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Abstract
In our previous paper [GLM18], we showed that the theory of harmonic maps between

Riemannian manifolds, especially hyperbolic surfaces, may be discretized by introducing
a triangulation of the domain manifold with independent vertex and edge weights. In the
present paper, we study convergence of the discrete theory back to the smooth theory when
taking finer and finer triangulations, in the general Riemannian setting. We present suitable
conditions on the weighted triangulations that ensure convergence of discrete harmonic
maps to smooth harmonic maps, introducing the notion of (almost) asymptotically Laplacian
weights. We also present a systematic method to construct such weighted triangulations in
the 2-dimensional case. Our computer software Harmony successfully implements these
methods to computes equivariant harmonic maps in the hyperbolic plane.
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Introduction

Let M and N be Riemannian manifolds, let us assume M compact and N complete. A harmonic
map f : M → N is a critical point of the energy functional

E( f ) =
1
2

∫
M

‖ d f ‖2 dv .

Equivalently, f has vanishing tension field τ( f ) = 0, a nonlinear generalization of the Laplace
operator that can be defined as the trace of the Riemannian Hessian: τ( f ) = ∇(d f ). When N
is compact and has negative sectional curvature, there exists a harmonic map M → N in any
homotopy class of smooth maps, and it is unique unless it is constant or maps to a geodesic. This
foundational result due to Eells-Sampson [ES64] and Hartman [Har67] can be understood in terms
of the convexity properties of the energy. Essentially, the curvature assumption on N implies that
the energy functional is convex on any component of the space of smooth maps C∞(M,N), which
guarantees convergence of the gradient flow–also called heat flow in this setting–from any initial
smooth map to the energy minimizer.

In our previous work [GLM18], which mostly specialized to surfaces, we showed that the theory
can be appropriately discretized by meshing the domain manifold with a triangulation and assigning
two independent systems of weights, on the set of vertices and edges respectively. One of the main
results is the strong convexity of the discrete energy functional, from which we derive convergence
of the discrete heat flow to the unique discrete harmonic map. (The second focus of [GLM18] is
on center of mass methods, which we do not discuss in the present paper.) While that paper was
concerned with a fixed discretization, the purpose of the present paper is to study the convergence
of the discrete theory back to the smooth theory when one takes finer and finer meshes.

After introducing the discretization setup in § 1, in § 2we discuss special conditions onweighted
triangulations in order to adequately capture the local geometry of the domain manifold. We define
Laplacian systems of weights, which aim to produce a good approximation of the Laplacian (i.e.
tension field) by the discrete Laplacian. As a fundamental example, we introduce our favorite
volume vertex weights and cotangent edge weights.

In § 3, we study fine sequences of meshes (with maximum edge length converging to zero), and
the approximation of the relevant smooth objects by their discrete counterparts. A key requirement
for the sequence is to be crystalline, meaning that all angles of the triangulation stay bounded away
from zero. We also strategically weaken the notion of Laplacian weights to (almost) asymptotically
Laplacian weights. We show that for such sequences of weighted meshes, which we will later see
can systematically be constructed, there is convergence of the discrete volume form, tension field,
energy density, and energy to their smooth counterparts.

In § 4, we study the convergence of discrete maps to smooth harmonic maps. If the discrete
energy is sufficiently convex, and the sequence of meshes is almost asymptotically Laplacian, we
prove that (the center of mass interpolations of) the discrete harmonic maps converge to the unique
smooth harmonic map in L2. We expect the strong convexity assumption to hold in a very broad
setting, and have proved it in the 2-dimensional case in [GLM18]. Pending stronger assumptions,
we also show convergence in L∞, and in energy. Furthermore, we show that the discrete heat flow
starting from any discretized map converges to the smooth harmonic map when both the time index
and the space index run to +∞, provided a CFL-type condition is satisfied. This theorem may be
seen as a constructive implementation of the theorem of Eells-Sampson and Hartman.

The final section § 5 of the paper describes how to systematically construct almost asymptotically
Laplacian sequences ofmeshes, so that our previous theorems can apply, at least in the 2-dimensional
case. These are quite simply constructed by iterated midpoint geodesic subdivision from an initial
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triangulation of the domain manifold, and taking the volume weights on vertices and cotangent
weights on edges. Proving the required Laplacian qualities some delicate Riemannian geometry
estimates, naturally building on the Euclidean case; we largely relegate these to the appendix
(Appendix A) to avoid burdening our exposition. It is quite remarkable how the conditions for our
constructed sequences to be almost asymptotically Laplacian are barely met, and in turn how these
conditions are barely sufficient for our main convergence theorem (Theorem 4.1) to hold.

Putting together the main theorems in § 4 and § 5 (Theorem 4.1, Theorem 4.23, and Theo-
rem 5.11), we obtain explicit constructions of sequences of discretizations that ensure convergence
to the desired harmonic map. Here is a sample theorem summarizing our main results for surfaces:

Theorem. Let M and N be compact Riemannian 2-manifolds of negative Euler characteristics,
and assume N has negative sectional curvature. Consider a sequence of meshes on M obtained by
iterated midpoint subdivision with all angles bounded away from π/2, and equip it with the area
vertex weights and cotangent edge weights. Let C be a component of C∞(M,N) of nonzero degree,
and let vn be the unique discrete harmonic map in the corresponding discrete homotopy class. Then
vn converges to the unique harmonic map w ∈ C in the L2 topology.

This construction and the discrete heat flow is implemented in our freely available computer
software Harmony, which is presented in our previous paper [GLM18]. Harmony computes the
unique harmonic map from the hyperbolic plane to itself that is equivariant with respect to the
actions of two Fuchsian groups, which can be selected by the user via Fenchel-Nielsen coordinates.

Much of the theory and techniques that we develop are well-known in the Euclidean setting, such
as the discrete heat flow method or the cotangent weights popularized by Pinkall-Polthier [PP93].
This paper builds upon the Euclidean theory by using fine meshes on Riemannian manifolds.
However, there are notable differences from the Euclidean setting: First, the Laplace equation is
linear in the Euclidean setting, allowing finite element methods. Second, we restrict to compact
manifolds without boundary, in contrast to Euclidean domains where boundary conditions are
prescribed. Finally, there are important consequences of negative curvature, including the strong
convexity of the energy functional and the uniqueness of harmonic maps, that we exploit in the
present project.

The program to discretize the theory of harmonic maps between Riemannian manifolds, and
to obtain convergence back to the smooth theory, remains unfinished. Celebrated work on the
discretized theory includes [BS07, EF01, KS97], while convergence to the smooth harmonic map
has been analyzed for submanifolds of Rn notably by Bartels [Bar10]. The present paper seems
to have some overlap with Bartels’ work, though our setting is more intrinsic and geometric in
nature. A perhaps more powerful approach than ours to prove convergence of discrete harmonic
maps to smooth harmonic maps would consist in finding a discrete version of Bochner’s formula
and possibly Moser’s Harnack inequality: see Remark 4.13.

A note to the reader: Although this paper is the sequel of [GLM18], the two papers can be read
independently. We also point out that § 4 and § 5 in this paper can be read independently.
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1 Setup

Throughout the paper, let (M,g) and (N, h) be smooth connected complete Riemannian manifolds.
These will be our domain and target respectively. We will typically assume that M is compact
and oriented, and that N is Hadamard (complete, simply connected, with nonpositive sectional
curvature). Although most of the paper holds in this generality, we are especially interested in the
case where S = M is 2-dimensional. For background on the smooth theory of harmonic maps
M → N , please refer to [GLM18, §1].

1.1 Discretization setup

Our discretization setup is the following. (We also refer to [GLM18, §2] for more details, although
it focuses on the equivariant setting and H2.) A mesh on M is any topological triangulation; we
denote by G the embedded graph that is the 1-skeleton. A mesh (or its underlying graph) is called
geodesic if all edges are embedded geodesic segments.

DenoteV = G(0) and E = G(1) the set of vertices and (unoriented) edges of G. We shall equip
G with vertex weights (µx)x∈V and edge weights (ωxy){x,y }∈E . For now, these weights are two
arbitrary and independent collections of positive numbers. Such a biweighted graph allows one to
develop a discrete theory of harmonic maps M → N as follows:

• The system of vertex weights defines a measure µG = (µx)x∈V on V. Since G is embedded in
M , µG can also be seen as a discrete measure on M supported by the set of vertices.

• A discrete map from M to N along G is a map V → N . The space MapG(M,N) of such maps
is a smooth finite-dimensional manifold with tangent space

T f MapG(M,N) = Γ( f ∗ TN) B
⊕
x∈V

T f (x)N .

It carries a smooth L2-Riemannian metric given by:

〈V,W〉 B
∫
M

〈Vx,Wx〉 dµG(x) =
∑
x∈V

µx 〈Vx,Wx〉

and an associated L2 distance given by

d( f ,g)2 B
∫
M

d( f (x),g(x))2 dµG(x) =
∑
x∈V

µxd( f (x),g(x))2

where d( f (x),g(x)) denotes the Riemannian distance in N .

• The discrete energy density of a discrete map f ∈ MapG(M,N) is the discrete nonnegative
function eG( f ) ∈ MapG(M,R) defined by

eG( f )x =
1

4µx

∑
y∼x

ωxy d( f (x), f (y))2 .

• The discrete energy functional on MapG(M,N) is the map EG : MapG(M,N) → R given by

EG( f ) =
∫
M

eG( f ) dµG

=
1
2

∑
x∼y

ωxy d( f (x), f (y))2 .
(1)
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A discrete harmonic map is a critical point of EG .
Remark 1.1. The discrete energy functional does not depend on the choice of vertex weights, neither
does the harmonicity of a discrete map. When M is 2-dimensional, this is reflects the fact that the
energy functional E : C∞(M,N) → R only depends on the conformal structure on S.

• The discrete tension field of f ∈ MapG(M,N) is τG( f ) ∈ Γ( f ∗ TN) defined by

τG( f )x =
1
µ(x)

∑
y∼x

ωxy
−−−−−−−→
f (x) f (y) .

Notation 1.2. Throughout the paper, we abusively denote −→xy B exp−1
x (y) (whenever well-defined),

where expx is the Riemannian exponential map.
In [GLM18, Prop. 2.21] we show the discrete first variational formula:

τG( f ) = − grad EG( f ) .

In particular, f is harmonic if and only if τG( f ) = 0. This is equivalent to the property that for all
x ∈ V, f (x) is the center of mass of its neighbors values (more precisely of the system { f (y),ωxy}

for y adjacent to x [GLM18, Prop. 2.22]).

• Given u0 ∈ MapG(M,N) and t > 0, the discrete heat flow with fixed stepsize t is the sequence
(uk)k>0 defined by

uk+1 = exp(t τG(uk)) .

The discrete heat flow is precisely the fixed stepsize gradient descend method for the discrete energy
functional EG .

One of the main theorems of [GLM18] is that if S = M and N are closed oriented surfaces of
negative Euler characteristics and u0 has nonzero degree, then the discrete heat flow converges as
k → +∞ to the unique minimizer of EG in the same homotopy class with exponential convergence
rate. See [GLM18, Theorem 4.5] for more details.

1.2 Midpoint subdivision of a mesh

Assume (M,g) is equipped with a geodesic mesh and denote by G the associated graph. One can
define a new mesh called the midpoint subdivision (or refinement) as follows. For comfort, let us
assume M = S is 2-dimensional; the definition is easily generalized. Define a new geodesic graph
G′ by adding to the vertex set of G all the midpoints of edges of G, and adding new edges so that
every triangle in G is subdivided as 4 triangles in G′ (see [GLM18, Definition 2.2]). This clearly
defines a new geodesic triangulation of S whose 1-skeleton is G′. See Figure 1 for an illustration
of an invariant mesh in H2 and its refinement generated by the software Harmony.

Evidently, this subdivision process may be iterated, thus one can define the refinement of order
n of a geodesic mesh. Meshes obtained by successive midpoint refinements will be our standard
support for approximating a smooth manifold by discrete data. Properties of such meshes will be
further discussed in § 5.
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(a) A mesh of H2 (b) Midpoint refinement

Figure 1: A mesh of the Poincaré disk model of H2 on the left, its midpoint refinement on the right.
Both are invariant under the action of a Fuchsian group Γ, yielding meshes on a closed hyperbolic
surface S of genus 2. The brighter central region is a fundamental domain. The blue circle arcs are
the axes of the generators of Γ ≈ π1S.

1.3 Interpolation

1.3.1 Generalities

Assume (M,g) is equipped with a geodesic mesh and denote by G the associated graph. A
continuous map f : M → N is piecewise smooth along G if f is smooth in restriction to any
simplex of the mesh.

Note that there is a forgetful (restriction) map

πG : C(M,N) → MapG(M,N)

which assigns to any continuous map f : M → N its restriction to the vertex set of G. A first
definition of an interpolation scheme would be a right inverse ιG of the map πG .

Of course, a natural requirement to add is that ιG is a continuous map whose image is contained
in the subspace of piecewise smooth maps along G. In the Euclidean setting, there is one canonical
choice for interpolation, namely linear interpolation. In the general Riemannian setting there is no
such obvious choice. For our purposes we will view center of mass interpolation as the preferred
interpolation, though there are other natural options (e.g. harmonic interpolation), which we will
not discuss.

There is a subtle deficiency in the above definition of interpolation scheme when N is not simply
connected: one would like to require that ιG ◦ πG preserves homotopy classes of maps, but that is
not possible. This problem can be solved by defining an interpolation scheme as attached to the
choice of a homotopy class:

Definition 1.3. Let C be a connected component of C(M,N). An interpolation scheme ιG is a
continuous right inverse of πG restricted to C, whose image consists of piecewise smooth maps
along G.

7



Note that this definition still does not allow one to define the homotopy class of a discrete map.
A more elegant way to deal with deficiency, which we favored in [GLM18], is to work equivariantly
in the universal covers.

1.3.2 Working equivariantly

Fix a homotopy class C of a continuous map M → N , which induces a group homomorphism
ρ : π1M → π1N . Recall that any f ∈ C admits a ρ-equivariant lift between universal covers
f̃ : M̃ → Ñ . The meshM on M also lifts to a π1M-invariant geodesic mesh M̃ of M̃ . As usual,
one has to take more care with basepoints on M and N–and use more notation–to make this story
complete.

Definition 1.4. The discrete homotopy class CG B MapG̃,ρ(M̃, Ñ) is defined as the space of
ρ-equivariant discrete maps M̃ → Ñ along G̃.

One can then define an interpolation theme as a continuous right inverse of πG on CG . For the
purposes of this paper, however, all of the convergence analysis can be performed on the quotient
manifolds. The presentation is chosen with ease in mind, and so we overlook the subtlety above.
Nevertheless, we point out that there are other benefits to the equivariant setting:

• It allows one to consider equivariance with respect to group homomorphisms ρ : π1M →
Isom(Ñ) that are not necessarily induced by continuous maps from M to a quotient of Ñ , e.g.
non-discrete representations ρ.

• Computationally, it is easier to work in the universal covers. This is the point of view that we
chose when coding the software Harmony.

This explains our present change in perspective from the equivariance throughout [GLM18].

1.3.3 Center of mass interpolation

We refer to [GLM18, §5.1] for generalities on centers of mass, also called barycenters, in metric
spaces and Riemannian manifolds.

For comfort, let us assume that S = M is 2-dimensional; it is quite straightforward to generalize
what follows to higher dimensions. First we describe interpolation between triples of points. Let
A,B,C be three points on the surface (S,g). We assume that these three points are sufficiently close,
more precisely that they lie in a strongly convex geodesic ball B, i.e. any two points of B are joined
by a unique minimal geodesic segment in S and this segment is contained in B. In particular, there
is a uniquely defined triangle T ⊆ S with vertices A, B, C and with geodesic boundary. Any point
P ∈ T can uniquely be written as the center of mass of {(A, α), (B, β), (C, γ)}, where α, β, γ ∈ [0,1]
and α + β + γ = 1. Let similarly A′, B′, C ′ be three sufficiently close points in the Riemannian
manifold (N, h). Then there is a unique center of mass interpolation map f : ABC → N such that
for any point P ∈ T as above, f (P) is the center of mass of {(A′, α), (B′, β), (C ′, γ)}. In other words,
f is the identity map in barycentric coordinates.

Clearly, given a discrete map f ∈ MapG(S,N), one can define its center of mass interpolation
triangle by triangle following the procedure above. Although there seems to be a restriction on the
size of the triangles in S and their images by f in N for the interpolation to be well-defined, one
can work equivariantly in the universal covers as explained in § 1.3.2 and the restriction disappears
as long as S has nonpositive sectional curvature, or G is sufficiently fine i.e. has small maximum
edge length, and N has nonpositive sectional curvature.

Definition 1.5. Assume (M,g) has nonpositive sectional curvature, or G is sufficiently fine, and
N has nonpositive sectional curvature. The discussion above yields a center of mass interpolation
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scheme
ιG : MapG(M,N) → C(M,N) .

We denote f̂ B ιG( f ) the center of mass interpolation of a discrete map f ∈ MapG(M,N).

Theorem 1.6. Assume M has nonpositive sectional curvature, or G is sufficiently fine, and N has
nonpositive sectional curvature. Then

(i) For any f ∈ MapG(M,N), the interpolation f̂ maps each edge of G to a geodesic segment in
M (and does so with constant speed).

(ii) For any f ∈ MapG(M,N), the interpolation f̂ is piecewise smooth along G.
(iii) The map ιG : MapG(M,N) → C(M,N) is 1-Lipschitz for the L∞ distance on both spaces.

Proof. For comfort, let us write the proof when M = S is 2-dimensional. The proof of (i) is
immediate. For (ii), recall that the center of mass P as above is characterized by

α
−−→
PA + β

−−→
PB + γ

−−→
PC = ®0

(see [GLM18, Eq. (37)]), where we denote −−→PA B exp−1
P (A) etc. It follows from the implicit

function theorem that (α, β, γ) provide smooth barycentric coordinates on T (resp. T ′). Conclude
by observing that f̂ is the identity map in barycentric coordinates.

The proof of (iii) is a little more delicate, and crucially relies on N having nonpositive sectional
curvature. Let f1, f2 ∈ MapG(S,N), we want to show that d∞( f̂1, f̂2) 6 d∞( f1, f2). Consider any
triangle in G with vertices A,B,C ∈ S. Let p ∈ S be any point inside or on the boundary of the
triangle ABC ⊆ S. We denote Ai = fi(A), Bi = fi(B), Ci = fi(C), Pi = f̂i(P) for i ∈ {1,2}. Since p
is an arbitrary point on S, we win if we show that d(P1,P2) 6 d∞( f1, f2). By definition of the center
of mass interpolation, Pi is the center of mass of {(Ai, α), (Bi, β), (Ci, γ)}, where α, β, γ ∈ [0,1] is
some triple with α + β + γ = 1 (namely, the unique triple such that M is the center of mass of
{(A, α), (B, β), (C, γ)}). Let ®Vi = α

−−−→
PiAi + β

−−−→
PiBi + γ

−−−→
PiCi and let ®W = α−−−→P1 A2 + β

−−−→
P1B2 + γ

−−−→
P1C2,

where we denote −−−→PiAi = exp−1
Pi
(Ai), etc. By definition of the center of mass ®Vi = ®0, so we can write

®W = ®W − ®V1:

®W = α
(
−−−→
P1 A2 −

−−−→
P1 A1

)
+ β

(
−−−→
P1B2 −

−−−→
P1B1

)
+ γ

(
−−−→
P1C2 −

−−−→
P1C1

)
(2)

Since N has nonpositive sectional curvature, the exponential map expP1
: TP1 N → N is distance

nondecreasing (for this argument to be completely rigorous, we may need to pass to universal
covers), so that ‖−−−→P1 A2 −

−−−→
P1 A1‖ 6 d(A1, A2), etc. Using the triangle inequality in (2) we find

‖ ®W ‖ 6 d∞( f1, f2). This shows that d(P1,P2) 6 d∞( f1, f2) by [GLM18, Lemma 5.3]. �

2 Systems of weights

We follow the discretization setup of § 1 and seek systems of vertex and edge weights on G that
adequately capture the local geometry of M , in the sense that they ensure a good approximation of
the theory of smooth harmonic maps from M to any other Riemannian manifold.

Throughout this section (M,g) is any Riemannian manifold equipped with a geodesic meshM.
We denote as usual G the associated graph.
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2.1 Laplacian weights

Definition 2.1. A system of vertex weights (µx)x∈V and edge weights (ωxy){x,y }∈E on the graph
G is called Laplacian (to third order) at a vertex x ∈ V if, for any linear form L ∈ T∗xM:
(1) (First-order condition)

1
µx

∑
y∼x

ωxy
−→xy = 0 .

(2) (Second-order condition)
1
µx

∑
y∼x

ωxy L(−→xy)2 = 2‖L‖2 .

(3) (Third-order condition)
1
µx

∑
y∼x

ωxy L(−→xy)3 = 0 .

The biweighted graph (G, (µx), (ωxy)) is called Laplacian if it is Laplacian at any vertex.

Recall that we denote −→xy B exp−1
x y ∈ TxM .

Remark 2.2. As we shall see, the defining properties of Laplacian weights (or their characterization
Proposition 2.5) are remarkably versatile. Perhaps the most obvious motivation for their definition
is Theorem 3.16, but we will also use it in different ways, e.g. for Lemma 3.12 or Theorem 3.19.
Remark 2.3. Abiweighted graph being Laplacian to first order, i.e. satisfying condition (1), is equiv-
alent to the the fact that each vertex of G is the weighted barycenter of its neighbors. Theorem 2.4
provides many examples of Laplacian graphs to first order.

Theorem 2.4. Assume M = S is 2-dimensional and has nonpositive curvature. Any biweighted
graph G underlying a topological triangulation of S admits a unique map to S that is Laplacian to
first order, i.e. whose image graph equipped with the same weights is Laplacian to first order.

Proof. Note that a map f : G → S being Laplacian to first order is equivalent to f having zero
discrete tension field, i.e. f being discrete harmonic. By [GLM18, Theorem 3.20], the discrete
energy functional in this setting is strongly convex, in particular it has a unique critical point. �

The following seemingly stronger characterization of Laplacian weights is immediate:

Proposition 2.5. A system of weights on G is Laplacian at x ∈ V if and only if for any finite-
dimensional vector space W:
(1) For any linear map L : TxM → W:∑

y∼x

ωxy L(−→xy) = 0 .

(2) For any quadratic form q on TxM with values in W:

1
µx

∑
y∼x

ωxy q(−→xy) = 2 tr q .

(3) For any cubic form σ on TxM with values in W:∑
y∼x

ωxy σ(
−→xy) = 0 .

Note that we use the metric (inner product) in TxM to define tr q. By definition, tr q is the trace
of the self-adjoint endomorphism associated to q.
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2.2 Preferred vertex weights: the volume weights

In this paper we favor one system of vertex weights associated to any mesh of any Riemannian
manifold, the so-called volume weights.

For comfort assume (M,g) = S is 2-dimensional, although what follows is evidently generalized
to higher dimensions. Let x be a vertex of the triangulation and consider the polygon Px ⊆ S equal
to the union of the triangles adjacent to x. We define the weight of the vertex x by

µx B
1
3

Area(Px)

where Area(Px) denotes the Riemannian volume (area) of Px . This clearly defines a system of
positive vertex weights µG B (µx)x∈V . We alternatively see µG as a discrete measure on S
supported by the set of vertices, which is meant to approximate the volume density vg of the
Riemannian metric: see § 3.2. Note that the choice of the constant 1

1+dim M =
1
3 in the definition of

µx is motivated by the fact that each triangle is counted 3 times when integrating over S. The next
proposition is almost trivial:

Proposition 2.6. Let (M,g) be a closed manifold with an embedded graph G associated to a
geodesic mesh. Let µG be the discrete measure on S defined by the volume weights. Then∑

x∈V

µx =

∫
M

dµG =
∫
M

dvg = Vol(M,g) .

Recall that any system of vertex weights endows the space of discrete maps MapG(M,N) with
an L2 distance (see § 1.1).

Theorem 2.7. Let N be any Riemannian manifold of nonpositive sectional curvature. Equip the
space of discrete maps MapG(M,N) with the L2 distance associated to the volume weights. Then
the center of mass interpolation map ιG : MapG(M,N) → C(M,N) is L-Lipschitz with respect to
the L2 distance on both spaces, with L =

√
1 + dim M . When M is Euclidean (flat), the Lipschitz

constant can be upgraded to L = 1.

Proof. Let us assume M = S is 2-dimensional for comfort. Let f ,g ∈ MapG(M,N), denote by
f̂ B ιG( f ) and ĝ B ιG(g) their center of mass interpolations. By definition of the L2 distance on
C(M,N),

d( f̂ , ĝ)2 =
∫
M

d( f̂ (x), ĝ(x))2 dvg(x) .

Denote by T the set of triangles in the mesh. The integral is rewritten

d( f̂ , ĝ)2 =
∑
T ∈T

∫
T

d( f̂ (x), ĝ(x))2 dvg(x) . (3)

Let T = ABC be any triangle in T . Following the proof of Theorem 1.6 (iii), for all x ∈ T there
exists α, β, γ ∈ [0,1] such that α + β + γ = 1 and

d( f̂ (x), ĝ(x)) 6 αd( f (A),g(A)) + βd( f (B),g(B)) + γd( f (C),g(C)) .

By convexity of the square function, it follows

d( f̂ (x), ĝ(x))2 6 αd( f (A),g(A))2 + βd( f (B),g(B))2 + γd( f (C),g(C))2 (4)

hence
d( f̂ (x), ĝ(x))2 6 d( f (A),g(A))2 + d( f (B),g(B))2 + d( f (C),g(C))2 . (5)

11



Therefore we may derive from (3)

d( f̂ , ĝ)2 6
∑
T ∈T

[
d( f (A),g(A))2 + d( f (B),g(B))2 + d( f (C),g(C))2

]
Area(T)

6
∑
x∈V

∑
T ∈Tx

d( f (x),g(x))2 Area(Tx)

where Tx denotes the set of triangles adjacent to x. Finally this is rewritten

d( f̂ , ĝ)2 6
∑
x∈V

3µx d( f (x),g(x))2

where µx is the volume weight at x, i.e. d( f̂ , ĝ)2 6 3d( f ,g)2.
If M is Euclidean (flat), the proof can be upgraded to obtain a Lipschitz constant L = 1 by

keeping the finer estimate (4) instead of (5), and computing the triangle integral. �

2.3 Preferred edge weights: the cotangent weights

We also have a favorite system of edge weights, the so-called cotangent weights, although they have
the following restrictions:
(1) We only define them for 2-dimensional Riemannian manifolds, though they have higher-

dimensional analogs.
(2) They are only positive for triangulations having the “Delaunay angle property”. (This includes

any acute triangulation.)
These weights have a simple definition in terms of the cotangents of the (Riemannian) angles

between edges in the triangulation, and coincide with the weights of Pinkall-Polthier [PP93] in
the Euclidean case. For more background on the cotangent weights in the Euclidean setting and a
formula for their higher-dimensional analogs, please see [Cra19].

The following result noticed by Pinkall-Polthier [PP93] is an elementary exercise of plane
Euclidean geometry:

Lemma 2.8. Let T = ABC and T ′ = A′B′C ′ be triangles in the Euclidean plane. Denote by
f : T → T ′ the unique affine map such that f (A) = A′, etc. Then the energy of f is given by

E( f ) B
1
2

∫
T

‖ d f ‖2 dv

=
1
4

(
a′2 cotα + b′2 cot β + c′2 cot γ

)
where α, β, γ denote the unoriented angles of the triangle ABC and a′, b′, c′ denote the side lengths
of the triangle A′B′C ′ as in Figure 2.

In view of Lemma 2.8, given a surface (S,g) equipped with a geodesic mesh, we define the
weight of an edge e by considering the two angles α and β opposite to e in the two triangles adjacent
to e (see Figure 3), and we put

ωe B
1
2
(cotα + cot β) . (6)

Note that we use the Riemannian metric g to define the geodesic edges of the graph and the
angles between edges.

Definition 2.9. Let (S,g) be a Riemannian surface equipped with a geodesic mesh with underlying
graph G. The edge weights on G defined as in (6) are the system of cotangent weights.

12



αA
β

B

γ

C

b′

A′

a′

B′

c′

C ′

Figure 2: A triangle map in R2.

α βe

Figure 3: The weight ωe of the edge e is defined in terms of the opposite angles α and β.

As a direct application of Lemma 2.8, we obtain:

Proposition 2.10. Let (S,g) be a flat surface with a geodesic mesh. Let G be the underlying graph
equipped with the cotangent edge weights. For any piecewise affine map f : S → Rn, the smooth
energy E( f ) B 1

2

∫
S
‖ d f ‖2 dv coincides with the discrete energy EG( f ) defined in (1).

Note that a priori, the cotangent weights are not necessarily positive. Clearly, they are positive
for acute triangulations (all of whose triangles are acute). More generally, the cotangent weights
are positive if and only if the triangulation has the property that, for any edge e, the two opposite
angles add to less than π. This is simply because

ωe =
1
2
(cotα + cot β) =

sin(α + β)
2 sinα sin β

.

We call this the Delaunay angle property. In the Euclidean setting (for a flat surface), this property
is equivalent to the triangulation being Delaunay, i.e. the circumcircle of any triangle does not
contain any vertex in its interior [BS07, Lemma 9, Prop. 10].

2.4 Laplacian qualities of cotangent weights

In the 2-dimensional Euclidean setting, in addition to Proposition 2.10, the cotangent weights enjoy
some good–and other not so good–Laplacian properties, although this is much less obvious.

Proposition 2.11. Suppose that (S,g) is a flat surface. Then the cotangent weights associated to
any triangulation of S are Laplacian to first order.

Proof. Let x be a vertex and consider the polygon P = Px equal to the union of the triangles
adjacent to x. Since in the flat case the exponential map expx is a local isometry, without loss of
generality we can assume that P is contained in the Euclidean plane TxS ≈ R2 and x = O.
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Suppose that the vertices of P are given in cyclic order by (Ai), and that we have angles αi, βi,
γi as in Figure 4. By definition, the weight of the edge OAi is given by ωi B

1
2 (cot βi−1 + cot γi).

O

Ai+1

Ai

Ai−1

αi

γi
βi γi−1

βi−1

αi−1

Figure 4: The triangles of P at O.

Now consider the identity map f : P → R2. It has constant energy density e( f ) = 2, therefore
the total energy of f is E = 2 Area(P). On the other hand, E is the sum of the energies of f in
restriction to the triangles forming P. By Lemma 2.8 this is

E =
1
4

∑
i

[
cotαi ‖

−−−−−→
AiAi+1‖

2 + cot βi ‖
−−−−−→
OAi+1‖

2 + cot γi ‖
−−−→
OAi ‖

2
]
. (7)

So far we assumed that O is the origin in R2, but of course the argument is valid if O is any point.
In fact, let us see the energy E above as a function of O ∈ R2 when all the other points Ai ∈ R

2 are
fixed. We compute the infinitesimal variation of E under a variation O. On the one hand, ÛE(O) = 0
since E(O) = 2 Area(P) is constant. On the other hand, (7) yields

ÛE(O) = −
1
4

∑
i

[
Ûαi

sin2 αi
‖
−−−−−→
AiAi+1‖

2 +
Ûβi

sin2 βi
‖
−−−−−→
OAi+1‖

2 +
Ûγi

sin2 γi
‖
−−−→
OAi ‖

2
]

−
1
2

∑
i

〈
ÛO , cot βi

−−−−−→
OAi+1 + cot γi

−−−→
OAi

〉
.

(8)

We claim that the first sum in (8) vanishes. Indeed, first observe that the law of sines yields

‖
−−−−−→
AiAi+1‖

2

sin2 αi
=
‖
−−−−−→
OAi+1‖

2

sin2 βi
=
‖
−−−→
OAi ‖

2

sin2 γi
=

1
D2

where D is the diameter of the triangle OAiAi+1’s circumcircle, so the first sum is rewritten∑
i

[
1

D2
(
Ûαi + Ûβi + Ûγi

) ]
and Ûαi + Ûβi + Ûγi = 0 since αi + βi + γi = π is constant. Thus (8) is rewritten

ÛE(O) = −
1
2

∑
i

〈
ÛO , cot βi

−−−−−→
OAi+1 + cot γi

−−−→
OAi

〉
= −

〈
ÛO ,

∑
i

ωi
−−−→
OAi

〉
.

In other words: grad E(O) = −
∑

i ωi
−−−→
OAi. Since this must be zero (recall that E(O) is constant), O

is indeed the barycenter of its weighted neighbors {Ai,ωi}. �
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It is not true in general that cotangent weights are Laplacian to second order. However, for
triangulations obtained by midpoint refinement, it is true for almost all vertices:

Proposition 2.12. Let (S,g) be a flat surface. Let (Gn)n∈N be a sequence of graphs obtained by
iterated midpoint subdivision from a given initial triangulation. Equip Gn with the area vertex
weights and cotangent edge weights. Then Gn satisfies the 2nd-order Laplacian condition at any
vertex except maybe at the vertices of of G0.

The proof is based on the observation that any vertex of Gn is either an initial vertex (vertices of
G0), a boundary vertex (vertices that are located on edges of the initial triangulation) or an interior
vertex (all other vertices), and that the latter two satisfy a strong symmetry condition, which we call
(semi-)hexaparallel symmetry:

Definition 2.13. Consider a vertex x with valence six in a Euclidean graph.
• We say that x has hexaparallel symmetry if the set of vectors { ®xy : y ∼ x} is in the

GL(2,R)-orbit of {±(1,0),±(1,1),±(0,1)}. Equivalently, the neighbors of x are the vertices
of a hexagonwhose opposite sides are pairwise parallel and of the same length. See Figure 5a.
• We say that x has semi-hexaparallel symmetry if the neighbors may be cyclically labeled
{y1, . . . , y6} and divided into two overlapping sets {y1, y2, y3, y4} and {y4, y5, y6, y1}, each
being part of a potential hexaparallel configuration. See Figure 5b.

(a) Hexaparallel configuration. (b) Semi-hexaparallel configuration.

Figure 5: Hexaparallel and semi-hexaparallel symmetry.

It is straightforward to check by induction that a plane Euclidean graph obtained by iterated
midpoint subdivision is hexaparallel at any interior vertex and semi-hexaparallel at any boundary
vertex. Thus Proposition 2.12 reduces to:

Lemma 2.14. Any geodesic graph G in R2 equipped with the area vertex weights and cotangent
edge weights satisfies the second-order Laplacian condition at any (semi-)hexaparallel vertex x.

Proof. We need to show the second-order condition: for any quadratic form q on R2,

1
µx

∑
y∼x

ωxy q(y − x) = 2 tr q . (9)

First we argue that the semi-hexaparallel case derives from the hexaparallel case. Note that the
left-hand side of (9) is invariant by the central symmetry at x, since a quadratic function is even. If
x has semi-hexaparallel symmetry, we can create two hexaparallel configurations as in Figure 5b,
both satisfying (9). Taking the half-sum of the two equations then yields the desired result.

Assume from now on that x has hexaparallel symmetry. Denote y1, . . . , y6 the neighbors in
cyclic order. We may choose a complex coordinate on R2 ≈ C so that x = 0 and y1 = 1. Denote
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z = a + bi the coordinate of y2. The hexaparallel condition implies that y3 = z − 1, y4 = −1,
y5 = −z, and y6 = 1 − z. Let the oriented angles ∠(y1, y2), ∠(y2, y3), and ∠(y3, y4) be denoted by α,
β, and γ, respectively. For any w ∈ C, we have cot(argw) = Re(w)

Im(w) . Therefore we may compute:

cotα =
Re
Im
(z) =

a
b

cot β =
Re
Im

(
z − 1

z

)
=

a2 + b2 − a
b

cot γ =
Re
Im

(
1

1 − z

)
=

1 − a
b

.

Since µx = 1
3 (6 · b/2) = b, we get

1
µx

∑
y∼x

ωxy q(y − x) =
2
b
(cotα · q(z − 1) + cot β · q(1) + cot γ · q(z))

=
2
b

(
a
b
· q(z − 1) +

a2 + b2 − a
b

· q(1) +
1 − a

b
· q(z)

)
.

The latter is equal to 2, 0, and 2 when q = dx2, dx dy, or dy2, respectively, as desired. �

Corollary 2.15. Suppose that (S,g) is a flat surface. Let (Gn)n∈N be a sequence of graphs obtained
by iterated midpoint subdivision of an initial triangulation G0. Equip Gn with the area vertex
weights and the cotangent edge weights. Then Gn is Laplacian at any interior vertex.

Proof. The first-order and third-order conditions are trivial due to central symmetry of the neighbors
around the vertex x and the fact that linear and cubic functions are odd. (Alternatively, the first-order
condition holds by Proposition 2.11.) The second-order condition holds by Lemma 2.14. �

Remark 2.16. We shall see in § 5 that in the general Riemannian setting, the cotangent weights will
satisfy similar Laplacian properties asymptotically for very fine meshes.
Remark 2.17. While being the best choice of edge weights, the cotangent weights generally do
not satisfy the second-order Laplacian condition at vertices with no (semi-)hexaparallel symmetry.
Takingfiner andfiner triangulationswill not helpwith this defect. At such vertices, which generically
exist for topological reasons, the discrete Laplacian of a smooth function can not be expected
to approximate its Laplacian. This is somewhat unsettling, but it is an intrinsic difficulty to
the discretization of the Laplacian. Providing suitable assumptions that neverthless guarantee
convergence of discrete harmonic maps to smooth harmonic maps is the central aim of this paper.

3 Sequences of meshes

In this section, we enhance the previous section by considering sequences ofmeshes on aRiemannian
manifold (M,g). The idea is to capture the local geometry of M sufficiently well provided the mesh
is sufficiently fine. This allows a relaxation of the Laplacian weights conditions, which are too
stringent for a fixed mesh of an arbitrary Riemannian manifold. We introduce the notions of
asymptotically Laplacian and almost asymptotically Laplacian systems of weights, with the aim
that these weakened conditions can still be used to demonstrate the convergence theorems we are
after.
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3.1 Fine and crystalline sequences of meshes

Let (Mn)n∈N be a sequence of geodesic meshes of a Riemannian manifold (M,g). Denote by rn
the “mesh size”, i.e. the longest edge length ofMn. Following [dSG19], we define:

Definition 3.1. The sequence (Mn)n∈N is called fine provided lim
n→+∞

rn = 0.

Notation 3.2. For the remainder of the paper, we drop the subscript r B rn for ease in notation.
Given a bounded subset D ⊆ M , one calls:
• diameter of D the supremum of the distance between two points of D, denoted diam(D).
• radius of D the distance from the center of mass of D to its boundary, denoted radius(D).
• thickness of D the ratio of its radius and diameter, denoted thick(D):

thick(D) B
radius(D)
diam(D)

.

Definition 3.3. The sequence (Mn)n∈N is called crystalline if there exists a uniform lower bound
for the thickness of simplices inMn.

Example 3.4. In Theorem 5.6, we will show that any sequence of meshes obtained by midpoint
subdivision is fine and crystalline, a crucial fact for the strategy of this paper.

Proposition 3.5. Let (Mn)n∈N be a fine sequence of meshes. The following are equivalent:
(i) The sequence (Mn)n∈N is crystalline.
(ii) There exists a uniform positive lower bound for all angles between adjacent edges inMn.
(iii) There exists a uniform positive lower bound for the ratio of any two edge lengths inMn.

Proof sketch. For brevity, we only sketch the proof; the detailed proof would include proper Rie-
mannian estimates: see Appendix A.

First one checks that (i) ⇔ (ii) in the Euclidean setting. This is an elementary calculation:
for a single triangle (or n-simplex), one can bound its radius in terms of its smallest angle. One
then generalizes to an arbitrary Riemannian manifold M by arguing that a very small triangle (or
n-simplex) in M has almost the same radius and angles as its Euclidean counterpart in a normal
chart. The fact that we only consider fine sequences of meshes means that we can assume that all
simplices are arbitrarily small, making the previous argument conclusive. The proof of (ii)⇔ (iii)
is conducted similarly. �

Theorem 3.6. Assume that M is compact and the sequence of meshes (Mn)n∈N on M is fine and
crystalline. Denote by Gn the graph underlyingMn and r = rn its maximum edge length.

(i) The volume vertex weights µx,n of Gn are Θ
(
rdim M

)
(uniformly in x).

(ii) The number of vertices of Gn is |Vn | = Θ
(
r− dim M

)
. More generally, the number of k-

simplices of Gn is Θ(r− dim M ).
(iii) The combinatorial diameter diamGn of the graph Gn is Θ

(
r−1) .

(iv) The combinatorial surjectivity radius surj radGn (see below) of the graph Gn is Θ
(
r−1) .

The surjectivity radius at a vertex x of a graph G is the smallest integer k ∈ N such that there
exists a vertex at combinatorial distance k from x all of whose neighbors are at combinatorial
distance 6 k from x. The surjectivity radius of the graph G, denoted surj radG, is the minimum of
its surjectivity radii over all vertices.
Notation 3.7. In this paper, we use the notation f = O(g) and f = o(g) in the usual sense, we use
the notation f = Ω(g) for g = O( f ), and f = Θ(g) for [ f = O(g) and f = Ω(g)].
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Proof of Theorem 3.6. For (i), recall that the volume vertex weight at x is the sum of the volumes
of the simplices adjacent to x (divided by dim M). Since the sequence is fine, the diameter of all
simplices is going to 0 uniformly in x. On first approximation, the volume of any such vertex is
approximately equal to its Euclidean counterpart (say, in a normal chart). Since the lengths of all
edges arewithin [αr,r] for some constantα > 0 and all angles are bounded below by Proposition 3.5,
this volume is Θ(rdim M ).

For (ii), simply notice that
∑

x∈Vn
µx,n = Vol(M) by Proposition 2.6 and use (i). The general-

ization to k-simplices is immediate since the total number of k-simplices is clearly Θ (|Vn |).
For (iii), let us first show that diamGn = Ω

(
r−1) . Let x and y be two fixed points in M and

denote L the distance between them. For all n ∈ N, there exists vertices xn and yn in Vn that are
within distance r of x and y respectively, so their distance in M is d(xn, yn) > L − 2r . Denoting kn
the combinatorial distance between xn and yn, one has d(xn, yn) 6 knr by the triangle inequality.
We thus find that knr > L−2r , hence diamGn > kn > Lr−1−2 so that diamGn = Ω

(
r−1) . Finally,

let us show that diamGn = O
(
r−1) . Let xn and yn be two vertices that achieve diamGn. Let γn be

a length-minimizing geodesic from xn to yn. Of course, the length of γn is bounded above by the
diameter of M . There is a sequence of simplices ∆1, . . . ,∆kn such that x ∈ ∆1, y ∈ ∆kn , and any two
consecutive simplices are adjacent. Since the valence of any vertex is uniformly bounded (because
of a lower bound on all angles), the number of simplices within a distance 6 rmin of any point of M
is bounded above by a constant C. This implies kn 6 CL(γ)/rmin, so that kn 6 C(diam M)α r−1.
Following edges along the simplices ∆i, one finds a path of length (dim M − 2)kn from x to y,
therefore diamGn 6 (dim M − 2)C(diam M)α r−1.

For the proof of (iv), the injectivity radius of M provides a lower bound for surj radGn of the
form Ω(r−1), and diamGn provides an upper bound. The details are left to the reader. �

For a continuous map f : M → R, denote fn B πn( f ) ∈ MapGn (M,N) the discretization of f :
this is just the restriction of f to the vertex set of Gn. As in [dSG19] we have:

Lemma 3.8. If (Mn)n∈N is a sequence of meshes that is fine and crystalline, then for any piecewise
smooth function f : M → R, the center of mass interpolation f̂n converges to f for the piecewise
C1 topology.

Proof sketch. As for Proposition 3.5, the proof can be conducted in two steps: First in the Euclidean
setting, where the center of mass interpolation f̂n is just the piecewise linear approximation of fn.
This proof is done in e.g. [dSG19]. One then generalizes to an arbitrary Riemannian manifold M
by arguing that for very fine triangulations, the center of mass interpolation f̂n is very close to the
piecewise linear approximation of fn in a normal chart. �

Remark 3.9. Any interpolation scheme satisfying the conclusion of Lemma 3.8, as well as The-
orem 1.6 and Theorem 2.7 (or asymptotic versions thereof), would make the machinery work to
prove our upcoming main theorems. One could therefore enforce these properties as the definition
of a good sequence of interpolation schemes.

Corollary 3.10. Let f : M → N be a C1 map between Riemannian manifolds. Assume that M is
compact and equipped with a fine and crystalline sequence of meshes (Mn)n∈N. The center of mass
interpolation f̂n converges to f in L∞(M,N) and E( f ) = limn→+∞ E( f̂n).

Remark 3.11. One would like to say that f̂n converges to f in the Sobolev space H1(M,N), but this
space is not well-defined. Actually,H1(M,N)may be defined as the subspace ofL2(M,N) consisting
of L2 maps with finite energy, but it is unclear how to define the H1 topology. Nevertheless we can
say something in that direction: f̂n → f in L2(M,N) and E( f̂n) → E( f ). One should think of the
energy as the L2 norm of the derivative, but this “norm” does not induce a distance.

The following lemma will be useful in § 3.3 and again in § 3.4.
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Lemma 3.12. Assume that the sequence of meshes (Mn)n∈N on M is fine and crystalline. Let Gn
be the graph underlyingMn and r = rn its maximum edge length. If Gn is equipped with a system
of vertex and edge weights that is Laplacian at some vertex x, then

1
µx

∑
y∼x

ωxy = O
(
r−2

)
.

Remark 3.13. For ease of notation, we drop the dependence in n when writing µx and ωxy above.
Remark 3.14. Before writing the proof, let us clarify the quantifiers in Lemma 3.12 (as well as
Theorem 3.16 and Theorem 3.19): The statement is that there exists a constant M > 0 independent
of n such that at any vertex x of Gn where the system of weights is Laplacian, 1

µx

∑
y∼x ωxy 6 Mr−2.

Proof. Apply condition (2) of Proposition 2.5 to the quadratic form q = ‖ · ‖2:

1
µx

∑
y∼x

ωxy d(x, y)2 = 2m (10)

where m = dim M . The fact that the sequence of meshes is fine and crystalline implies that there
exists a uniform lower bound for the ratio of lengths in the triangulation. Thus there exists a constant
α > 0 such that for any neighbor vertices x and y in Gn:

α r 6 d(x, y) 6 r . (11)

It follows from (10) and (11) that
1
µx

∑
y∼x

ωxy 6
2m
α2r2 .

�

3.2 Convergence of the volume form

Let (M,g) be a Riemannian manifold, let (Mn)n∈N be a sequence of meshes with the underlying
graphs (Gn)n∈N. We equip Gn with the volume vertex weights defined in § 2.2. These define a
discrete measure µn on M supported by the set of verticesVn = G

(0)
n .

Theorem 3.15. If M is any Riemannian manifold and (Mn)n∈N is any fine sequence of meshes,
then the measures (µn)n∈N on M defined by the volume vertex weights converge weakly-* to the
volume density on M: ∫

M

f dµn
n→+∞
−→

∫
M

f dµ

for any f ∈ C0
c (M,R) (continuous function with compact support), where µ denotes the measure

on M induced by the volume form vg.

Proof. Recall that a continuity set A ⊆ M is a Borel set such that µ(∂A) = 0. Since any compact
set has finite µ-measure, it is well-known that the weakly-* convergence of µn to µ is equivalent to

µn(A)
n→+∞
−→ µ(A)

for any bounded continuity set A. Let thus A be any bounded continuity set. Denote by Bn the
union of all simplices that are entirely contained in A, and by Cn the union of all simplices that have
at least one vertex in A. We obviously have Bn ⊆ A ⊆ Cn, and by definition of µn we have:

µ(Bn) 6 µn(A) 6 µ(Cn) (12)
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On the other hand, clearly we have Cn − Bn ⊆ Nεn (∂A), where we have denoted Nεn (∂A) the
εn-neighborhood of ∂A, with εn = 2r here. (As usual we denote r = rn the maximal edge length
inMn.) By continuity of the measure µ, we know that limn→+∞ µ(Nεn (∂A)) = µ(∂A) = 0. Note
that we used the boundedness of A, which guarantees that µ(Nεn (∂A)) < +∞. It follows:

lim
n→+∞

µ(Cn − Bn) = 0 . (13)

Since Bn ⊆ A ⊆ Cn, (13) implies that limn→+∞ µ(Bn) = limn→+∞ µ(Cn) = µ(A), and we conclude
with (12) that limn→+∞ µn(A) = µ(A). �

3.3 Convergence of the tension field

Now we consider another Riemannian manifold N and a smooth function f : M → N .
Consider a fine and crystalline sequence of meshes (Mn)n∈N on M , with mesh size (i.e.

maximum edge length) r = rn, and underlying graph Gn.

Theorem 3.16. Assume that the sequence of meshes (Mn)n∈N on M is fine and crystalline. If Gn
is equipped with a system of vertex and edge weights that is Laplacian at some vertex x, then

τGn ( fn)x − τ( f )x = O
(
r2

)
. (14)

Notation 3.17. We denote fn B πGn ( f ), the discretization of f along Gn (i.e. restriction to G(0)n ).
Remark 3.18. The proof below shows that in (14), the O(r2) function depends on f , but may be
chosen independent of x if M is compact.

Proof. Consider F := exp−1
f (x)
◦ f ◦ expx : TxM → T f (x)N . For y ∼ x, denote v = vy B exp−1

x y.
By Taylor’s theorem we have

exp−1
f (x) f (y) = F(v) = (dF) |0(v) +

1
2
(d2F) |0(v, v) +

1
6
(d3F) |0(v, v, v) +O

(
r4

)
. (15)

This implies
τG( f )(x) =

1
µx

∑
y∼x

ωxy exp−1
f (x) f (y)

=
1
µx

∑
y∼x

ωxy (dF) |0(v) +
1

2µx

∑
y∼x

ωxy (d2F) |0(v, v)

+
1

6µx

∑
y∼x

ωxy (d3F) |0(v, v, v) +
1
µx

∑
y∼x

ωxy O
(
r4

)
By conditions (1) and (3) of Proposition 2.5, the first and third sums above vanish, while the

second sum is rewritten with condition (2):

τG( fG)(x) = tr
(
d2F|0

)
+

1
µx

∑
y∼x

ωxy O
(
r4

)
.

Note that tr
(
d2F|0

)
= tr

(
∇2 f |x

)
= τ( f )(x), and conclude with Lemma 3.12. �

3.4 Convergence of the energy

We keep the setting of § 3.3: f : M → N is a smooth function between Riemannian manifolds, and
M is equipped with a sequence of meshes (Mn)n∈N that is fine and crystalline.
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3.4.1 Convergence of the energy density

Theorem 3.19. Assume that the sequence of meshes (Mn)n∈N on M is fine and crystalline. Assume
Gn is equipped with a system of vertex and edge weights. Then

eGn ( fn) = e( f ) +O
(
r2

)
on the set of vertices where Gn is Laplacian.

Recall that we denote fn B πn( f ) the discretization of f along Gn.
Remark 3.20. Remark 3.18 holds again for Theorem 3.19.

Proof. Assume Gn is Laplacian at x. Using (15) again, denoting vy = exp−1
x y, we find that

eG( f )x =
1

4µx

∑
y∼x

ωxy ‖F(vy)‖2

=
1

4µx

∑
y∼x

ωxy

(dF) |0(vy) +
1
2
(d2F) |0(vy) +O

(
r3

)2

=
1

4µx

∑
y∼x

ωxy ‖(dF) |0(vy)‖2 +
1

4µx

∑
y∼x

ωxy 〈(dF) |0(vy), (d2F) |0(vy)〉

+
1

4µx

∑
y∼x

ωxy O
(
r4

)
.

Condition (3) of Proposition 2.5 implies that the second sum vanishes. Lemma 3.12 implies that
the third sum is O

(
r2) . By condition (2) of Proposition 2.5, the remaining first sum is rewritten

1
4µx

∑
y∼x

ωxy ‖(dF) |0(vy)‖2 =
1
2
‖(dF) |0‖2 = e( f )x

since tr(L2) = ‖L‖2 for any linear form L. We thus get

eG( f )x = e( f )x +O
(
r2

)
.

�

3.4.2 Convergence of the energy

Recall that the energy is E( f ) B
∫
M

e( f ) dµ. The convergence of the discrete energy is now an
easy consequence of the weakly-* convergence of measures µn → µ and the uniform convergence
of the energy densities eGn ( fn) → e( f ). This is the classical combination of weak convergence and
strong convergence.

Definition 3.21. Let (M,g) be a Riemannian manifold. Consider a sequence of geodesic meshes
(Mn)n∈N, and equip the underlying graphs Gn with a system of positive vertex and edge weights.
We call the sequence of biweighted graphs (Gn)n∈N Laplacian provided that:

(i) The sequence of meshes (Mn)n∈N is fine and crystalline.
(ii) For every n ∈ N, the vertex weights on Gn are given by the volume weights (see § 2.2).
(iii) For every n ∈ N, the system of vertex and edge weights on Gn is Laplacian.
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Theorem 3.22. Let M be a Riemannian manifold and let (Mn)n∈N be a Laplacian sequence of
meshes. For any smooth f : M → N with compact support:

lim
n→+∞

EGn ( fn) = E( f ) .

Recall that we denote fn B πGn ( f ) the discretization of f along Gn.

Proof. By Theorem 3.15,

E( f ) = lim
n→+∞

∫
M

e( f ) dµn .

By Theorem 3.19, on the support of µn, e( f ) = eGn ( fn) +O
(
r2) . It follows that

E( f ) = lim
n→+∞

∫
M

eGn ( fn) dµn ,

in other words E( f ) = limn→+∞ EGn ( fn). �

Remark 3.23. The proof of Theorem 3.22 hints that E( f ) = EGn ( fn) + O
(
r2) , provided that the

convergence of µn to µ is sufficiently fast. Improvements of this estimate can occur in more
restricted situations: for instance, when both the target and the domain are hyperbolic surfaces:

E( f ) = EGn ( fn) +O
(
r4

)
.

This can be proven by carrying out involved calculations in the hyperbolic plane, which we spare.

3.5 Weak Laplacian conditions

It is clear from the proofs of themain results in the previous subsections that the Laplacian conditions
for sequences of meshes can be weakened and still produce the same results, or at least some of
them, with minimal changes in the proofs. This is a useful generalization, for it is very stringent
to require a sequence of weighted graphs (Gn) to be Laplacian for all n. Instead we start by asking
that the sequence is merely asymptotically Laplacian in the following sense.

Definition 3.24. Let M be a Riemannian manifold. Consider a sequence of geodesic meshes
(Mn)n∈N, and equip the underlying graphs Gn with a system of positive vertex weights {µx,n}. We
call the sequence of weight systems ({µx,n})n∈N asymptotic volume weights provided that:

µx,n = (1 + o(1)) µ̂x,n

for some function o(1) independent of x, where µ̂x,n denote the volume weights (see § 2.2).

The following proposition is an immediate consequence of Theorem 3.15:

Proposition 3.25. If M is any Riemannian manifold and (Mn)n∈N is any fine sequence of meshes,
then themeasures (µn)n∈N on M defined by any system of asymptotic volume vertex weights converge
weakly to the volume density on M .

It is immediate to show that for asymptotic volume weight, Theorem 2.7 holds with a Lipschitz
constant Ln =

√
1 + dim M + o(1). Although this is sufficient for the needs of this paper (see

Lemma 4.5), let us state in the next theorem that the result can be improved to Ln = 1 + o(1). The
proof follows from Theorem 2.7 by writing an expansion of the volume form in normal coordinates,
we skip it for brevity.
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Theorem 3.26. Let M be a compact Riemannian manifold and let (Mn)n∈N be a fine sequence
of meshes equipped with a system of asymptotic volume vertex weights. For any complete Rie-
mannian manifold N of nonpositive sectional curvature, the center of mass interpolation map
ιn : MapGn (M,N) → C(M,N) is Ln-Lipschitz with respect to the L2 distance on both spaces, with
Ln = 1 + o(1).

Definition 3.27. Let M be a Riemannian manifold. Consider a sequence of geodesic meshes
(Mn)n∈N with mesh size r = rn, and equip the underlying graphs Gn with a system of positive
vertex and edge weights. We call the sequence of biweighted graphs (Gn)n∈N asymptotically
Laplacian provided that:

(i) The sequence of meshes (Mn)n∈N is fine and crystalline.
(ii) The vertex weights are asymptotic volume weights (see Definition 3.24).
(iii) The system of vertex and edge weights on Gn is Laplacian up to O

(
r2) at all vertices.

Explicitly, (iii) means that for all x ∈ Vn and L ∈ T∗xM:
(1)

1
µx

∑
y∼x

ωxy
−→xy = O

(
r2

)
(2)

1
µx

∑
y∼x

ωxy L(−→xy)2 = 2‖L‖2
(
1 +O

(
r2

))
(3)

1
µx

∑
y∼x

ωxy L(−→xy)3 = ‖L‖3O
(
r2

)
The O(r2) functions above should be independent of x and L. Note again that to alleviate notations,
we drop the dependence in n when writing r , µx , and ωxy .

It is immediate to check that the proofs of Theorem 3.16, Theorem 3.19, and Theorem 3.22
apply to asymptotically Laplacian sequences of graphs. Alas, it is still unreasonable to expect to
be able to construct asymptotically Laplacian sequences in general. Fortunately, the notion may be
further slightly weakened while keeping the validity of the most important theorems, and allowing
the systematic construction of such sequences in § 5 (at least in the 2-dimensional case).

Definition 3.28. Let M be a compact Riemannian manifold of dimension m. We say that the
sequence of biweighted graphs (Gn)n∈N is almost asymptotically Laplacian if it satisfies conditions
(i) and (ii) of Definition 3.27, and the modified version of (iii):
(iii’) There is a decomposition Vn =

⊔2
k=0V

(k)
n , with µn

(
V
(k)
n

)
= O(rk), so that the system of

vertex and edge weights on Gn is Laplacian up to O
(
r2−k ) onV(k)n .

Remark 3.29. Any asymptotically Laplacian sequence of meshes is almost asymptotically Lapla-
cian: takeV(0)n = Vn andV(1)n = V

(2)
n = ∅.

Remark 3.30. In application, the set V(k)n will be the vertices contained in the codimension k-
skeleton of a fixed triangulation of M (and not contained inV(k+1)

n ).
The following theorems are generalized or weakened versions of Theorem 3.16, Theorem 3.19,

and Theorem 3.22.

Theorem 3.31. Let M be a compact Riemannian manifold. Consider a sequence of geodesic
meshes (Mn)n∈N, with mesh sizes r = rn, and equip the underlying graphs Gn with a system of
vertex and edge weights. Let f : M → N be any smooth map to another Riemannian manifold.
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(1) If (Gn)n∈N is asymptotically Laplacian, then
 τ( f ) − τGn ( fn) ∞ = O

(
r2) . A fortiori,τ( f ) − τGn ( fn)2 = O

(
r2

)
.

(2) If (Gn)n∈N is almost asymptotically Laplacian, thenτ( f ) − τGn ( fn)2 = O (r) . (16)

Furthermore, if ®V ∈ T fn MapGn (M,N) is a unit tangent vector such that ‖ ®V ‖
V
(2)
n
= o(1), then〈

τ( f ) − τGn ( fn) , ®V
〉
= o(r) . (17)

Note that we use the discrete measure µn on the vertex set of Gn in order to define the L2-norm
on spaces of discrete maps along Gn.

Proof. When (Gn)n∈N is Laplacian, (1) is an immediate consequence of Theorem 3.16. When
(Gn)n∈N is merely asymptotically Laplacian, the proof of Theorem 3.16 is still valid up to O

(
r2) .

For the proof of (2), let V(k)n be the subset of Vn of mass O(rk) where Gn is Laplacian up to
O

(
r2−k ) . By tracing the proof of Theorem 3.16, one quickly sees that τ( f ) = τGn ( fn) + O

(
r2−k )

onV(k)n , for each k ∈ {0,1,2}. The decompositionVn =
⊔2

k=0V
(k)
n implies

‖τ( f ) − τGn ( fn)‖
2 =

2∑
k=0
‖τ( f ) − τGn ( fn)‖

2
V
(k)
n

6
2∑

k=0
‖τ( f ) − τGn ( fn)‖

2
∞,V

(k)
n

µ(V
(k)
n )

6
2∑

k=0
O

(
r4−2k

)
O

(
rk

)
= O(r2) .

For the second estimate, write similarly〈
τ( f ) − τGn ( fn) , ®V

〉
=

2∑
k=0

〈
τ( f ) − τGn ( fn) , ®V

〉
V
(k)
n

6
2∑

k=0
‖τ( f ) − τGn ( fn)‖V(k)n

‖ ®V ‖
V
(k)
n

6 O
(
r2

)
· 1 +O

(
r3/2

)
· 1 +O (r) · o(1) = o(r) .

�

Theorem 3.32. We keep the setup of Theorem 3.31.
(1) If (Gn)n∈N is Laplacian or asymptotically Laplacian, thene( f ) − eGn ( fn)


∞
= O

(
r2

)
.

(2) If (Gn)n∈N is almost asymptotically Laplacian, with decompositionVn =
⊔2

k=0V
(k)
n , then��e( f )(x) − eGn ( fn)(x)

�� = O
(
r2−k

)
for every x ∈ V(k)n .
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Proof. The proof is easily adapted from the proof of Theorem 3.19. �

Theorem 3.33. We keep the setup of Theorem 3.31. If (Gn)n∈N is almost asymptotically Laplacian,

lim
n→+∞

EGn ( fn) = E( f ) .

Remark 3.34. Of course, Theorem 3.33 also holds for Laplacian and asymptotically Laplacian
sequences of meshes, given the hierarchy between these conditions.

Proof of Theorem 3.33. By definition of almost asymptotically Laplacian, the sequence ofmeasures
(µn)n∈N converges weakly-* to the measure µ on M , therefore

E( f ) =
∫
M

e( f ) dµ = lim
n→+∞

∫
M

e( f ) dµn . (18)

Let Vn =
⊔2

k=0V
(k)
n be the decomposition of the vertices of Gn granted by Definition 3.28. By

Theorem 3.32,∫
M

e( f ) dµn =
2∑

k=0

∫
V
(k)
n

e( f ) dµn =
2∑

k=0

∫
V
(k)
n

eGn ( fn) +O
(
r2−k

)
dµn .

It follows: ∫
M

e( f ) dµn =
∫
M

eGn ( fn) dµn +
2∑

k=0
O

(
rk

)
O

(
r2−k

)
= EGn ( fn) +O

(
r2

)
.

In particular, we find that
∫
M

e( f ) dµn = EGn ( fn) + o (1). Injecting this into (18) yields the desired
result E( f ) = limn→+∞ EGn ( fn). �

4 Convergence to smooth harmonic maps

Let (M,g) be a compact Riemannian manifold and let (N, h) be a Riemannian manifold of non-
positive sectional curvature which does not contain any flats (totally geodesic flat submanifolds).
Consider a connected component C of the space of smooth maps C∞(M,N) that does not contain
any map of rank everywhere 6 1. For instance, take any connected component of maps whose
topological degree is nonzero when dim M = dim N . When N is compact, a celebrated theorem
of Eells-Sampson implies that C contains a harmonic map w [ES64], and by Hartman [Har67] the
harmonic map w is unique.

In this section we show that one can obtain the harmonic map w ∈ C as the limit of discrete
harmonic maps un along a sequence of meshes (Mn)n∈N , provided that:

(i) The discrete energy functional En is sufficiently convex on the discrete homotopy class Cn.
We expect that this is the case when N is compact and has negative sectional curvature, and
have showed it in the 2-dimensional case in our previous work [GLM18] (see § 4.6).

(ii) The sequence of meshes is Laplacian (Definition 3.21), or one of the weaker versions (Def-
inition 3.27, Definition 3.28). In the next and final section § 5, we systematically construct
such sequences.

We then show convergence of the discrete heat flow ukn to the smooth harmonic map w, when the
time and space discretization indices k and n simultaneously run to +∞, provided the adequate CFL
condition is satisfied (see § 4.5).
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4.1 Strong convexity of the discrete energy

Please refer to [GLM18, §3.1] for the definition of convex, strictly convex, and strongly convex
functions on Riemannian manifolds. In a nutshell, these notions are generalized from the one-
dimensional case by restricting to geodesics; the convexity [resp. α-strong convexity] of a smooth
function is characterized by its Hessian being > 0 [resp. > αg where g is the Riemannian metric].

Keeping the same setup as above, assumemoreover that N is compact and has negative sectional
curvature. In this case, we expect that the discrete energy functional EG : CG → R is αG-strongly
convex for any biweighted graph G on M underlying a mesh, for some αG > 0. In our previous
paper, we proved this statement when M and N are 2-dimensional. The estimates we obtained
(see [GLM18, Thm. 3.20, Prop. 3.14]) imply that, when G is equipped with volume weights,
αG = Ω

(
diam(G)−1) . Further, when (Mn)n∈N is a fine and crystalline sequence of meshes of M

and mesh sizes r = rn, with underlying graphs Gn, discrete energy functionals En := EGn , and
moduli of convexity αn := αGn , Theorem 3.6 implies that we have the estimate αn = Ω (r).

In fact, we conjecture that the smooth energy E : C → R is α-strongly convex for some α > 0
(see [GLM18, §3.2] for a discussion), and we expect that α = limn→+∞ αn for any asymptotically
Laplacian sequence of meshes (Mn)n∈N. In particular, the sequence (αn)n∈N should be Ω(1) in
great generality (see Notation 3.7 for the notations Ω and Θ).

4.2 L2 convergence

The main theorem of this section is:

Theorem 4.1. Let M and N be Riemannian manifolds, with M compact and N complete with
nonpositive sectional curvature. Let C be a connected component of C∞(M,N) containing a
harmonic map w. Consider a sequence of meshes (Mn)n∈N of M with mesh size r = rn and
underlying graphs (Gn)n∈N that satisfy:

(i) The sequence (Gn)n∈N is almost asymptotically Laplacian.
(ii) The discrete energy En : MapGn (M,N) → R is αn-strongly convex on Cn, with αn = Ω (rc).

Denote vn ∈ MapGn (M,N), the minimizer of En on Cn and v̂n its center of mass interpolation.
If c < 1, then

v̂n −−−−−→
n→+∞

w in L2(M,N) .

Moreover, the conclusion still holds if c = 1 and dim M = 2, assuming (Gn)n∈N has uniformly
bounded ratio between edge weights.

Remark 4.2. Under the assumptions of Theorem 4.1 w must be the unique smooth harmonic map
in C, the minimizer of the energy functional.
Remark 4.3. The case c = 1 and dim M = 2 is especially salient in light of [GLM18], which
guarantees that c = 1 does hold when dim M = 2 in a broad setting: see § 4.6 for details.

Proof. The proof is a combination of a few key ideas that we emphasize using in-proof lemmas.
The bulk of the hard work has been done in the previous sections, which we will refer to for the
proof of these lemmas.

Let wn B πn(w) ∈ Map(Gn,N) denote the discretization of w (restriction of w to the vertex set
of Gn). We also denote ŵn the center of mass interpolation of wn.

Lemma 4.4. We have ŵn → w in L2(M,N) when n→ +∞, moreover E(ŵn) → E(w).

Proof of Lemma 4.4. This is an immediate consequence of Corollary 3.10, which we can invoke
since M is compact and the sequence of meshes (Mn)n∈N is fine and crystalline. �
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Lemma 4.5. There exists a constant L > 0 such that

d(ŵn, v̂n) 6 L d(wn, vn)

where d(ŵn, v̂n) and d(wn, vn) indicate the L2 distances in C(M,N) and MapGn (M,N).

Proof of Lemma 4.5. This follows immediately from Theorem 3.26. �

Lemma 4.6. Let R be a complete Riemannian manifold and F : R→ R be a C2 α-strongly convex
function. Then F has a unique minimizer x∗, and for all x ∈ R

d(x, x∗) 6

���〈 grad F(x) , ®V
〉���

α
(19)

where ®V is a unit tangent vector in the direction exp−1
x (x

∗), in particular

d(x, x∗) 6
‖ grad F(x)‖

α
. (20)

We also have

0 6 F(x) − F(x∗) 6
‖grad F(x)‖2

α
. (21)

Proof of Lemma 4.6. Recall that on a complete Riemannian manifold R, there exists a length-
minimizing geodesic between any two points. It is not hard to show that a strongly convex function
on a complete (finite-dimensional) Riemannianmanifold is proper, hence existence of theminimizer,
and uniqueness follows from strict convexity.

The first inequality (19) is easy to prove for a function f : R→ R by integrating f ′′(x) > α. For
the general case, take a length-minimizing unit geodesic γ : R→ R with γ(0) = x∗ and γ(L) = x,
and apply the previous result to f = F◦γ. The second inequality (21) followswith Cauchy-Schwarz.
For (21), the one-dimensional case is readily obtained via the mean value theorem, and the general
case quickly follows. �

Lemma 4.7. We have

d(wn, vn) 6

���〈 τGn (wn) , ®V
〉���

αn
where ®V =

exp−1
wn

vn

‖ exp−1
wn

vn‖
. (22)

where d denotes the L2 distance in MapGn (M,N). In particular,

d(wn, vn) 6
‖τGn (wn)‖

αn
. (23)

Proof of Lemma 4.7. Apply Lemma 4.6 (19) and (20) to R = MapGn (M,N) and F = En. �

At this point, we would like to apply Lemma 4.7 and Theorem 3.31 to conclude that

d(wn, vn) → 0 .

Indeed, (23) together with (16) imply that d(wn, vn) = O(r1−c). If c < 1, we thus clearly have
d(wn, vn) → 0. The equality case c = 1 is much more subtle. In theory, we can still conclude that
d(wn, vn) → 0 with (22) and (17), which together yield d(wn, vn) = o(1). However, to apply (17),
we need to know that ‖ ®V ‖

V
(2)
n
= o(1). Although we believe this is always true, we only show it

when dim M = 2 in this paper.
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Lemma 4.8. Assume dim M = 2. We have ‖ ®V ‖
V
(2)
n
= o(1).

Proof of Lemma 4.8. Clearly, ‖ ®V ‖2
V
(2)
n

6 ‖ ®V ‖2∞ µ(V
(2)
n ), that is

‖ ®V ‖2
V
(2)
n

6
d∞(wn, vn)

2

d(wn, vn)2
O(r2) .

It appears that we win if we can show that d∞(wn ,vn)
d(wn ,vn)

= o(r−1). Unfortunately, the comparison
between the L∞ distance and the L2 distance on MapGn (M,N) only satisfies d∞(u,v)

d(u,v) = O(r−1) in
general. However, this inequality may be slightly improved when v is the discrete energy minimizer.
In order to avoid burdening our exposition, we relegate this technical estimate to Appendix B. The
desired comparison is given in Corollary B.4 (which requires the uniform bound assumption on
ratios of edge weights). �

We can now smoothly wrap up the proof of Theorem 4.1: write

d(v̂n,w) 6 d(v̂n, ŵn) + d(ŵn,w) (triangle inequality)
6 L d(wn, vn) + o(1) (by Lemma 4.5 and Lemma 4.4)

We proved that d(wn, vn) → 0 if c < 1 or c = 1 and dim M = 2, so we are done. �

Remark 4.9. We believe that the restriction dim M = 2 when c = 1 is superfluous. Indeed, we
expect that Lemma 4.8 is true in any dimension. However, proving it requires generalizations of the
technical estimates of Appendix B when dim M > 2. We reserve this (possibly) for a future paper,
as well as discussing cotangent weights and the constructions of § 5 to dimensions > 2.

4.3 L∞ convergence

Under stronger assumptions, we are able to prove uniform convergence in the 2-dimensional case
by comparing the L2 and L∞ distances on the space of discrete maps MapGn (M,N) (and using
Corollary 3.10). See Appendix B for details about this comparison.

Theorem 4.10. In the setup of Theorem 4.1, if dim M = 2 and c = 0, then v̂n → w in L∞(M,N).

Proof. Write
d∞(v̂n,w) 6 d∞(v̂n, ŵn) + d∞(ŵn,w) .

The second term d∞(ŵn,w) converges to zero by Corollary 3.10. It remains to show that
d∞(v̂n, ŵn) → 0. By Theorem 1.6 (iii), d∞(v̂n, ŵn) 6 d∞(vn,wn). Using Corollary B.4, we
find that d∞(vn,wn) = o

(
r2−dim M

)
, and we conclude that d∞(vn,wn) = o(1). �

Remark 4.11. We believe that c = 0 holds in great generality (see § 4.1).
Remark 4.12. We believe that the restriction dim M = 2 (also possibly c = 0) is superfluous, but
are unable to omit it in the current stage of our work. See Remark 4.13 for a related discussion.
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4.4 Convergence of the energy

One would like to discuss convergence of the discrete minimizer v̂n to the smooth harmonic map w
in the Sobolev space H1(M,N), say, under the assumptions of Theorem 4.1, but this function space
(or rather its topology) is not well-defined, see Remark 3.11. It is however still reasonable to ask
whether the energy of vn converges to the energy of w.

We shall see that it does not cost much to prove that the discrete energy En(vn) converges to
E(w), however it is much more difficult to show that the energy of the interpolation E(v̂n) also
converges to E(w). While we believe that En(vn) and E(v̂n) are asymptotic, proving it is too hard
in the current state of our work. We will thus be content with stating the desired convergence result
under very restrictive assumptions.
Remark 4.13. The obstacle to show that En(vn) and E(v̂n) are asymptotic would be lifted by showing
that the sequence (v̂n)n∈N has a uniformly bounded Lipschitz constant, but this would be a very
strong result. It would in fact enable us to prove Theorem 4.1 for any asymptotically Laplacian
sequence of meshes, with no assumption involving c, with a completely different method involving
a Rellich–Kondrachov theorem. In the smooth setting, a uniform Lipschitz bound is achieved by
using the Bochner formula and Moser’s Harnack inequality (see e.g. [Jos84], [Lou19, §2.2.2]).
This is an essential feature of the heat flow and the theory of harmonic maps. While developing
a discrete Bochner formula and a discrete Moser’s Harnack inequality is certainly a worthwhile
project, it is also beyond the scope of this paper.

Theorem 4.14. In the setup of Theorem 4.1, if c < 2, then En(vn) → E(w). If moreover dim M = 2,
c = 0, and the sequence of meshes is asymptotically Laplacian, then we also have E(v̂n) → E(w).

Proof. First write that E(w) = limn→+∞ En(wn) by Theorem 3.33. Thus it is sufficient to show that
En(wn) and En(vn) are asymptotic. By Lemma 4.6 (21) applied to F = En, we find that

0 6 En(wn) − En(vn) 6

τGn (wn)
2

αn

so with (16) we find that |En(wn) − En(vn)| = O
(
r2−c ) and the claim follows.

For the second claim, first write that E(w) = limn→+∞ E(ŵn) by Corollary 3.10. Thus it is
sufficient to show that E(ŵn) and E(v̂n) are asymptotic. One can derive from Theorem 1.6 (iii) and
Proposition 3.5 (ii) that for a fine and crystalline sequence of meshes,���d f̂ (x)

 − ‖dĝ(x)‖��� = O
(

d∞( f ,g)
r

)
.

uniformly in f ,g ∈ MapGn (M,N) and in x ∈ M in the interior of the triangulation, from which it
follows

���E( f̂ ) − E(ĝ)
��� = O

(
d∞( f ,g)

r

)
. In our case this gives |E(ŵn) − E(v̂n)| = O

(
d∞(wn ,vn)

r

)
. By

Lemma 4.7, Theorem 3.31 (1), and Corollary B.4, we have d∞(wn, vn) = o
(
r2−c− dim M

2

)
, so we find

|E(ŵn) − E(v̂n)| = o
(
r1−c− dim M

2

)
hence |E(ŵn) − E(v̂n)| = o(1) when c = 0 and dim M = 2. �

4.5 Convergence in time and space of the discrete heat flow

We turn to more practical considerations about how to compute harmonic maps. In the previous
subsections, we established that, under suitable assumptions, the discrete harmonic map vn con-
verges to the smooth harmonic map w. In our previous work [GLM18], we showed that for each
fixed n ∈ N, vn may be computed as the limit of the discrete heat flow uk ,n when k → +∞. While
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this is relatively satisfactory, in practice one cannot wait for the discrete heat flow to converge for
each n. Hence it is preferable to let both indices k and n run to +∞ simultaneously. In the theory
of PDEs, this situation with a double discretization in time and space is typical–they call it full
discretization, and one expects convergence to the solution provided that the time step and the space
step satisfy a constraint, called a CFL condition. We are happy to report a similar result.

We keep the same setup as in the beginning of the section. Let u ∈ C be a smooth map, denote
by un ∈ MapGn (M,N) its discretization. For each n ∈ N, denote by (uk ,n)k∈N the sequence in
MapGn (M,N) obtained by iterating the discrete heat flow from the initial map u0,n = un. We recall
that the discrete heat flow is defined by

uk+1,n = uk ,n + tnτGn (uk ,n)

where tn is a suitably chosen time step and we use the notation x+ v for the Riemannian exponential
map expx(v) in N . We recall that the discrete heat flow is just a fixed stepsize gradient descent
method for the discrete energy functional En on the Riemannian manifold MapGn (M,N). In
particular, strong convexity of the En implies convergence of the discrete heat flow to the unique
discrete harmonic map vn with exponential convergence rate. We refer to [GLM18] for more details.

Theorem 4.15. Consider the same setup and assumptions as in Theorem 4.1. Also assume that for
any constant K > 0, the discrete energy En has Hessian bounded above by βn,K = O(r−d) on its
sublevel set {En 6 K}, for some d > 0 independent of K . Then

ûk ,n −−−−−−−→
k ,n→+∞

w in L2(M,N)

provided the CFL condition:

k = Ω
(
log(r−1)

rc+d

)
. (24)

Remark 4.16. The assumption on the upper bound of the Hessian is reasonable when compared
to the Euclidean setting due to scaling considerations. When N is a hyperbolic surface, we have
βn,K = O(r−2) by [GLM18, Prop. 3.17], which satisfies the assumption but is surely not optimal.
Remark 4.17. The CFL condition (24) is most likely far from optimal.

Proof of Theorem 4.15. Let us break the proof into a few key steps.

Lemma 4.18. There exists a constant K > 0 such that

En(uk ,n) 6 K

for all k,n ∈ N.

Proof of Lemma 4.18. The proof of this lemma is a favorite of ours. For each fixed n ∈ N, the
discrete energy En(uk ,n) is nonincreasing with k, since the discrete heat flow is a gradient descent
for the discrete energy. In particular En(uk ,n) 6 En(u0,n). To conclude, we must argue that the
sequence (En(un))n∈N is bounded. This is true since it converges to E(u) by Theorem 3.33. �

Lemma 4.19. For every k,n, we have

d(uk ,n, vn) 6 cnqn
n

where cn = O
(
r−c/2

)
and qn = 1 − Crc+d + o

(
rc+d

)
with C > 0.

Proof of Lemma 4.19. This is an immediate consequence of [GLM18, Theorem 4.1]. Note that for
the estimate of cn, we need to use the fact thatEn(u0,n) = O(1), whichwe showed inLemma4.18. �
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We now finish the proof of Theorem 4.15. For every k,n ∈ N, we have

d(ûk ,n,w) 6 d(ûk ,n, v̂n) + d(v̂n,w) .

The second term d (̂vn,w) converges to zero by Theorem 4.1. As for the first term, we have
d(ûk ,n, v̂n) 6 L d(uk ,n, vn) for some constant L > 0 by Theorem 3.26. Thus it is enough to show
that d(uk ,n, vn) → 0 under the appropriate CFL condition.

Let (εn)n∈N be a sequence of positive real numbers converging to zero to be chosen later. Since
(uk ,n) converges to vn when k → +∞, there exists k0(n) such that d(uk ,n, vn) 6 εn for all k > k0(n).
Note that the inequality k > k0(n) is the CFL condition that we are after, for a/any choice of (εn).
It is possible to compute k0(n) explicitly with Lemma 4.19; one finds that

k0(n) =
log(cn) + log(ε−1

n )

log(q−1
n )

is sufficient. With our estimates we get log(cn) = Θ(log(r−1)) and log(q−1
n ) ∼ Crc+d. It is easy

to choose εn so that log(ε−1
n ) is negligible compared to log(r−1), e.g. εn = log(r−1). We thus find

k0(n) = Θ
(

log(r−1)
rc+d

)
as desired. �

Remark 4.20. We could similarly show L∞ convergence (resp. convergence of the energy) of ûk ,n
to w under the assumptions of Theorem 4.10 (resp. Theorem 4.14) and suitable CFL conditions.

4.6 Application to surfaces

When M and N are both 2-dimensional, our previous work [GLM18] gives estimates for the strong
convexity of the discrete energy. More precisely, consider the following setup:

Let S = M and N be closed Riemannian surfaces of negative Euler characteristic. Assume N
has negative sectional curvature. Assume that S is equipped with a fine and crystalline sequence
of meshes (Mn)n∈N, equipped with asymptotic volume weights and positive edge weights such
that the ratio of any two edge weights is uniformly bounded. Consider a homotopy class of maps
C ⊂ C∞(M,N) of nonzero degree, and its discretization Cn along each mesh.

Lemma 4.21. The discrete energy functional En : Cn → R has Hessian bounded below by αn and
above by βn,K on any sublevel set {En 6 K}, with

αn = Ω(r)

βn,K = O(r−2) .

Proof. The estimate for αn is an immediate consequence of [GLM18, Theorem 3.20]. The estimate
for βn is an immediate consequence of [GLM18, Prop. 3.17]. Note that [GLM18, Prop. 3.17] is
only stated for a hyperbolic metric, but it can be extended to any Riemannian metric of curvature
bounded below, which is always the case on a compact manifold. �

Remark 4.22. The estimate αn = Ω(r) based on [GLM18, Theorem 3.20] only assumes that N
has nonpositive sectional curvature. When N has negative curvature (bounded away from zero by
compactness), we expect that a better bound αn = Ω(rc) with c < 1 is possible to achieve, in fact
we conjecture that αn = Ω(1).

As a consequence of Lemma 4.21 and the previous theorems of this section, we obtain the
following theorem for surfaces.
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Theorem 4.23. If the sequence of meshes (Mn)n∈N is almost asymptotically Laplacian, then the
sequence of interpolations (v̂n)n∈N of the discrete harmonic maps (vn) converges to the unique
harmonic map w ∈ C in L2(M,N), and E(w) = limn→+∞ En(vn).

Furthermore, the discrete heat flow (ûk ,n)k ,n∈N from any initial condition u ∈ C converges to w
in L2(M,N) when both k,n→ +∞, provided the CFL condition k = Ω

(
log(r−1)r−3) holds.

Remark 4.24. Theorem 4.23 could be considered one of the main results of both our previous
paper [GLM18] and the present paper combined, except for the fact that we have yet to produce
almost asymptotically Laplacian sequences of meshes on surfaces. In the final section § 5, we
systematically construct such sequences.

The previous theorems of this section (Theorem4.10 andTheorem4.14) also show that under the
stronger assumption αn = Ω(1) (which we believe holds in a very general setting), the conclusions
of the previous theorem may be strengthened:

Theorem 4.25. In the setup of Theorem 4.23, assuming αn = Ω(1), the convergence of v̂n to w

is uniform. If moreover the sequence of meshes is asymptotically Laplacian, then we also have
E(w) = limn→+∞ E(v̂n).

5 Construction of Laplacian sequences

Most of our convergence theorems in § 3 and § 4 require a Laplacian sequence of meshes (Defi-
nition 3.21), or one of the weaker variants (Definition 3.27, Definition 3.28). Indeed, one should
only expect convergence for weighted graphs that reasonably capture the geometry of M .

In this section, we construct a sequence of weighted meshes on any Riemannian surface and
prove that it is always almost asymptotically Laplacian, and discuss cases where more can be said.
This construction is very explicit: in fact, it is implemented in our software Harmony in the case
of hyperbolic surfaces. The construction can simply be described: take a sequence of meshes
obtained by midpoint subdivision (§ 1.2) and equip it with the volume vertex weights (§ 2.2) and
the cotangent weights (§ 2.3).
Remark 5.1. It is possible to generalize this construction to higher-dimensional manifolds, most
likely with similar results. We reserve this analysis maybe as part of a future paper. In Euclidean
space, the formula for higher-dimensional cotangent weights is given in [Cra19].

5.1 Description

Let S = M be a 2-dimensional compact Riemannian manifold. One could consider complete
metrics with punctures and/or geodesic boundary, but for simplicity we assume S is closed.

Consider a sequence of meshes (Mn)n∈N with underlying graphs (Gn)n∈N defined by:
• M0 is any acute triangulation.
• Mn+1 is obtained fromMn by midpoint subdivision (see § 1.2).

Furthermore, equip Gn with the volume vertex weights (§ 2.2) and the cotangent weights (§ 2.3).
Remark 5.2. Finding an initial triangulation of S that is acute is far from an easy task, even for a
flat surface. The reader may refer to [Zam13] for more background on this active subject.

Definition 5.3. A ∆-sequence is a sequence of meshes (Mn)n∈N with the associated biweighted
graphs (Gn)n∈N constructed as above.

Remark 5.4. We think of “∆” here as standing for either “Laplacian” or “simplex”.
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5.2 Angle properties

In order for ∆-sequences to be crystalline and have reasonable edge weights systems, we need to
address some questions about the behavior of angles when iterating midpoint subdivision:
(1) Do all the angles of the triangulation remain bounded away from zero?
(2) Do all angles remain acute?
(3) Do all angles remain bounded away from π

2 ?
These questions, which are surprisingly hard to answer, are crucial since: (1) is necessary and
sufficient for the sequence of meshes to be crystalline (see Proposition 3.5), (2) is sufficient for the
edge weights to remain positive, and (3) is necessary for the ratio of any two edge weights to remain
uniformly bounded, a requirement to apply Theorem 4.23.

Lemma 5.5. Let (M,g) be a compact Riemannian manifold of dimension m. Let (∆n)n∈N be a
sequence of simplices with geodesic edges such that for every n ∈ N, ∆n+1 is one of the 2m simplices
obtained from ∆n by midpoint subdivision. Then all edge lengths of ∆n are Θ(2−n).

Proof. To avoid burdening our presentation with technical Riemannian geometry estimates, we
postpone this proof to the appendix: see Proposition A.13 in § A.2. �

Lemma 5.5, together with compactness of M and Proposition 3.5, immediately imply a positive
answer to question (1):

Theorem 5.6. Let (M,g) be a compact Riemannian manifold. Any sequence of meshes (Mn)n∈N

obtained by geodesic subdivision is fine and crystalline.

The answer to questions (2) and (3) is more nuanced: it is not true that refinements of an acute
triangulation stay acute, even for fine triangulations in H2. However, refinements of a sufficiently
fine and sufficiently acute triangulation do remain acute with angles bounded away from π

2 . This a
consequence of Proposition A.15 in § A.2, whose proof we postpone to the appendix.

Theorem 5.7. Let (M,g) be a compact Riemannian manifold. Let δ > 0. The iterated refinements
of any sufficiently fine initial triangulation of M whose angles are all 6 π

2 − δ remain acute and
with angles bounded away from π

2 .

We say a sequence of acute triangulations is strongly acute if the angles remain uniformly
bounded away from π

2 . Thus any sequence of triangulations obtained from iterated refinement as
in Theorem 5.7 is strongly acute.

We record the following easy consequence of Theorem 5.6 and Theorem 3.6.

Proposition 5.8. Let (Mn)n inN be a strongly acute ∆-sequence in (S,g). Then all edge weights of
Gn are Θ(1).

5.3 Laplacian qualities

Let (Mn)n inN be a ∆-sequence in (S,g), denote (Gn)n∈N the underlying graphs.

Definition 5.9. Recall that Vn ⊆ S denotes the set of vertices of Gn. Consider the decomposition
Vn = V

(0)
n tV

(1)
n tV

(2)
n , where:

• V(2)n consists of the vertices that are also elements ofV0, called initial vertices.
• V(1)n consists of the vertices that are located on the edges of the initial triangulationM0, and
are not elements ofV(2)n , called boundary vertices.

• V(0)n consists of all other vertices, called interior vertices.
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Lemma 5.10. We have µ
(
V
(k)
n

)
= Θ(rk) for k ∈ {0,1,2}.

Proof. The cardinal
���V(2)n

��� is clearly constant, while it is easy to show by induction that
���V(1)n

��� =
Θ(2n) and

���V(2)n

��� = Θ(4n). We also have rn = Θ(2−n) by Proposition A.15 and µx,n = Θ
(
r2
n

)
for

any x ∈ Vn by Theorem 3.6. The desired estimates follow. �

The decomposition Vn = V
(0)
n t V

(1)
n t V

(2)
n thus makes any ∆-sequence a candidate to be

almost asymptotically Laplacian: see Definition 3.28. The main theorem of this section provides a
positive answer:

Theorem 5.11. Any strongly acute ∆-sequence in a closed Riemannian surface (S,g) is almost
asymptotically Laplacian.

Proof. There are several conditions to check: see Definition 3.28. Condition (i) is satisfied by
Theorem 5.6. Condition (ii) is trivially satisfied by definition of a ∆-sequence.

It remains to check the Laplacian qualities stated in (iii’), namely that Gn is Laplacian up to
O

(
r2−k ) on V(k)n for k ∈ {0,1,2}. For each k, there are three conditions to check: the first-order,

second-order, and third-order Laplacian conditions, up to O
(
r2−k ) (see Definition 3.27 item (iii)).

There are thus nine conditions to check, some of which can be grouped together.
This first lemma almost comes “for free”:

Lemma 5.12. At any vertex x ∈ Vn, the j-th order Laplacian condition (for j ∈ {1,2,3}) holds up
to O(r j−2).

Proof. We have µx = Θ
(
r2
n

)
(Theorem 3.6), ωxy = Θ(1) (Proposition 5.8) and −→xy = O(r) for any

y ∼ x, therefore
1
µx

∑
y∼x

ωxyL(−→xy)j = ‖L‖ jO(r j−2) .

The conclusion easily follows for each j ∈ {1,2,3}. �

In what follows, we will frequently need to compare our present Riemannian setting to its
“Euclidean counterpart”. Let us clarify what we typically mean by that. Consider a vertex
x ∈ Vn ⊆ S and its neighbors {yi} ⊆ S. By working in the normal chart at x, we can imagine that
x and {yi} live in the Euclidean plane TxS. In this plane, each edge of the triangulation, which
is a Riemannian geodesic, may be replaced by a Euclidean straight segment, yielding a Euclidean
triangulation. One can then define, for instance, the Euclidean cotangent weights associated to
this Euclidean triangulation. We shall call the Euclidean cotangent weights ωE

xy the Euclidean
counterparts of the cotangent weights ωxy .

Lemma 5.13. The cotangent weights ωxy are within O(r2) of their Euclidean counterparts ωE
xy .

Proof. This immediately follows from the first-order expansion of the cotangent given in Propo-
sition A.5. Note that we need to know that all angles are bounded away from 0 and π

2 , which is
guaranteed respectively by Theorem 5.6 and by definition of a strongly acute ∆-sequence. �

The fact that the cotangent weights are exactly Laplacian to first order in the Euclidean setting
(Proposition 2.11) and the previous lemma allow us to upgrade the j = 1 case of Lemma 5.12:

Lemma 5.14. At any vertex x ∈ Vn, the first-order Laplacian condition holds up to O(r).
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Proof. Write ∑
y∼x

ωxy
−→xy =

∑
y∼x

(
ωxy − ω

E
xy

)
−→xy +

∑
y∼x

ωE
xy
−→xy .

The first sum is O(r3) by Lemma 5.13 and the second vanishes by Proposition 2.11 (note that
−→xy B exp−1

x (y) is equal to its “Euclidean counterpart”
−→xyE, since we are looking at the normal chart

at x). Since µx = O(r2), conclude that 1
µx

∑
y∼x ωxy

−→xy = O(r). �

As far as the first-order Laplacian condition is concerned, Lemma 5.14 is good enough for
vertices x ∈ V(2)n and x ∈ V(1)n . However for x ∈ V(0)n , we need to upgrade the estimate to O(r2).
Essentially, this follows from the fact that interior vertices have “almost central symmetry”, and
second-order Riemannian estimates. The computations are tedious but fairly straightforward, we
condensed them in the proof of the next lemma:

Lemma 5.15. At any interior vertex x ∈ V(0)n , the first-order Laplacian condition holds up toO(r2).

Proof. We need to push one step further the asymptotic expansion of the cotangent weights men-
tioned in Lemma 5.13. Order the neighbors of x cyclically, and given a neighbor y, denote y′ and
y′′ the previous and the next neighbors. By Proposition A.12, we have

ωxy = ω
E
xy + λxy +O(r3) with λxy =

1
2

(
εxy′y + εxy′′y

)
where the notation εOAB is defined in Proposition A.12. It follows that∑

y∼x

ωxy
−→xy =

∑
y∼x

ωE
xy
−→xy +

∑
y∼x

λxy
−→xy + O(r4) .

The first sum vanishes as in Lemma 5.14. Since µx = O(r2), we need to show that
∑

y∼x ωxy
−→xy =

O(r4). Hence we win if we show that
∑

y∼x λxy
−→xy = O(r4).

We note that any interior vertex x ∈ V(0)n has “almost central symmetry” up to O(r3), meaning
that its set of neighbors may be divided into pairs {y+, y−} such that−−→xy++−−→xy− = O(r3) (equivalently,
the central symmetry at x preserves the set of neighbors up toO(r3)). This immediately follows from
the fact that x ∈ V(0)n has in fact “almost hexaparallel symmetry”, as we shall see in (Lemma 5.16).

Now write ∑
y∼x

λxy
−→xy =

∑
{y+,y− }

λxy+
−−→xy+ + λxy−

−−→xy−

=
∑
{y+,y− }

(
λxy+ − λxy−

) −−→xy+ + λxy− (
−−→xy− + −−→xy+

)
.

It is not hard to see from the expression of λxy that λxy = O(r2), and, due to the almost central
symmetry, λxy+ − λxy− = O(r4). (To be fair, it is a few lines of calculations, but let us skip the
unnecessary details.) We also have −−→xy− + −−→xy+ = O(r3), we thus derive from the previous identity
that

∑
y∼x λxy

−→xy = O(r5), which is better than the O(r4) desired result. �

At this point, it is good to pause and see that we have proved that the first-order Laplacian
condition holds up to O(r2−k) on V(k)n for all k ∈ {0,1,2}, as required. Let us now turn to the
second-order condition. OnV(2)n , we have already proved that it holds up to O(1) as required: see
Lemma 5.12. Let us now show that it holds up to O(r2) onV(1)n (better than the required O(r)) and
onV(0)n (as required). Along with Lemma 5.14, this is the most difficult part of the proof.

Lemma 5.16. At any interior vertex x ∈ V(0)n or boundary vertex x ∈ V(1)n , the second-order
Laplacian condition holds up to O(r2).
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Proof. Let x ∈ V(0)n be an interior vertex. Using Riemannian estimates, we shall prove that the
second-order Laplacian condition holding up to O(r2) is a consequence of the fact that x has
“almost hexaparallel symmetry”. We defined hexaparallel symmetry in the Euclidean setting: see
Definition 2.13. This definition naturally extends to the Riemannian setting, using the normal
chart at x to bring x and its neighbors back to the Euclidean setting. We further say that x has
almost hexaparallel symmetry (up to O(r3)) provided that the neighbors of x are within O(r3) of a
hexaparallel configuration. Using Proposition A.8, one quickly shows that any interior vertex has
almost hexaparallel symmetry.

Denote ŷi the hexaparallel configuration around x such that ŷi − yi = O(r3), and denote ωE
xŷ

the Euclidean counterparts of the cotangent weights ωxŷ . As in Lemma 5.14, one shows that ωxy ,
ωxŷ , and ωE

xŷ
are all within O(r2). Now write

1
µx

∑
y∼x

ωxyL
(
−→xy

)2
=

1
µx

∑
y∼x

(ωxy − ω
E
xŷ)L

(
−→xy

)2
+

1
µx

∑
y∼x

ωE
xŷL

(
−→xy −

−→
x ŷ

)
L

(
−→xy +

−→
x ŷ

)
+

1
µx

∑
y∼x

ωE
xŷL

(
−→
x ŷ

)2

One quickly sees that the and second sums ‖L‖2O
(
r2) . As for the third sum, first note that denoting

µEx the Euclidean area weight at x, we have

1
µEx

∑
y∼x

ωE
xŷL

(
−→
x ŷ

)2
= 2‖L‖2

by Lemma 2.14. Since µx = µEx
(
1 +O

(
r2) ) by Proposition A.11, we find

1
µx

∑
y∼x

ωE
xŷL

(
−→
x ŷ

)2
= 2‖L‖2

(
1 +O

(
r2

))
.

Gathering all three sums, we find 1
µx

∑
y∼x ωxyL

(
−→xy

)2
= 2‖L‖2

(
1 +O

(
r2) ) as desired.

One conducts a similar proof when x is a boundary vertex: in that case, it has almost semi-
hexaparallel symmetry up to O(r3), and the proof is similarly derived from the Euclidean case. �

This concludes the proof that the second-order Laplacian condition holds up to O(r2−k) on
V
(k)
n for all k ∈ {0,1,2}. Let us finally examine the third-order condition. We already proved in

Lemma 5.12 that it holds up to O(r) at any vertex, which is good enough for V(2)n and V(1)n . It
remains to prove that it holds up to O(r2) onV(0)n . It actually holds up to O(r3):

Lemma 5.17. At any x ∈ V(0)n , the third-order Laplacian condition holds up to O(r3).

Proof. This is an easy consequence of the almost central symmetry: write∑
y∼x

ωxyL(−→xy)3 =
∑
{y+,y− }

ωxy+L(−−→xy+)3 + ωxy−L(−−→xy−)3

=
∑
{y+,y− }

(
ωxy+ − ωxy−

)
L(−−→xy+)3 + ωxy−

(
L(−−→xy−)3 + L(−−→xy+)3

)
.

By almost central symmetry, we have ωxy+ − ωxy− = O(r2) and −−→xy− + −−→xy+ = O(r3). It follows
that the first term is ‖L‖3O(r5), as is the second term. (For the second term, write L(−−→xy−) =
L(−−→xy+)+‖L‖O(r3) and expand the third power of this identity.) Thuswe find that

∑
y∼x ωxyL(−→xy)3 =

‖L‖3O(r5), therefore 1
µx

∑
y∼x ωxyL(−→xy)3 = ‖L‖3O(r3) as required. �
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This concludes the proof that the third-order Laplacian condition holds up to O(r2−k) on V(k)n

for all k ∈ {0,1,2}. The proof of Theorem 5.11 is now complete. �

Remark 5.18. In retrospect, it is remarkable–almostmiraculous–how the conditions for a∆-sequence
to be almost asymptotically Laplacian are barely met, and in turn how these conditions are barely
sufficient for the main convergence theorem (Theorem 4.1) to hold, at least in the c = 1 case.
Seeing how delicate the analysis is, the reader should not be too surprised that it took us many failed
attempts until we were able to achieve the right definitions and results.

A Riemannian estimates

Many proofs in this paper can be summarized in two steps: First, the claim is shown to be true in the
Euclidean (flat) setting, by direct proof. Subsequently, it is also true in the Riemannian setting on
first approximation (e.g., provided the mesh is fine). The moral justification for the second step is
that locally, a Riemannian manifold looks Euclidean. Of course, one should not use this aphorism
too liberally, since there are local Riemannian invariants such as curvature. In some cases, one
can make this type of proof rigorous with a soft argument using only first-order approximation. In
others, one should be more cautious and examine the next order terms, which involve curvature.

A standard way to obtain estimates in Riemannian geometry is to compute Taylor expansions
in normal coordinates, i.e. using the exponential map at some point as a chart, and picking an
orthonormal basis of the tangent space to have an n-tuple of coordinates. For example, the Taylor
expansion of the Riemannian metric in normal coordinates reads

gi j = δi j −
1
3

Rik jlxk xl +O(r3) (25)

where Ri jkl is the Riemann curvature tensor. This foundational fact of Riemannian geometry goes
back to Riemann’s 1854 habilitation [Rie13]. From this estimate, many other geometric quantities
can be similarly approximated: distances, angles, geodesics, volume, etc.

In § A.1, we establish Riemannian estimates of the most relevant geometric quantities. These
are used implicitly or explicitly throughout the paper, especially § 5.3. In § A.2, we study iterated
midpoint subdivisions of a simplex in a Riemannian manifold, proving two key lemmas for § 5.2.

A.1 Riemannian expansions in a normal chart

Let (M,g) be a Riemannian manifold and let x0 ∈ M . We consider the normal chart given by the
exponential map expx0

: Tx0 M → M , which is well-defined and a diffeomorphism near the origin.
We do not favor the unnecessary introduction of local coordinates, so we will abstain from choosing
an orthonormal basis of Tx0 M (in other words fixing an identification TxM ≈ Rm), and instead
work in the Euclidean vector space (Tx0 M, 〈·, ·〉E) where the inner product 〈·, ·〉E is just gx .

We implicitly identify objects in M and in Tx0 M via the exponential map expx0
, e.g. x0 = 0,

and tangent vectors to some point x ∈ M to vectors (or points) in Tx0 M via the derivative of the
exponential map. Let r > 0. In what follows, all points considered (typically denoted x, A, B) are
within distance 6 r of x0. With this setup, (25) is written:

Theorem A.1 (Second-order expansion of the metric.). Let u, v be tangent vectors at some point
x ∈ M . Then

〈u, v〉 = 〈u, v〉E −
1
3
〈R(u, x)x, v〉E +O

(
r3‖u‖E‖v‖E

)
.
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where R is the Riemann curvature tensor at x0 = 0.

Note that when writing R(u, x)x, we think of the point x as an element of Tx0 M . From this
fundamental estimate, it is elementary to show the following series of estimates.
Remark A.2. All the O (·) functions in this section are locally uniform in x ∈ M .

Proposition A.3 (Second-order expansion of the norm).

‖u‖2 = ‖u‖2E −
1
3
〈R(u, x)x,u〉 +O

(
r3‖u‖2

)
‖u‖ = ‖u‖E −

1
6
〈R(u, x)x,u〉
‖u‖2E

+O
(
r3

)
.

Proposition A.4 (Second-order expansion of cosine).

cos ∠(u, v) = cos ∠E(u, v)

[
1 +
〈R(u, x)x,u〉E

6‖u‖2E
+
〈R(v, x)x, v〉E

6‖v‖2E
−
〈R(u, x)x, v〉E

3〈u, v〉E
+O

(
r3

cos ∠E(u, v)

)]
The previous proposition implies the less accurate estimates:

Proposition A.5 (First-order expansions of angles).

cos ∠(u, v) = cos ∠E(u, v) +O
(
r2

)
.

If ∠(u, v) (equivalently ∠E(u, v)) is bounded away from 0 and π
2 modulo π, then

sin ∠(u, v) = sin ∠E(u, v) +O
(
r2

)
cot ∠(u, v) = cot ∠E(u, v) +O

(
r2

)
.

Let A, B be points in our normal chart: they can either be thought of as elements of M or Tx0 M .
We denote as usual −−→AB the vector exp−1

A (B), which is an element of TAM , or of Tx0 M via our chart.
We also denote −−→ABE the Euclidean vector B − A ∈ Tx0 M .

Proposition A.6 (Geodesic through two points). Let γ be the geodesic with γ(0) = A and γ(1) = B.

γ(t) = γE(t) +
t(t − 1)

3
R (A,B)

−−→
ABE +O

(
tr4

)
.

Proposition A.7 (Vector between two points).

−−→
AB =

−−→
ABE +

1
3

R (A,B)
−−→
ABE +O

(
r4

)
.

Proposition A.8 (Midpoint). Let I denote be the midpoint of midpoint of A and B in M , and let
IE = A+B

2 denote their Euclidean midpoint in Tx0 M .

I = IE +
1
12

R (A,B)
−−→
ABE +O

(
r4

)
.

Proposition A.9 (Distance between two points).

d(A,B)2 = dE(A,B)2 −
1
3
〈R (B, A) A,B〉 +O(r5) .
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Remark A.10. Note that 〈R (B, A) A,B〉 = K ‖B ∧ A‖2 where K is the sectional curvature at x0 = 0.
In particular, we see from Proposition A.9 that d > dE near x0 if and only if M has negative sectional
curvature at x0, which should be expected.

We recover the well-known expansion of the volume density:

Proposition A.11 (Volume density). The volume density at x is given by

vg(x) = vE

(
1 −

Ric(x, x)
6

+O(r3)

)
where vE is the Euclidean volume density in TxM and Ric is the Ricci curvature tensor at x0.

Let us finish with the following estimate that we use in § 5 (see Lemma 5.15):

Proposition A.12. Let A, B be two points such that all three sides of the triangle OAB are O(r)
(where O = x0). Denote α the unoriented angle �BAO and αE its Euclidean counterpart in the
normal chart at x0. Then we have the second-order expansion

cotα = cotαE + εOAB +O(r3) with εOAB =
K
6

(
2‖OA‖E ‖AB‖E

sinαE
+ ‖OA‖2E cotαE

)
where K denotes the sectional curvature at x0.

Proof. Write �BAO = ∠(
−−→
AB,
−→
A0). Use Proposition A.7 to replace −−→AB and −−→AO by their Euclidean

counterparts, and Proposition A.4 to compare the Riemannian angle to its Euclidean counterpart.
We spare the lengthy but straightforward details. �

A.2 Iterated subdivision of a simplex

In this subsection, we estimate the edge lengths and angles in the iterated midpoint subdivision (see
§ 1.2) of a simplex in a Riemannian manifold. We prove two propositions, which are the key to
Theorem 5.6 and Theorem 5.7 respectively.

Proposition A.13. Let (M,g) be a compact Riemannian manifold of dimension m. Let (∆n)n∈N
be a sequence of simplices with geodesic edges such that for every n ∈ N, ∆n+1 is one of the 2m
simplices obtained from ∆n by midpoint subdivision. Then all edge lengths of ∆n are Θ(2−n).

Remark A.14. In Proposition A.13, the Θ(2−n) function is uniform in the choice of the sequence
(∆n): more precisely, there exists constants C1,C2 > 0 depending only (M,g) such that any edge
length xn of the triangulation obtained by n-th refinement of ∆0 satisfies C12−n 6 xn 6 C22−n.

Proof. For comfort, we write the proof when dim M = 2, but it works in any dimensions. We thus
have a sequence of geodesic triangles ∆n in a Riemannian surface (S,g). Choose a labelling of the
side lengths of ∆n by an, bn, cn. Given the labelling of ∆0, there is a unique sensible way to do
this for all n so that ∆n+1 is “similar” to ∆n. For instance, in the Euclidean setting, one should have
an = 2−na0, etc. In order to show that an, bn, and cn are Θ(2−n), we would like to use Riemannian
estimates, but we must first show that diam(∆n) converges to zero.

Let us prove the stronger claim that rn → 0, where rn is the maximum edge length of the whole
triangulation obtained by n-th refinement of ∆0. Notice that (rn) is nonincreasing: this follows
easily from the triangle inequality in each simplex. Moreover rn < rn+1 unless one of the simplices
is reduced to a point, which cannot happen unless ∆0 is a point. One can conclude that rn → 0
by compactness: if not, we could find a converging sequence of simplices with diameter bounded
below, etc.
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Now we can use the estimates of § A.1. It is not hard to derive from Proposition A.8 and
Proposition A.9 that

|an − 2an+1 | = O(r3
n) (26)

and we have similar estimates for bn and cn. This means that there exists a constant B > 0 such that
for all n sufficiently large, |an − 2an+1 | 6 Br3

n. Applying this inequality repeatedly, we find��an − 2kan+k
�� = ��(an − 2an+1) + 2(an+1 − 2an+2) + . . . + 2k−1(an+k−1 − 2an+k)

��
6 B

(
r3
n + 2r3

n+1 + . . . + 2k−1r3
n+k−1

)
.

Now, note that rn must satisfy the same inequality (26), so in particular

2rn+1 6 rn + Br2
n 6 Crn

for any constant C > 1 chosen in advance, provided n is sufficiently large. Therefore we obtain��an − 2kan+k
�� 6 Br3

n

(
1 +

C3

2
+ . . . +

(
C3

2

)k−1)
.

Provided we chose 1 < C3 < 2, the sum 1+ C3

2 + . . .+
(
C3

2

)k−1
is bounded, as a truncated convergent

geometric series. In particular, we find that the sequence (2kan+k)k∈N is bounded, in other words
an+k = O(2−k). Of course this is the same as saying that an = O(2−n). We similarly show the other
inequality an = Ω(2−n), and conclude that an = Θ(2−n). Obviously, the same argument works for
(bn) and (cn).

Note that the claim of Remark A.14 is justified by the fact that the sequence (rn) and the constant
C are independent of the choice of the sequence (∆n). �

Proposition A.15. Let (M,g) be a compact Riemannian manifold of dimension m. Let δ > 0.
There exists R > 0 and η > 0 such that the following holds. Let (∆n)n∈N be a sequence of simplices
with geodesic edges where for every n ∈ N, ∆n+1 is one of the 2m simplices obtained from ∆n by
midpoint subdivision. If the longest edge length of ∆0 is 6 R and all angles of ∆0 are 6 π

2 − δ, then
all angles of ∆n are 6 π

2 − η for all n ∈ N.

Proof. We have seen in Proposition A.15 that the diameter of ∆n is 6 rn, with rn = Θ(2−n). in
particular, rn → 0 so we can use the Riemannian estimates of § A.1.

Label αn, βn, and γn the angles of ∆n. Of course, one should do this labelling in the only
sensible way: for instance in the Euclidean setting we should have αn = αn+1, etc. It is not hard to
derive from Proposition A.8 and Proposition A.5 that for all n ∈ N,

cosαn+1 = cosαn +O(r2
n) ,

in other words there exists a constant C depending only on (M,g) such that

|cosαn+1 − cosαn | 6 Cr02−2n .

Using a telescopic sum, we find that

|cosαn − cosα0 | 6
n−1∑
k=0
|cosαk+1 − cosαk |

6 Cr0

n−1∑
k=0

2−2k 6 Cr0

∞∑
k=0

2−2k = Cr0
4
3
.
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We therefore have the bound
cosαn > cosα0 − C ′r0

where C ′ = 4C/3. By assumption, cosα0 > cos(π/2− δ) = sin(δ). Clearly cosαn is bounded away
from zero if r0 is sufficiently small, for instance r0 6

sin δ
2C′ yields cosαn > sin δ

2 . It follows that αn
is bounded away from π/2. �

B Comparing the discrete L2 and L∞ distances

Let M be compact Riemannian manifold, let N be a complete Riemannian manifold of nonpositive
sectional curvature. LetM be a mesh on M and equip the underlying graph G with vertex weights
(µx)x∈V and (ωxy)x∼y . Recall the L2 distance on the space of discrete maps MapG(M,N):

d(u, v)2 =
∑
x∈V

µx d(u(x), v(x))2

while the L∞ distance is
d∞(u, v) = max

x∈V
d(u(x), v(x)) .

Clearly, these distances satisfy the inequality md2
∞ 6 d2 6 Wd2

∞, where m B minx∈V µx is the
minimum vertex weight and W B

∑
x∈V µx is the sum of the vertex weights. Typically, W is equal

to Vol(M) or asymptotic to it for a fine mesh, so the second inequality is fairly robust. On the other
hand, the first inequality md2

∞ 6 d2, which we rewrite

d∞(u, v) 6 m−1/2 d(u, v) , (27)

is less attractive since typically m → 0 for a fine mesh. This should be expected though, as the L2

and L∞ distances are not equivalent on the space of continuous maps M → N . The goal of this
section is to find an improvement of (27) when v is a discrete harmonic map. This step is crucial in
our proof of Theorem 4.1.

Proposition B.1. LetG be a biweighted graph embedded in M , and let N be a complete Riemannian
manifold of nonpositive sectional curvature. Let v ∈ MapG(M,N) be the minimizer of the discrete
energy. Denote by r the maximum edge length of G, V the maximum valence of a vertex of G,
m = minx∈V µx the smallest vertex weight, and ω = ωmax

ωmin
the ratio of the largest and smallest edge

weights. Let L > 0. There exists constants A = A(ω,V) > 0 and B = B(ω, L,V) ∈ R such that for
any L-Lipschitz map u ∈ MapG(M,N):

d∞(u, v) 6 max
{
(κm)−1/2d(u, v) , r1/2

}
with κ B min

(
A log

(
r−1) + B , surj radG − 1

)
.

We recall that the combinatorial surjectivity radius surj radG is defined below Theorem 3.6.

Proof. Let ρ B Lr . Notice that ρ is an upper bound for the length of any edge in N that is the image
of an edge of G by u. Proposition B.1 is a consequence of the following “bootstrapping” lemma:
if some distance d(u(x), v(x)) is large, then d(u(y), v(y)) will also be large, for many vertices y that
are near x. More precisely:
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Lemma B.2. Let x0 be a vertex which achieves d∞(u, v) C D. Let K be given by

K B min
{ ⌊

log
δ
(D/ρ)

⌋
, surj radG

}
,

where δ = 2 (1 + ωV). For each k = 1,2, . . . ,K there exists a vertex xk satisfying:
(1) The combinatorial distance in Gn is given by dGn (x, xk) = k, and
(2) d(u(xk), v(xk)) > D − δk−1ρ.

Remark B.3. The log above is the cutoff function log
b
(x) B max{ logb x , 0 }.

Let us postpone the proof of Lemma B.2 until after the end of this proof. Now we find

d(u, v)2 =
∑
x∈V

µxd(u(x), v(x))2 > m
K∑
k=0

d(u(xk), v(xk))2

> mD2 + m
K−1∑
k=0

(
D − δk ρ

)2

> mD2(K + 1) − 2mDρδK

> mD2(K + 1) − 2mDρδlogδ (D/ρ) = mD2(K − 1) .

The conclusion follows by noting that if D 6 r1/2 i.e. d∞(u, v) 6 r1/2, then we are done, and
if D > r1/2 then D/ρ > r−1/2/L, therefore K − 1 > min

(
A log

(
r−1) + B , surj radG − 1

)
where

A = 1
2 log δ and B = − logδ(L) − 1. �

Proof of Lemma B.2. Wemake repeated use of the following fact (see [GLM18, Prop. 2.22]): since
v is a discrete harmonic map its discrete tension field is zero:

∑
y∼x ωxy

−−−−−−−→
v(x)v(y) = 0. In other

words v(x) is the weighted barycenter of its neighbor values in N . We refer to this as the balanced
condition of v at x.

We prove Lemma B.2 by induction on k. For the base case k = 1, consider the unit geodesic
γ through v(x0) and u(x0), parametrized with a coordinate t chosen by requiring γ(0) = v(x0) and
γ(−D) = u(x0). Define the orthogonal projection prγ as a map Tv(x0)N → γ ≈ R. If prγ(v(y)) < 0
for all y ∼ x0 then v would not be balanced at x0, therefore there exists some neighbor vertex x1 ∼ x0
so that prγ(v(x1)) > 0. Moreover, by assumption u(x1) is within ρ of u(x0), so that prγ(u(x1)) 6
prγ(u(x0)) + ρ = −D + ρ. We conclude that d(v(x1),u(x1)) > prγ(v(x1)) − prγ(u(x0)) > D − ρ.

For the inductive step, we follow the above argument with xk in place of x0. That is, we have
the unit geodesic γ through u(xk) and v(xk), with γ(0) = v(xk), γ(t) = u(xk) for some t < 0, and
the projection prγ : Tv(xk )N → γ ≈ R. Split up the neighbors of xk into A, those vertices at
combinatorial distance at most k from x0 in G, and B, those vertices at distance k + 1 from x0. For
each of the vertices y ∈ A, observe that prγ(v(y)) 6 −d(v(xk),u(xk)) + ρ + D 6 (1 + δk−1)ρ. Now
the balanced condition for v at xk gives

0 =
∑
y∼xk

ωxky prγ
(−−−−−−−−→
v(xk)(v(y)

)
=

∑
y∈A

ωxky prγ
(−−−−−−−−→
v(xk)v(y)

)
+

∑
y∈B

ωxky prγ
(−−−−−−−−→
v(xk)v(y)

)
6 ωmax

∑
y∈A

(1 + δk−1)ρ +
∑
y∈B

ωxky max
y′∈B

prγ
(−−−−−−−−→
v(xk)v(y′)

)
.

If prγ
(−−−−−−−−→
v(xk)v(y)

)
> 0 for some y ∈ B, then d(v(y),u(y)) > d(v(xk),u(xk)) − ρ, so we may let

xk+1 = y. Otherwise, each of these coordinates are negative, and we have

0 < ωmaxV(1 + δk−1)ρ + ωmin max
y∈B

prγ
(−−−−−−−−→
v(xk)(v(y)

)
. (28)
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Let xk+1 ∈ B satisfy prγ
(−−−−−−−−−−−→
v(xk)v(xk+1)

)
= maxy∈B prγ

(−−−−−−−−→
v(xk)v(y)

)
. Rearranging (28),

prγ
(−−−−−−−−−−−→
v(xk)v(xk+1)

)
> −ωV(1 + δk−1)ρ .

Because u(xk+1) is within ρ of u(xk), we find that prγ(u(xk+1)) 6 prγ(u(xk)) + ρ. By the induction
hypothesis,

d(v(xk+1),u(xk+1)) > prγ
(−−−−−−−−−−−→
v(xk)v(xk+1)

)
− (u(xk) + ρ)

> −ωV(1 + δk−1)ρ + d(u(xk), v(xk)) − ρ

> D − ρ (1 + ωV) (1 + δk−1) .

Finally, we have

(1 + ωV)(1 + δk−1) =
δ

2
= (1 + δk−1) =

δ

2
+
δk

2

6
δk

2
+
δk

2
= δk

so that we conclude d(v(xk+1),u(xk+1) > D − δk ρ. �

As an application of Proposition B.1 we get:

Corollary B.4. Let M be a compact manifold and let N be a complete manifold of nonpositive
sectional curvature. Equip M with a sequence of meshes (Mn)n∈N that is fine and crystalline, let
r = rn denote the mesh size of Mn, and equip the underlying graphs Gn with asymptotic vertex
weights and positive edge weights. Assume that there are uniform upper bounds for the ratio of any
two edge weights.

Let w : M → N be a smooth map, denote by wn its discretization along Gn, and let vn be a
discrete harmonic map. Then there is a constant C > 0 so that

d∞(wn, vn) 6 C max

{
r− dim M/2 log

(
1
r

)−1/2
d(wn, vn) ,

√
r

}
.

Remark B.5. In the setting above, (27) would yield only

d∞(wn, vn) 6 O
(
r− dim M/2

)
· d(wn, vn) .

Corollary B.4 represents a slight improvement when vn is discrete harmonic.

Proof. Note that since w is C1 on a compact manifold, it must be L-Lipschitz for some L > 0, and
for all n ∈ N the discretization wn is also L-Lipschitz. Proposition B.1 yields

d∞(wn, vn) 6 max
{
(κnmn)

−1/2d(wn, vn) , r1/2
}
,

where κn = min
(
A log

(
r−1
n

)
+ B , surj radGn − 1

)
, for some uniform constants A > 0 and B ∈ R.

In our setting, mn = Θ(rdim M ) by Theorem 3.6 (i) and surj radGn = Θ(rdim M ) by Theorem 3.6
(iv). Therefore, there is some constant C > 0 so that, for n sufficiently large, mn > Crdim M and
κn > C log

(
r−1) , and it follows that

d∞(wn, vn) 6 max

{
Cr− dim M/2 log

(
1
r

)−1/2
· d(wn, vn) ,

√
r

}
.

�
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