̂� + sin𝐴 sin �̂� cosh 𝑐 .

And the hyperbolic law of sines:

sin𝐴

sinh𝑎
=

sin �̂�

sinh𝑏
=

sin𝐶

sinh 𝑐
.

Proof. The dual hyperbolic law of cosines can be derived from the three hyperbolic law of

cosines in the triangle𝐴𝐵𝐶 and basic calculus; we leave out the details. Alternatively, one can

derive it from the hyperbolic law of cosines ( 14.1 ) through projective duality in the Cayley–

Klein model, see remark below. The reader may also refer to [ Thu , Chap. 2.4] for a different

proof.

To prove the hyperbolic law of sines, first assume that the triangle 𝐴𝐵𝐶 has a right angle

at𝐶 . By the law of cosines, we have

cosh𝑏 = cosh𝑎 cosh 𝑐 − sinh𝑎 sinh 𝑐 cos �̂� .

Substituting cosh 𝑐 = cosh𝑎 cosh𝑏 (by the law of cosines) and cos �̂� = cosh𝑏 sin𝐴 (by the

dual law of cosines), we find that 1 = cosh
2 𝑎 − sinh𝑎 sinh 𝑐 sin𝐴, therefore

sin𝐴 sinh 𝑐 = sinh𝑎 .

Now for a generic triangle 𝐴𝐵𝐶 , let 𝐻 be the orthogonal projection of𝐶 on the geodesic line

𝐴𝐵. Applying the previous identity in the triangles 𝐴𝐻𝐶 and 𝐵𝐻𝐶 , we find

sin𝐴 sinh𝑏 = sinhℎ = sin �̂� sinh𝑎

where ℎ = 𝑑 (𝐻,𝐶). In particular, we have
sin𝐴
sinh𝑎

= sin �̂�
sinh𝑏

as desired. The same argument can

be repeated after relabeling the vertices 𝐴, 𝐵,𝐶 , so the second equality follows. �

Remark 14.10. The most elegant proof of the dual hyperbolic law of cosines is through pro-

jective duality in the Cayley–Klein model: essentially, distances between points in H2
corre-

sponds to angles between lines under projective duality, and the dual law of cosines is nothing

more than the law of cosines in the projective dual. Making this argument rigorous is a great

exercise, but it turns out to be a bit tricky. The subtlety is that projective duality sends lines

contained in H2
(i.e. secant to the quadricQ) to points outside the dual conicQ∗

(such points

are sometimes called ultra-ideal). Nevertheless, the Cayley–Klein metric is still defined out-

side ofQ∗
, and the fact that it is purely imaginary (before taking the absolute value) accounts

for the presence of regular cosines and sines in the dual law instead of hyperbolic cosines

and sines 

6
 .

6
Check out [ MvG ] for an equivalent explanation, which is more detailed but not completely clean in my
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Consequences

It is easy to derive many formulas in hyperbolic triangles from the law of cosines, the dual

law of cosines, and the law of sines. For instance, the hyperbolic Pythagorean theorem
reads: if 𝐴𝐵𝐶 has a right angle at𝐶 , then cosh 𝑐 = cosh𝑎 cosh𝑏.

Remark 14.11. Observe that the second-order expansion of the hyperbolic Pythagorean theo-

rem cosh 𝑐 = cosh𝑎 cosh𝑏 is 𝑐2 = 𝑎2 +𝑏2, i.e. the Euclidean Pythagorean theorem. This is not

a coincidence: informally speaking, small hyperbolic triangles look almost Euclidean. More

generally, hyperbolic geometry limits to Euclidean geometry on a small scale. It is a good

exercise to make a precise interpretation of this statement.

Still assuming that 𝐴𝐵𝐶 has a right angle at𝐶 , the sine and cosine of the angle at 𝐴 can

be computed as:

sin𝐴 =
sinh𝑎

sinh 𝑐

cos𝐴 =
tanh𝑏

tanh 𝑐
.

Let us spare all these silly calculations.

One very interesting consequence of the hyperbolic law of cosines is the following:

Theorem 14.12. The congruence class of a hyperbolic triangle with distinct vertices is uniquely
determined by its interior angles.

Proof. It follows from the dual law of cosines that the three side lengths 𝑎, 𝑏, 𝑐 , are uniquely

determined by the three angles 𝐴, �̂�,𝐶 . Conclude with  Theorem 14.2 . �

We leave it as an exercise that conversely, given any three numbers 𝛼, 𝛽,𝛾 > 0 such that

𝛼 + 𝛽 + 𝛾 < 𝜋 , there exists a hyperbolic triangle whose interior angles are equal to 𝛼 , 𝛽 , 𝛾 :

see  Exercise 14.2 .

Remark 14.13. It is important to realize that  Theorem 14.12 this is drastically different from the

Euclidean situation, where two homothetic triangles have same interior angles but different

side lengths. In other words, Euclidean triangles can be conformally equivalent without being

isometric. By contrast, any conformal automorphism of the hyperbolic plane is an isometry,

as we have seen in the Poincaré models.

Another application of the hyperbolic law of cosines is the easy computation of the angle

of parallelism (see  Figure 1.3 ):

Theorem 14.14. Let 𝑙 be a line in the hyperbolic plane and 𝐴 be a point at distance 𝑎 > 0 from
𝑙 . The angle of parallelism at 𝐴 is the angle Π(𝑎) ∈ (0, 𝜋/2) given by

sinΠ(𝑎) = 1

cosh𝑎
. (14.2)

opinion: distances between points and angles between lines should not be defined independently; the point is

to show the relation between them.
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Proof. To avoid confusion below, let us rename 𝑐 the distance between 𝐴 and 𝑙 . Let 𝐵 be

the nearest-point projection of 𝐴 on 𝑙 and let 𝐶 ∈ 𝜕∞H2
be an ideal endpoint of 𝑙 . Clearly,

the angle of parallelism at 𝐴 is the angle 𝐴 in the triangle 𝐴𝐵𝐶 . By the dual law of cosines,

which extends to triangles with one or more ideal vertices by continuity, we have cos𝐶 =

− cos𝐴 cos �̂� + sin𝐴 sin �̂� cosh 𝑐 . We find 1 = sin �̂� cosh 𝑐 and the conclusion follows. �

Remark 14.15. The formula ( 14.2 ) can also be written

Π(𝑎) = 𝜋

2

− gd (𝑎)

where gd (𝑥) =
∫ 𝑥

0

d𝑡
cosh 𝑡

is the Gudermannian function.

14.3 Area of hyperbolic triangles

The goal of this section is to prove the following theorem:

Theorem 14.16. Let 𝐴𝐵𝐶 be a hyperbolic triangle with three distinct vertices, one or more
possibly ideal. Denote by Area(𝐴𝐵𝐶) the hyperbolic area enclosed by the triangle. We have the
identity:

Area(𝐴𝐵𝐶) = 𝜋 − (𝐴 + �̂� +𝐶) . (14.3)

Proof with the Gauss–Bonnet theorem

 Theorem 14.16 is an immediate consequence of the Gauss–Bonnet theorem. The Gauss–

Bonnet theorem is a deep theorem of Riemannian geometry that we shall not discuss; never-

theless, we mention this proof out of interest.

Theorem 14.17 (Gauss–Bonnet theorem). Let (𝑆, 𝑔) be a compact 2-dimensional Riemannian
manifold with boundary. Then∫

𝑆

𝐾𝑔 d𝜎𝑔 +
∫
𝜕𝑆

𝑘𝑔 d𝑠 = 2𝜋 𝜒 (𝑆)

where𝐾𝑔 denotes the Gaussian curvature in 𝑆 , d𝜎𝑔 the area element in 𝑆 , 𝑘𝑔 the geodesic curvature
along 𝜕𝑆 , d𝑠 the line element along 𝜕𝑆 , and 𝜒 (𝑆) the Euler characteristic of 𝑆 .

Let us not explain precisely all these terms, and only mention what they are when 𝑆 is

the interior of a hyperbolic triangle:

• The Gaussian curvature (a.k.a sectional curvature) 𝐾𝑔 is constant equal to −1 inside 𝑆 ,
since it is an open subset of the hyperbolic plane.

• The area element d𝜎𝑔 is the hyperbolic area element d𝐴.
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• The geodesic curvature 𝑘𝑔 vanishes along the sides of the triangle, because the sides are

geodesic by assumption. However, when the boundary 𝜕𝑆 is only piecewise smooth,

one must add to

∫
𝜕𝑆
𝑘𝑔 d𝑠 the exterior angle at each point of discontinuity. Thus in our

situation, we have

∫
𝜕𝑆
𝑘𝑔 d𝑠 = (𝜋−𝐴)+(𝜋−�̂�)+(𝜋−𝐶), that is

∫
𝜕𝑆
𝑘𝑔 d𝑠 = 3𝜋−(𝐴+�̂�+𝐶).

• The Euler characteristic of the triangle is 𝜒 (𝑆) = 1: that is +3 (vertices) −3 (edges) +1
(face).

Putting all this together, the Gauss–Bonnet formula reads:∫
𝐴𝐵𝐶

(−1) d𝐴 + (3𝜋 − (𝐴 + �̂� +𝐶)) = 2𝜋

and the formula ( 14.3 ) follows.

Ideal triangles

Before turning to an alternative proof, let us examine the case of ideal triangles.

Theorem 14.18. All ideal triangles are congruent, and have area 𝜋 .

Proof. The fact that all ideal triangles are congruent is an immediate consequence of the fact

that isometries of H2
act 3-transitively on the ideal boundary. Indeed, we have seen that the

projective linear group PGL2(R) acts 3-transitively on R𝑃1 ( Theorem 7.70 ), in other words it

acts 3-transitively on
ˆR by fractional linear transformation. The Poincaré extension of any

such transformation of
ˆR ≈ 𝜕∞H2

is an isometry of H2
(in the Poincaré disk or half-plane

model), so we are done.

Since all ideal triangles are isometric, they all have the same area, so we can pick our

favorite to check that its area is equal to 𝜋 . Let us choose the ideal triangle with vertices

𝐴 = −1, 𝐵 = 1,𝐶 = ∞ in the Poincaré half-plane: see  Figure 14.3 . Computing its area is now

elementary calculus:

Area(𝐴𝐵𝐶) =
∫
𝐴𝐵𝐶

d𝐴

=

∫
1

𝑥=−1

∫ +∞

𝑦=
√
1−𝑥2

d𝑥 d𝑦

𝑦2

=

∫
1

𝑥=−1

d𝑥
√
1 − 𝑥2

.

The change of variables 𝑥 = sin𝜃 yields

Area(𝐴𝐵𝐶) =
∫ 𝜋/2

𝜃=−𝜋/2
d𝜃

= 𝜋 .

�
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Figure 14.3: The ideal triangle with vertices −1, 1,∞ in the Poincaré disk model.

Gauss’s proof

We now propose an alternative and elegant proof of  Theorem 14.16 , also due to Gauss (ac-

cording to [ Thu ]). What follows is based on [ Thu , Prop. 2.4.13].

First consider a 2/3-ideal triangle. The congruence class of such a triangle is completely

determined by the angle at the interior vertex. Indeed, after applying a translation, we can

assume that the interior vertex is the origin in the Poincaré disk. It is then clear that any two

such triangles with same interior angle are related by a rotation. Denote by 𝐴(𝜃 ) the area of
any 2/3-ideal triangle whose angle at the interior vertex is 𝜋 − 𝜃 . Per our discussion, 𝐴(𝜃 ) is
a well-defined function of 𝜃 ∈ (0, 𝜋).

Gauss’s clever observation is that 𝐴(𝜃 ) is an additive function of 𝜃 : we have 𝐴(𝜃1 + 𝜃2) =
𝐴(𝜃1) +𝐴(𝜃2) whenever 𝜃1, 𝜃2, 𝜃1 +𝜃2 ∈ (0, 𝜋). To see this, consider  Figure 14.4 . The triangles

𝐵𝑂𝐴, 𝐵𝑂𝐵′, and 𝐴′𝑂𝐵′ have areas 𝐴(𝜃1) = A1, 𝐴(𝜃2) = A2 +A3, and 𝐴(𝜃1 + 𝜃2) = A3 +A4

respectively. On the other hand, the half-turn (𝜋-rotation) through Ω takes the triangle Ω𝐴𝐵
to Ω𝐴′𝐵′, so we haveA4 = A1 +A2. Therefore𝐴(𝜃1 +𝜃2) = A3 + (A1 +A2) = 𝐴(𝜃1) +𝐴(𝜃2).

The function 𝜃 ∈ (0, 𝜋) ↦→ 𝐴(𝜃 ) being additive and continuous, it must be linear. More-

over, it extends continuously at 𝜋 by𝐴(𝜋) = 𝜋 as a consequence of  Theorem 14.18 . This forces

𝐴(𝜃 ) = 𝜃 for all 𝜃 ∈ [0, 𝜋]. Hence we have proved  Theorem 14.16 for 2/3-ideal triangles.

The case of 1/3-ideal triangles easily follows by a cut-and-paste procedure: any such

triangle can be written as the difference of two 2/3-ideal triangles. The case of triangles with

no ideal vertices is derived from the 1/3-ideal case with the same trick, writing any triangle
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with no ideal vertices as the difference of two 1/3-ideal triangles. We leave it to the reader to

draw the appropriate sketches.

Figure 14.4: Gauss’s trick to compute the area of 2/3-ideal triangles.

14.4 Gromov hyperbolicity of the hyperbolic plane

We conclude this chapter by showing that the hyperbolic plane H2
is a hyperbolic space in

the sense of Gromov, which is a property regarding hyperbolic triangles. It readily follows

that hyperbolic space H𝑛 is also Gromov hyperbolic for all 𝑛 > 2.

We have already discussed Gromov hyperbolicity in general metric spaces in  Chapter 11 

(see  § 11.1.3 ), where we mentioned that the notion of ideal boundary is well-suited to such

spaces (e.g., we used it for  Lemma 11.16 ).

By definition, H2
being Gromov hyperbolic means that there exists 𝛿 > 0 such that all
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hyperbolic triangles are 𝛿-slim: any point on one side of the triangle is within distance 6 𝛿
of some point on another side. In other words, any side is contained in the 𝛿-neighborhood of

the union of the two other sides: see  Figure 11.2 . In the case of H2
, taking 𝛿 = 1 is sufficient;

in fact the best 𝛿 can be computed as 𝛿 = arsinh(1) ≈ 0.88137 . . .

Theorem 14.19. The hyperbolic plane H2 is hyperbolic in the sense of Gromov. The smallest
constant 𝛿 > 0 such that all hyperbolic triangles are 𝛿-hyperbolic is 𝛿 = arsinh(1).

Proof. A detailed proof is proposed in  Exercise 14.6 . �
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14.5 Exercises

Exercise 14.1. Congruent triangles with ideal vertices

We have seen ( Theorem 14.2 ) that two hyperbolic triangles are congruent if and only if they

have the same side lengths. State and prove a generalization for triangles having one or more

ideal vertices.

Exercise 14.2. Congruent triangles and angles

Show that for any three numbers 𝛼, 𝛽,𝛾 > 0 such that 𝛼 + 𝛽 +𝛾 < 𝜋 , there exists a hyperbolic

triangle whose interior angles are equal to 𝛼 , 𝛽 ,𝛾 . Show that moreover, any two such triangles

are congruent. Is this true for Euclidean triangles?

Exercise 14.3. Inscribed and Circumscribed circles (1) Show that not all hyperbolic

triangles admit a circumscribed circle.

(2) In  Chapter 12 , we saw that any bounded set inH𝑛 has awell-definedminimum bounding
ball, which some authors call “circumball”. Is that not a contradiction with the previous

question?

(3) Show that any hyperbolic triangle admits a uniquely defined inscribed circle.

(4) Show that there exists a finite upper bound for the radii of the inscribed circle of all

hyperbolic triangles.

Exercise 14.4. Unified law of cosines

For 𝑅 ∈ C − 0, define the generalized cosine and sine functions by:

cos𝑅 (𝑥) = cos

(𝑥
𝑅

)
sin𝑅 (𝑥) = 𝑅 sin

(𝑥
𝑅

)
.

Consider the “unified law of cosines for curvature 𝑘 = 1

𝑅2
”:

cos𝑅 𝑐 = cos𝑅 𝑎 cos𝑅 𝑏 +
1

𝑅2
sin𝑅 𝑎 sin𝑅 𝑏 cos𝐶 .

(1) Check that in the case 𝑘 = −1, i.e. 𝑅 = ±𝑖, one recovers the hyperbolic law of cosines.

(2) Prove the hyperbolic law of cosines in the hyperbolic space of constant curvature 𝑘 < 0.

(3) Predict the spherical law of cosines. Prove it.

(4) Show that the Euclidean law of cosinesmay be obtained asymptotically from the unified

law of cosines when 𝑘 → 0.
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(5) Optional. Can you come up with a heuristic explanation for the existence of a unified

law of cosines that works in any constant curvature?

Exercise 14.5. Area of hyperbolic polygons

How would you define a hyperbolic polygon? Find a formula for the area of any hyperbolic

polygon, and prove it.

Exercise 14.6. Gromov hyperbolicity of hyperbolic space

Let 𝑛 > 2. The goal of this exercise is to show that hyperbolic space H𝑛 is Gromov hyperbolic

(see  Definition 11.8 ): there exists 𝛿 > 0 such that any triangle in H𝑛 is 𝛿-slim.

(1) Argue that it is enough to do the case 𝑛 = 2.

(2) Argue that it is enough to show that some ideal triangle is 𝛿-slim.

(3) Consider the ideal triangle with vertices 𝐴 = 0, 𝐵 = ∞, and 𝐶 = 1 in the Poincaré

half-plane. What are the sides (𝐴𝐵), (𝐵𝐶), and (𝐶𝐴) of this triangle? Draw a picture.

(4) Let 𝑝 = (0, 𝑦) ∈ (𝐴𝐵). Show that the distance from 𝑝 to (𝐵𝐶) is achieved at 𝑝′ =

(1,
√︁
1 + 𝑦2). Derive that 𝑑 (𝑝, (𝐵𝐶)) = arsinh(1/𝑦).

(5) Find an isometry that maps𝐴 ↦→ 𝐵, 𝐵 ↦→ 𝐶 ,𝐶 ↦→ 𝐴. Show that 𝑑 (𝑝, (𝐶𝐴)) = arsinh(𝑦).
(6) Conclude that 𝑑 (𝑝, (𝐵𝐶) ∪ (𝐶𝐴)) 6 𝛿 where 𝛿 = arsinh(1) and conclude the exercise.
(7) Is the constant 𝛿 = arsinh(1) optimal?
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More plane hyperbolic geometry

Disclaimer: This chapter is a draft.
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Tessellations of the hyperbolic plane

Disclaimer: This chapter is a draft.
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Part VII

Hyperbolic geometry and data science

The greatest mathematicians, as Archimedes, Newton, and Gauss, always united
theory and applications in equal measure.

– Felix Klein 

1
 

1
[ Kle4 ].



CHAPTER 17

Graph embeddings in hyperbolic space

Disclaimer: This chapter is a draft.
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Hyperbolic neural networks

Disclaimer: This chapter is a draft.
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APPENDIX A

Basic notions

Disclaimer: This chapter is a draft.

A.1 Algebra

Sets, equivalence relations, partitions, quotient sets maps, functions, notation. ⊆ and ⊂. When

I write 𝐴 ⊆ 𝐵, I do not mean to insist that 𝐴 and 𝐵 can be equal, but simply that I have no

interest in thinking about whether they could be or not.

coloneqq notation Set notations: such as 𝑆 = {𝑓 (𝑥), 𝑥 ∈ 𝑋 } or 𝑆 = {𝑥 ∈ 𝑋 |𝑃 (𝑥)}.
Forall notation ∀𝑥,𝑦 ∈ 𝑋 .
Group, field, vector space

subgroup 𝐻 < 𝐺 . Quotient group.

A.1.1 Group actions

A group action is the same things as a group homomorphism.

A.1.2 Linear algebra

Assume known: vector spaces, dimension, bases, subspaces, complements. Notation 𝑉 =

𝑊 +𝑊 ′
, R𝑣 + R𝑤 , etc. orientation of a vector space.

Recall that in a vector space 𝑉 , any decomposition 𝑉 =𝑊1 ⊕𝑊2 allows one to write any

vector𝑤 = 𝑤1 +𝑤2 with𝑤𝑖 ∈𝑊𝑖 , and define the following endomorphisms of 𝑉 :
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• the projection onto𝑊1 along𝑊2 by 𝑝 (𝑤) = 𝑤1.

• the reflection through𝑊1 along𝑊2 by 𝑟 (𝑤) = 𝑤1 −𝑤2.

linear maps, endomorphisms, projections and symmetries, matrices, duality, bidual eigen-

values, eigenspaces. Determinants.

bilinear algebra. inner products, gram-schmidt, linear and quadratic forms

Inner product spaces

orthogonal group, spectral theorem, Gram-Schmidt

Affine spaces

Notation 𝐸 and ®𝐸 Affine frame

Complexification

A.2 Analysis

A.2.1 Multivariable calculus

A.2.2 Complex functions

A.2.3 Hyperbolic functions

A.3 Geometry

A.3.1 Metric spaces

A.3.2 Notions of topology

A.3.3 Lengths and geodesics in Euclidean spaces

Let 𝐸 be a Euclidean affine space. Consider a smooth curve 𝛾 : 𝐼 → 𝐸. We call 𝛾 a geodesic if
it satisfies the clearly equivalent conditions:

• 𝛾 has vanishing acceleration: 𝛾 ′′ = 0.

• 𝛾 has constant velocity: 𝛾 ′(𝑡) = 𝑢 for some 𝑢 ∈ ®𝐸.
• 𝛾 is a constant speed parametrization of a straight line.

Furthermore, we have the following characterizations:

Theorem A.1. Let 𝛾 : 𝐼 = [𝑎, 𝑏] → 𝐸 be a regular smooth curve. The following are equivalent:
(i) 𝛾 is a geodesic.

(ii) 𝛾 is a critical point of the energy functional E (𝛾) B 1

2

∫
𝐼

‖𝛾 ′(𝑡)‖2 d𝑡 .
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(iii) 𝛾 has constant speed and is a crit. point of the length functional ℓ (𝛾) B
∫
𝐼

‖𝛾 ′(𝑡)‖ d𝑡 .

Before proving this theorem, let us explain what it means for 𝛾 to be a critical point. A

variation of 𝛾 is a family of curves (𝛾𝑠)𝑠∈𝐽 with 𝛾0 = 𝛾 , where 𝐽 is some open interval of R

contain 0. It is a smooth variation if (𝑠, 𝑡) ↦→ 𝛾𝑠 (𝑡) is a smooth map on 𝐽 × 𝐼 . In the setting of
 Theorem A.1 , we implicitly assume that any variation has fixed endpoints: 𝛾𝑠 (𝑎) = 𝛾 (𝑎) and
𝛾𝑠 (𝑏) = 𝛾 (𝑏) for all 𝑠 ∈ 𝐽 . By definition, 𝛾 is a critical point of a function 𝐹 : 𝛾 ↦→ 𝐹 (𝛾) ∈ R
if

d

d𝑠 |𝑠=0𝐹 (𝛾𝑠) = 0 for any smooth variation (𝛾𝑠).
Given a smooth variation (𝛾𝑠), the corresponding infinitesimal variation is the smooth

map𝑋 : 𝐼 → 𝑉 defined by𝑋 (𝑡) B d

d𝑡 |𝑠=0𝛾𝑠 (𝑡). Think of𝑋 (𝑡) as a vector based at 𝛾 (𝑡), so that
𝑋 is a vector field along 𝛾 . One can expect that the first variation

d

d𝑠 |𝑠=0𝐹 (𝛾𝑠) only depends on

𝑋 if the function 𝐹 is “differentiable”:
d

d𝑠 |𝑠=0𝐹 (𝛾𝑠) should just be the differential d𝐹 (𝑋 ). There
is no need for us to further discuss this idea in general, but we shall see that it is verifed for

the energy and for the length functionals.

Lemma A.2. The first variation of the energy is given by
d

d𝑠 |𝑠=0
E (𝛾𝑠) = −

∫
𝐼

〈𝛾 ′′(𝑡), 𝑋 (𝑡)〉 d𝑡 .

Proof. There is no regularity obstacle to differentiate under the integral:

d

d𝑠 |𝑠=0
E (𝛾𝑠) =

1

2

∫
𝐼

d

d𝑠 |𝑠=0

〈
𝛾 ′𝑠 (𝑡), 𝛾 ′𝑠 (𝑡)

〉
d𝑡

=

∫
𝐼

〈
d

d𝑠 |𝑠=0
𝛾 ′𝑠 (𝑡), 𝛾 ′(𝑡)

〉
d𝑡 .

By Schwarz’s theorem (symmetry of second derivatives),

d

d𝑠 |𝑠=0
𝛾 ′𝑠 (𝑡) =

d

d𝑡

d

d𝑠 |𝑠=0
𝛾𝑠 (𝑡) = 𝑋 ′(𝑡).

Furthermore, one can write:

〈𝑋 ′(𝑡), 𝛾 ′(𝑡)〉 = d

d𝑡
〈𝑋 (𝑡), 𝛾 ′(𝑡)〉 − 〈𝑋 (𝑡), 𝛾 ′′(𝑡)〉 .

We integrate over 𝐼 = [𝑎, 𝑏]:

d

d𝑠 |𝑠=0
E (𝛾𝑠) =

[
〈𝑋 (𝑡), 𝛾 ′(𝑡)〉

]𝑡=𝑏
𝑡=𝑎

−
∫
𝐼

〈𝑋 (𝑡), 𝛾 ′′(𝑡)〉 .

Since the variation (𝛾𝑠) is assumed to have fixed endpoints, we have 𝑋 (𝑎) = 𝑋 (𝑏) = 0,

therefore the first term vanishes and we are left with
d

d𝑠 |𝑠=0E (𝛾𝑠) = −
∫
𝐼
〈𝑋 (𝑡), 𝛾 ′′(𝑡)〉. �

Remark A.3. In the language of “the calculus of variations”, the geodesic equation 𝛾 ′′ = 0 is

the Euler-Lagrange equation for the energy functional.

Remark A.4.  Lemma A.2 can be interpreted as: grad𝐸 (𝛾) = −𝛾 ′′. It holds in great generality

that the gradient of the energy functional is (minus) the Laplacian operator: see e.g. [ Lou ].
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Proof of  Theorem A.1 . The lemma shows that the first variation of the energy only depends

on the infinitesimal variation 𝑋 (𝑡) = d

d𝑠 |𝑠=0𝛾𝑠 (𝑡). Any smooth vector field along 𝛾 is an

infinitesimal variation: given 𝑋 (𝑡), just put 𝛾𝑠 (𝑡) B 𝛾 (𝑡) + 𝑠𝑋 (𝑡). Thus, by  Lemma A.2 , 𝛾 is

a critical point of the energy if and only if

∫
𝐼
〈𝛾 ′′(𝑡), 𝑋 (𝑡)〉 d𝑡 = 0 for any 𝑋 (𝑡). This implies

that 𝛾 ′′ vanishes (consider 𝑋 (𝑡) = 𝛾 ′′(𝑡)). Thus we have proven that  (i) is equivalent to  (ii) .

The first variation of length can also be computed by differentiating under the integral:

d

d𝑠 |𝑠=0
ℓ (𝛾𝑠) =

∫
𝐼

d

d𝑠 |𝑠=0
〈
𝛾 ′𝑠 (𝑡), 𝛾 ′𝑠 (𝑡)

〉
〈𝛾 ′(𝑡), 𝛾 ′(𝑡)〉 d𝑡 .

When 𝛾 has constant speed 𝑣 B ‖𝛾 ′(𝑡)‖, this is equal to the first variation of the energy

d

d𝑠 |𝑠=0E (𝛾𝑠) multiplied by the constant
1

𝑣2
. It follows that  (ii) is equivalent to  (iii) . �

Corollary A.5. For any 𝐴, 𝐵 ∈ 𝐸, the line segment [𝐴, 𝐵] is the unique geodesic from 𝐴 to 𝐵
(up to parametrization) and is uniquely length-minimizing among all C1 curves from 𝐴 to 𝐵.

Proof. Since geodesics are affine parametrizations of straight lines, it is clear that 𝛾0(𝑡) =

𝐴 + 𝑡 (𝐵 − 𝐴) is the unique geodesic from 𝐴 to 𝐵 up to reparametrization. Its length is

ℓ (𝛾0) =
∫
1

0
‖𝐵 − 𝐴‖ d𝑡 = ‖𝐵 − 𝐴‖. On the other hand, for any smooth curve 𝛾 , the triangle

inequality for integrals says that

∫
𝐼
𝛾 ′(𝑡) d𝑡

 6 ∫
𝐼
‖𝛾 ′(𝑡)‖ d𝑡 , that is ‖𝐵 −𝐴‖ 6 ℓ (𝛾). �

A.3.4 Elementary Riemannian geometry

I think this should be a part of Chapter 2 maybe.
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Chapter  1 

 Exercise 1.2 .  (2) First prove it for a triangle that has a vertex at the center of the disk. Then

play a game of cut and paste.

Chapter  2 

 Exercise 2.3 .  (4) Straightforward calculations lead to 𝜅 =
|𝑎 |

𝑎2+𝑏2 and 𝜏 =
𝑏

𝑎2+𝑏2 . The helix with
parameters 𝑎 = 2 and 𝑏 = 3 is shown in  Figure A.1 .

 (5) Isometries of 𝐸 act transitively on affine frames, therefore one can assume that 𝛾 (0)
is fixed as well as the Frenet–Serret frame (𝑇, 𝑁, 𝐵) at 𝑡 = 0. The Frenet–Serret formulas

define a linear system of ODEs for (𝑇, 𝑁, 𝐵), therefore it has a unique solution by Picard–

Lindelöf given fixed initial conditions. Conclude by noting that the curve 𝛾 is recovered from

integrating 𝑇 . A more detailed proof can be found anywhere, e.g. [ Car1 , Chap. 1-5], [ Pre ,

Thm. 2.3.6], or [ Spi , Vol. II, Chap. 1].

 (6) Note that the formulas giving 𝜅 and 𝜏 in terms of 𝑎 and 𝑏 can easily be inverted:

𝑎 = ±𝜅
𝜅2+𝜏2 and 𝑏 = 𝜏

𝜅2+𝜏2 . By  (4) , the helix with parameters 𝑎 and 𝑏 has constant curvature 𝜅

and torsion 𝜏 . By the previous question, any other curve with such curvature and torsion is

an image of that helix by an isometry of 𝐸.

 Exercise 2.4 . Let 𝑈𝑝 ⊆ T𝑝 𝑆 denote the unit circle, consisting of unit tangent vectors at 𝑝 .

Given an orthonormal basis of T𝑝 𝑀 ,𝑈𝑝 can be identified to the unit circle inR
2
, parametrized

by the angle 𝜃 ∈ R/2𝜋Z. Let us denote ®𝑣 (𝜃 ) the unit tangent vector with angle 𝜃 and

𝜌𝑝 (𝜃 ) B 𝜌𝑝
(
®𝑣 (𝜃 )

)
its extrinsic curvature. We claim that 𝐻𝑝 =

1

2𝜋

∫
2𝜋

0
𝜌𝑝 (𝜃 ) d𝜃 .

Indeed, the average of any symmetric bilinear form on R2 on the unit circle is equal to

one half of its trace. We leave the proof of this fact as a subsidiary exercise to the reader, with

the hint: use the spectral theorem.

 Exercise 2.5 .  (1) We recall that by definition, a Riemannian isometry is a map whose deriva-

tive at any point is a linear isometry between tangent spaces.

 (2)  (b) Use  Proposition 2.10 .
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Figure A.1: The helix with 𝑎 = 2 and 𝑏 = 3

Note: This figure and others were created with Python using the matplotlib library [ Hun ].

 Exercise 2.6 .  (1) See  Figure A.2 for a picture of the tractrix.

 (3) See  Figure A.3 for a picture of the tractricoid with meridians and parallels. It is a

general fact that if a regular curve is the set of fixed points of an isometry, then this curve

must be a geodesic, up to reparametrization: otherwise, it is easy to see that uniqueness of

geodesics with a given initial velocity would be violated. In our case, consider the reflection

through a vertical plane.

 (4)  (a) Since there exists an isometry of R3 preserving 𝑆 and taking 𝑝𝜃 B 𝑓 (𝜃, 𝑡0) to
𝑝0 B 𝑓 (0, 𝑡0), namely the rotation of angle 𝜃 around the 𝑧-axis, 𝑆 must have same Gaussian

curvature at 𝑝𝜃 and 𝑝0. Indeed, this isometry transports everything from 𝑝𝜃 to 𝑝0: geodesics,

normal to 𝑆 , etc, so 𝑆 must have same principal curvatures at 𝑝𝜃 and 𝑝0, and have same Gaus-

sian curvature. Note that this is an illustration, in an easy case, of the Theorema Egregium.

 (b) 𝛾 ′
0
(𝑡) = (− sech 𝑡 tanh 𝑡, 0, tanh2 𝑡) C 𝑢 and 𝑐′𝑡 (0) = (0, sech 𝑡, 0) C 𝑣 . To get a vector

normal to 𝑆 at 𝑝 , we can take the cross-product of 𝑢 and 𝑣 , and renormalize to get a unit

vector. One finds ®𝑁 = ±(tanh 𝑡, 0, sech 𝑡). We take + for the “exterior” normal.

 (c) Calculations yield𝛾 ′′
0
(𝑡) = (sech 𝑡 (1−2 sech 𝑡), 0, 2 sech2 𝑡 tanh 𝑡) sowe find the normal

curvature 〈𝛾 ′′
0
(𝑡), ®𝑁 〉 = sech 𝑡 tanh 𝑡 . This is the extrinsic curvature 𝜌𝑝 (𝑢) where 𝑢 = 𝛾 ′

0
(𝑡);

in order to get the extrinsic curvature 𝜌𝑝 (𝑢1) where 𝑢1 = 𝑢
‖𝑢‖ is the unit tangent, we have
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Figure A.2: The tractrix

Note: This figure was created with LATEXusing the package Tikz.

to divide by ‖𝑢‖2 = tanh
2 𝑡 , because 𝜌𝑝 is quadratic. We obtain 𝜌𝑝 (𝑢1) = 1

sinh 𝑡
. Similar

calculations yield 𝜌𝑝 (𝑣1) = − sinh 𝑡 , where 𝑣1 is the unit tangent to 𝑐𝑡 at 𝑝 .

 (d) For the symmetry argument: consider the reflection through the vertical plane con-

taining the curve 𝛾0. Show that up to sign, it preserves the unit vectors giving the principal

directions of curvature.

 (5) The arclength is easily computed as d𝑠 = tanh 𝑡 , which gives 𝑠 = ln(cosh 𝑡). In

particular, the arclength parameter stays bounded when 𝑡 → 0. This shows that the geodesic

𝛾 , or rather, its arclength parametrization, is incomplete. Thus 𝑆 is not geodesically complete,

equivalently it is not a complete metric space by the Hopf-Rinow theorem. Note that if we

try to extend the tractricoid by allowing 𝑡 to take negative values, then the resulting surface

is singular at points where 𝑡 = 0.

 Exercise 2.8 . Let us interpret Euclid’s postulates in the realm of surfaces equipped with a

Riemannian metric. Note that this is not only anachronistic, but also too restrictive: Euclid’s

postulates could be interpreted in much more generality. Nevertheless, it is an interesting

exercise.

Let (𝑆, 𝑔) be a Riemannian surface. In this setting, a linemust be understood as a geodesic.

First postulate. The first postulate of Euclid reads: there exists a geodesic segment between

any two points in (𝑆, 𝑔). Note that if we add uniqueness, this excludes 𝑆 having closed

geodesics and self-intersecting geodesics. In particular, 𝑆 must be simply connected. If we
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Figure A.3: The tractricoid

only require uniqueness of the maximal geodesic through two points, then the projective

plane 𝑆2/{±1}, model of elliptic geometry, is acceptable.

Second postulate. The second postulate is precisely saying that (𝑆, 𝑔) is geodesically com-

plete. By the Hopf-Rinow theorem, this is equivalent to (𝑆, 𝑔) being complete as a Riemannian

manifold. Note that this implies the first postulate, without uniqueness.

At this point, any Hadamard 2-manifold is acceptable. That is a simply-connected, com-

plete 2-manifold of nonpositive sectional curvature.

Third postulate. In this setting, the third postulate is trivially true: given a point 𝑝 and a

radius 𝑟 > 0, the circle 𝐶 (𝑝, 𝑅) is uniquely defined as the set of points at distance 𝑟 from 𝑝 .

Although one way to interpret the postulate is that this circle is nonempty, or is a topological

circle.

Fourth postulate. This is arguably the most important postulate. Firstly, it implies that

(𝑆, 𝑔) is homogeneous, i.e. that the group𝐺 of isometries of (𝑆, 𝑔) acts transitively on 𝑆 . The

additional requirement on right angles is equivalent to (𝑆, 𝑔) being isotropic: for any 𝑝 ∈ 𝐺 ,𝐺
acts (via derivatives of its elements) transitively inT𝑝 𝐺 . Every complete isotropic Riemannian

manifold is homogeneous, making the first requirement unnecessary.
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At this stage, I think that up to isometry, there are no other models of Euclid’s axioms

than the space forms of constant curvature: the sphere 𝑆2 and its analogs 𝑆2
𝑅
of constant

curvature 𝑘 = 1

𝑅2
for any 𝑅 > 0, the Euclidean plane R2, and the hyperbolic plane H2

and its

analogs H2

𝑅
of constant curvature 𝑘 = − 1

𝑅2
for any 𝑅 > 0. More precisely, depending on a

more or less restrictive interpretation of the first postulate, we may exclude or include the

spheres 𝑆2
𝑅
and/or their quotients 𝑆2

𝑘
/{±1}.

Fifth postulate. Given a geodesic and a point not on it, there exists a unique geodesic

through the point which does not intersect the first. This postulate excludes the hyperbolic

planes H2

𝑅
and, regardless of the interpretation of the first postulate, the spheres 𝑆2

𝑅
and/or

their quotients 𝑆2
𝑅
/{±1}.

We can therefore wrap up:

Theorem. Let (𝑆, 𝑔) be a smooth connected surface equipped with a Riemannian metric. Then
(i) (𝑆, 𝑔) satisfies the first four postulates of Euclid if and only if it isometric to either R2, or
H2

𝑅
for some 𝑅 > 0. Depending on the interpretation of the first postulate, the spheres 𝑆2

𝑘

and/or their quotients 𝑆2
𝑅
/{±1} should also be included.

(ii) (𝑆, 𝑔) satisfies the five postulates of Euclid if and only if it is isometric to R2.

Chapter  3 

Chapter  4 

Chapter  5 

 Exercise 5.1 .  (1)  (b) We recall that by definition, a Riemannian isometry is a map whose

derivative at any point is a linear isometry between tangent spaces.

 (2)  (c) Hint: identify this action to the action of O(𝑛) in R𝑛.  (d) Hint: Recall that H+
is

uniquely goedesic: for any 𝑣 ∈ H+
, there exists a unique geodesic from 𝑣0 to 𝑣 .

 Exercise 5.2 .  (1) This is an immediate computation after recalling that the distance on the

hyperboloid is 𝑑 (𝑝, 𝑞) = arcosh(−〈𝑝, 𝑞〉).
 (2) arcosh(cosh2 𝑥) =

√
2𝑥 + 1

6

√
2

𝑥3 +𝑂 (𝑥4).

 (3) It follows from  (1) and  (2) that 𝑑 (𝛾𝑣 (𝑡), 𝛾𝑤 (𝑡))2 = 2𝑡2− 1

3
𝑡4+𝑂 (𝑡5), hence𝐾 (𝑣,𝑤) = −1.

Since this holds for any 𝑝 and any orthonormal pair 𝑣,𝑤 ∈ T𝑝 H+
, we proved that H+

has

constant sectional curvature 𝐾 = −1.
 (4) We now find 𝑑 (𝛾𝑣 (𝑡), 𝛾𝑤 (𝑡)) = 𝑅 arcosh

(
cosh

2 𝑡
𝑅

)
. It follows from the Taylor expansion

found in  (2) that 𝑑 (𝛾𝑣 (𝑡), 𝛾𝑤 (𝑡))2 = 2𝑡2 − 1

3𝑅2
𝑡4 +𝑂 (𝑡5), hence 𝐾 (𝑣,𝑤) = − 1

𝑅2
.
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Chapter  7 

 Exercise 7.17 .Hint: Show that for a surface 𝑆 ⊆ R3 ⊆ R𝑃3, the sign of any extrinsic curvature
𝜌𝑝 (𝑣) is invariant under orientation-preserving projective linear transformations of R𝑃3.

Chapter  8 

 Exercise 8.6 .  (1) By definition of the Cayley–Klein metric,

𝑑 (𝑥,𝑦) = 1

2

|ln( [0,±‖𝑥 ‖,−1, 1]) |

=
1

2

����ln 1 ∓ ‖𝑥 ‖
1 ± ‖𝑥 ‖

����
= artanh(‖𝑥 ‖) .

 (2) 

𝑑 (𝑥,𝑦) = arcosh

(
1 − 〈𝑥, 0〉√︁

(1 − 0) (1 − ‖𝑥 ‖2)

)
= arcosh

(
1√︁

1 − ‖𝑥 ‖2

)
= artanh(‖𝑥 ‖) .

 (3) Let 𝛾 (𝑡) = 𝑡𝑥 for 𝑡 ∈ [0, 1]. Since the image of 𝛾 is a minimizing geodesic, 𝑑 (0, 𝑥) =
𝐿(𝛾) =

∫
1

0
‖𝛾 ′(𝑡)‖ d𝑡 . Here we have 𝛾 ′(𝑡) = 𝑡𝑥 and the expression of the Riemannian metric

on the Beltrami–Klein disk gives (after a couple lines of calculations) ‖𝛾 ′(𝑡)‖ = ‖𝑥 ‖
1−𝑡2‖𝑥 ‖2 . Note

that this is
d

d𝑡
artanh(𝑡 ‖𝑥 ‖), so we find 𝑑 (0, 𝑥) = artanh(‖𝑥 ‖).

 Exercise 8.7 . Show that: (i) The result is true when 𝑥0 = 0, (ii) PO(2, 1) acts transitively on

circles of radius 𝑅, and (iii) PO(2, 1) sends ellipses to ellipses. Of course, you could also try a

direct proof, let me know if you succeed that.

Chapter  9 

 Exercise 9.7 .  (3) You should find that the pullback metric on 𝑆𝑛 ⊆ R𝑛+1 is d𝑥2
1
+···+d𝑥2𝑛+1

(1−𝑥𝑛+1)2 . Clearly,

this is conformal to the Euclidean metric of R𝑛+1, which is the spherical metric in restriction

to 𝑆𝑛.

 Exercise 9.9 .  (3)  (b) For a translation 𝑧 ↦→ 𝑧 + 𝑏, take two reflections having 𝑏 as a normal

vector. For a similarity 𝑧 ↦→ 𝑎𝑧 with 𝑎 ∈ C∗, first write it as the composition of the rotation
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𝑧 ↦→ 𝑒𝑖𝜃𝑧 and the homothety 𝑧 ↦→ 𝜌𝑧, where 𝑎 = 𝜌𝑒𝑖𝜃 . For the rotation, try two reflections

whose axes intersect at the origin. For the homothety, try two inversions through spheres

centered at the origin. Finally, write 𝑧 ↦→ 1

𝑧
as the composition of the inversion through the

unit circle and the reflection through the real axis.

 Exercise 9.10 .  (5) Hint: Show that if a fractional linear transformation preserves D, then it

also preserves the unit circle 𝜕D = {|𝑧 | = 1}. Then show that if the fractional linear action of

𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
preserves |𝑧 | = 1, then 𝑎 ¯𝑏 − 𝑐 ¯𝑑 = 0 and |𝑎 |2 − |𝑐 |2 = |𝑑 |2 − |𝑏 |2. Conclude that,

after multiplying𝑀 by a constant, it belongs to U(1, 1).

 Exercise 9.12 . Still works: Defining inversions, Möbius transformations as product of in-

versions, both for R̂ and 𝑆1. It is still true that the Möb(R̂) ≈ Möb(𝑆1) ≈ PO(1, 1) and
Möb

+(R̂) ≈ Möb
+(𝑆1) ≈ PSO(2, 1). In this case, one can also identify Möb

+(R̂) to PGL+
2
(R),

acting by fractional linear transformations on R̂ ≈ R𝑃1. What also works is the Poincaré

extension from dimension 1 to 2: any Möbius transformation of Möb(R̂) [resp. 𝑆1] extends to
a unique transformation of 𝐻 2

[resp. 𝐵2]. In fact we see directly that PGL
+
2
(R) acts both on

Möb(R̂) and H by fractional linear transformations; similarly PSU(1, 1) acts both on 𝑆1 ⊆ C
and D ⊆ C by fractional linear transformations.

Breaks down: Any diffeomorphism R→ R is conformal, therefore the Liouville theorem

does not hold: these are not all Möbius transformations. It is also not true that Möbius trans-

formations can be characterized as sphere-preserving, because in this case lower dimensional

spheres are pairs of points, so any injective map is sphere-preserving. The Poincaré extension

from dimension 0 to 1 also fails: it is not true that any Möbius transformation of R̂ is uniquely

determined by its restriction to R̂0 = {0,∞}. This is because while it is still true that the
subgroup of PO(2, 1) preserving R̂0 is PO(1, 1), the latter does not act faithfully on R̂0; in

other words, what fails is that Möb(R̂𝑛) = PO(𝑛 + 1, 1) is not correct for 𝑛 = 0.

Chapter  10 

 Exercise 10.9 . If we define a hyperbolic space à la Euclid, axiomatically, then we could define

a hyperbolic subspace of 𝑋 as a subset 𝑋 ′ ⊆ 𝑋 where the axioms still hold. In order for this

to make sense, we should assume that 𝑋 ′
is stable under taking the line through two points.

It turns out that this condition is sufficient.

Let us take instead the modern definition of a hyperbolic space as a complete, simply-

connected Riemannian manifold of constant sectional curvature −1. A hyperbolic subspace is

a complete and totally geodesic submanifold 𝑋 ′ ⊆ 𝑋 . Equivalently, 𝑋 ′
is a subset of 𝑋 stable

under taking the complete geodesic through any two points. Equivalently, 𝑋 ′
is a totally

geodesically embedded copy of H𝑘 in H𝑛 for some 𝑘 6 𝑛.

Hyperbolic subspaces have very natural incarnations in the different models. In the
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hyperboloid model, a hyperbolic subspace is the intersection with a subspace of Minkowski

space (see  Proposition 5.1 ). In the Cayley–Klein model, it is the intersection with a projective

subspace. In the Beltrami–Klein ball, it is the intersection with an affine subspace. In the

Poincaré models, it is the intersection with a half-sphere orthogonal to the boundary. We

leave it to the reader to prove all these descriptions.

Chapter  11 

 Exercise 11.1 .  (2) Hint: Compare the distance between two geodesics from the same point

in R2 versus in H2
.

 (3) Hint 1: Show that any quasi-isometric (i.e. coarsely surjective) map 𝑟 : [0, +∞) → H𝑛
is at finite distance from a geodesic ray. Hint 2: Show that if there exists a quasi-isometry

𝑋 → 𝑌 , then there exists a quasi-isometry 𝑌 → 𝑋 .

 Exercise 11.2 .. Hint: start by recalling the relation between the hyperboloid model and the

Cayley–Klein model.

Chapter  12 

 Exercise 12.1 .  (1) By definition, a function 𝑔 : N → R is subadditive if 𝑔(𝑥 + 𝑦) 6 𝑔(𝑥) +
𝑔(𝑦) for all 𝑥,𝑦 ∈ N. For such a function, lim𝑛→+∞

𝑔(𝑛)
𝑛

always exists. Indeed, for a fixed

integer 𝑑 > 0, the Euclidean division of 𝑛 by 𝑑 is written 𝑛 = 𝑞𝑑 + 𝑟 with 0 6 𝑟 < 𝑑 .

The subadditivity condition implies that
𝑔(𝑛)
𝑛
6

𝑔(𝑑)
𝑑

+ 𝑔(𝑟 )
𝑛
, hence lim sup𝑛→+∞

𝑔(𝑛)
𝑛
6

𝑔(𝑑)
𝑑
.

Therefore lim sup𝑛→+∞
𝑔(𝑛)
𝑛
6 lim inf𝑑→+∞

𝑔(𝑑)
𝑑
.

 Exercise 12.9 .  (1) Hint: Derive from the Cayley-Hamilton theorem that 𝐵 + 𝐵−1 = tr(𝐵)𝐼 .
 (2) Hint: Start by words of length 1, 2, 3, etc. (in the generators 𝐴, 𝐵, 𝐴−1

, and 𝐵−1).

 Exercise 12.10 . For instance, try to prove the following classification:

• 𝑀 ∈ O
+(𝑛, 1) is elliptic if and only if 𝑀 has a timelike eigenvector. In this case, all

complex eigenvalues of𝑀 have unit modulus.

• 𝑀 ∈ O
+(𝑛, 1) is loxodromic if and only if 𝑀 has a complex eigenvalue 𝜆 of modulus

≠ 1. In this case, 𝜆 and 𝜆−1 are the only complex eigenvalues of𝑀 of modulus ≠ 1.

• 𝑀 ∈ O
+(𝑛, 1) is elliptic if and only if all complex eigenvalues of𝑀 have unit modulus,

and𝑀 has no timelike eigenvector.

For additional guidance, you can check out [ Thu , Problem 2.5.24].
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T
(𝑇, 𝑁, 𝐵)-frame,  16 ,  26 
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A
arclength parameter,  14 

C
curve,  13 

E
Euclidean space,  13 

Euclidean vector space,  13 

F
Frenet–Serret formulas,  27 

Frenet–Serret frame,  16 

fundamental theorem of space curves,  16 ,  27 

H
helix,  27 

L
length of a curve,  13 

P
parametrized curve,  13 

principal normal,  26 

R
regular curve,  14 

reparametrization,  13 

S
smooth,  13 

speed,  13 

T
(𝑇, 𝑁, 𝐵)-frame,  16 ,  26 

torsion,  16 ,  27 

U
unit binormal,  26 

unit tangent,  26 

V
velocity,  13 
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