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Abstract

These are the notes written after my talk in the workshop Higgs bundles and harmonic
maps that was held in Asheville, NC in Januray 2015, organized by Brian Collier, Qiongling
Li and Andy Sanders and supported by the NSF GEAR Network.

We review aspects of the theory of minimal surfaces in hyperbolic 3-manifolds and
their importance in the study of representations of surface groups into PSL2(C) and related
deformation spaces, such as the deformation space of quasi-Fuchsian structures QF (S),
Taubes’ moduli space of minimal hyperbolic germs H and the moduli space of Higgs
bundlesM.
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Introduction

In preparation.

1 Minimal surfaces

In this section we review some basics of the theory of minimal surfaces. We start from the general set-
ting of harmonic maps between Riemannian manifolds and gradually specialize to minimal surfaces
in hyperbolic 3-manifolds, highlighting the specific features that appear in the process. References
for this section include [12] and [8].

Prepare the way for later.

1.1 Harmonic and minimal maps between Riemannian manifolds

Consider smooth Riemannian manifolds (M, g) and (N, h) and a smooth map f : M → N .

Vector-valued second fundamental form and tension field

The derivative df can be described as a section of the bundle E := T∗M ⊗ f ∗T N → M . This bundle
is equipped with a connection ∇ induced from the Levi-Civita connections ∇g and ∇h of g and h.
Hence one can take the covariant derivative ∇(df ), it is a section of T∗M ⊗T∗M ⊗ f ∗T N . This tensor
turns out to be symmetric in the first two factors (see below).

Definition 1.1. The (vector-valued) second fundamental form of f is II( f ) = ∇(df )1, seen as a
symmetric covariant 2-tensor on M with values in f ∗T N .

By definition of ∇ (enforcing the Leibniz rule), II( f ) is given by

II( f )(X,Y ) = ( f ∗∇h)X(df (Y )) − df (∇gXY ) (1.1)

for vector fields X , Y on M . Abusing notations, we can write II( f ) = ∇h ◦ df − df ◦ ∇g. It appears
now that the symmetry of II f follows from the fact that ∇h and ∇g are torsion-free. When f is an
immersion so that M is thought of as an immersed submanifold of N (equipped with a different
metric), we let ourselves maltreat notations further and write

II( f ) = ∇h |M − ∇g . (1.2)

Here is an example of a first use we can make of this definition: recall that f is called a totally
geodesic map is it sends geodesics of (M, g) into geodesics of (N, h). Then

1We use the underline notation II for the vector-valued second fundamental form in order to distinguish it from the
real-valued second fundamental form II introduced in definition 1.8.
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Proposition 1.2. f : M → N is a totally geodesic map if and only if II( f ) vanishes identically.

Next we define the tension field2 of f :

Definition 1.3. The tension field τ( f ) is the section of f ∗T N obtained by contracting II( f ) using the
metric g (“taking the trace”): τ( f ) = trg II( f ).

Harmonic maps

We can now define harmonicity of maps between Riemannian manifolds:

Definition 1.4. f : M → N is called harmonic if it has everywhere vanishing tension field.

Remark 1.5. Here are a couple useful remarks about harmonicmaps betweenRiemannianmanifolds:
• The tension field τ( f ) can be interpreted as the gradient of the energy functional E( f ) =

1
2

∫
M
‖df ‖2

g,h
dvolg. Accordingly, a harmonic map is classically defined as a critical point of

the energy funtional E.
• One can check that f is a harmonic map if and only if df is a harmonic one-form with values
in f ∗T N in the sense of Hodge theory.

• It can be showed that f is harmonic if and only if it preserves centers of mass infinitesimally,
in an appropriate sense.

Minimal immersions

Finally we define minimal maps between Riemannian manifolds:

Definition 1.6. f : M → N is called minimal if it is an isometric harmonic map.

Recall that an isometric map is necessarily an immersion. Naturally, if M is not equipped with
a Riemannian metric, an immersion f : M → (N, h) is called minimal if it is a harmonic map from
(M, g) to (N, h) where g = f ∗h is the pull-back metric on M .

Let us make a couple of remarks before specializing to minimal hypersurfaces:

Remark 1.7.
• When f : M → N is an isometric map, the energy element ‖df ‖2

g,h
dvolg (see Remark 1.5)

is just the area density of the immersion M → N . Accordingly, a minimal map is classically
defined as a critical point of the area functional.

• The study of minimal surfaces goes back to Euler and Lagrange who gave their names to
the Euler-Lagrange equation (which here is just II( f ) = 0). The typical physical model of a
minimal surface in Euclidean space is obtained by dipping a wire frame into a soap solution.
Showing the existence of a minimal surface with given boundary is called Plateau’s problem;
mathematician Jesse Douglas was awarded the Fields medal for solving it in 1936.

2The tension field could also be called the vector-valued mean curvature.
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1.2 Minimal hypersurfaces

When f : (M, g) → (N, h) is isometric, one can check that II( f ) is always orthogonal to f∗(T M). An
important particular case is when f is a two-sided hypersurface immersion; in this situation II( f ) is
completely determined by the real-valued second fundamental form:

Definition 1.8. Let f : M → N be an isometric hypersurface immersion. Assume that it is two-sided
so that one can fix a choice3of a unit normal vector field n to M . The real-valued second fundamental
form4 of f is the quadratic form II( f ) on M such that II( f ) = II( f ) n.

It is clear that II( f ) is given by II( f )(X,Y ) = h(II( f )(X,Y ), n) for vector fields X ,Y on M . Looking
back at (1.2), that is II( f )(X,Y ) = h(∇hXY, n). Since ∇h is the Riemannian connection of h, this can
also be written:

Proposition 1.9. The real-valued second fundamental form of f is given by

II( f )(X,Y ) = h(∇hXY, n) = −h(∇hXn,Y ) (1.3)

for any two vector fields X , Y on M .

Definition 1.10. Let f : M → N be a two-sided hypersurface isometric immersion. We define the
following classical extrinsic invariants:

• The first fundamental form I( f ) is just the metric on M: I( f ) = g = h |M .
• The shape operator B( f ) is the g-self-adjoint5 endomorphism of T M associated to II( f ).
• The mean curvature6 H( f ) is function on M defined by H( f ) = tr(B( f )) = trg(II( f )).
• The principal curvatures λk( f ) are the eigenvalues of the shape operator7, they are functions
on M .

By definition of the mean curvature, the tension field of such a map is given by τ( f ) = H( f ) n,
it follows that

Proposition 1.11. Let f : M → N be a two-sided hypersurface isometric immersion. Then f is
minimal if and only if it has everywhere vanishing mean curvature.

1.3 Minimal surfaces

A straightforward observation is that when dim M = 2, the energy element ‖df ‖2
g,h

dvolg (see
Remark 1.5) is invariant under a conformal change of the metric on M (g → e2ug). It follows that

3Note that if both M and N are orientable then f is necessarily two-sided, and a choice of a unit normal vector field is
determined by a choice of orientation of both M and N .

4The opposite sign convention for II( f ) is sometimes preferred.
5This means that B( f ) is characterized by g(B( f )(X),Y ) = II( f )(X,Y ). It follows from (1.3) that B( f ) is given by

B( f )(X) = −∇h
X

n. For this reason the opposite sign convention for B( f ) is often preferred.
6The convention H( f ) = ± tr(B( f ))

dim M is classically preferred.
7 Recall that by the spectral theorem, the quadratic form II( f ) can be diagonalized in a g-orthonormal basis, in this

sense the principal curvatures can also be defined as the eigenvalues of II( f ).
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Proposition 1.12. If dim M = 2, the harmonicity of a map f : (M, g) → (N, h) only depends on the
conformal class of g.

Therefore if M = S is a surface equipped with a conformal structure, then it makes sense to talk
about harmonic maps from S to a Riemannian manifold (N, h). Recall that provided S comes with
an orientation, a conformal structure on S is equivalent to a complex structure on S compatible with
the orientation, in other words a Riemann surface structure. In these notes we shall often denote by
X a surface S equipped with a Riemann surface structure. It is also clear that

Proposition 1.13. Let X be a Riemann surface and (N, h) a Riemannian manifold. A minimal map
f : X → N is a conformal harmonic map from X to N .

Hopf differential

Definition 1.14. Let f : X → N where X is a Riemann surface and (N, h) a Riemannian manifold.
TheHopf differential of f is the (2, 0)-part of the pull-back of themetric h on X: Hopf( f ) = ( f ∗h)(2,0).

Thus Hopf( f ) is a complex quadratic differential on X , but it is not necessarily holomorphic.
The following proposition is straightforward to prove and will be used later:

Proposition 1.15. Let f : X → N where X is a Riemann surface and (N, h) a Riemannian manifold.
(i) If f is harmonic then Hopf( f ) is holomorphic.
(ii) f is conformal if and only if Hopf( f ) = 0.

1.4 Minimal surfaces in hyperbolic 3-manifolds

Now (M, g) = (S, g) is a surface with a Riemannian metric and (N, h) = H3 is hyperbolic 3-space,
or more generally (N, h) is a hyperbolic 3-manifold (i.e. dim N = 3 and h has constant sectional
curvature −1).

Gauss-Codazzi equations

The classical Gauss-Codazzi equations for immersed submanifolds are expressed in this setting as
follows:

Proposition 1.16. Let f : S → N be a two-sided immersion. Then I = g and II = II( f ) satisfy the
Gauss-Codazzi equations:{

Kg = −1 + det g II (Gauss equation)
d∇g II = 0 (Codazzi equation)

(1.4)
(1.5)

where
• Kg is the curvature of g,
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• detg II = λ1λ2 where λk are the principal curvatures8,
• d∇g : Ω1(T∗S) → Ω2(T∗S) is the extension of the exterior derivative to differential forms with
values in T∗S (using the Levi-Civita connection ∇g).

Conversely, the “fundamental theorem of surface theory”9 states that the choice of any pair (g, II)
on S satisfying the Gauss-Codazzi equations uniquely determines an immersion of S into a possibly
incomplete hyperbolic 3-manifold N . The unicity of N is up to isometry and up to restricting to a
neighborhood of the immersed surface, in other words it is the germ of N that is unique. Under this
clarification:

Theorem 1.17.a. Let S be a smooth orientable surface. Let g be a Riemannian metric on S and
II a quadratic form such that the Gauss-Codazzi equations (1.4) and (1.5) are satisfied. Then there
exists a unique immersion f of S into the germ of a 3-dimensional hyperbolic thickening N such that
I( f ) = g and II( f ) = II.

Note that when N is complete, then N = H3/Γ where Γ is a Kleinian group (see section 2.1)
and lifting to universal covers produces an equivariant immersion f̃ : S̃ → H3. But even when N
is incomplete, its hyperbolic structure defines a developing map devN : Ñ → H3 and a holonomy
representation ρN : π1N → H3 such that devN is ρN -equivariant. The pair (devN, ρN ) is unique
up to the action of PSL2(C) by post-composition on devN and conjugation on ρN 10. We thus get an
immersion devN ◦ f̃ : S̃ → H3 that is ρ-equivariant for ρ = ρN ◦ f∗ : π1S → PSL2(C). It is easy
to check that given a ρ-equivariant immersion S̃ → H3, there is no other ρ satisfying equivariance.
Putting all this together, let us give a second version of the previous theorem:

Theorem 1.17.b. Let S be a smooth orientable surface. Let g be a Riemannian metric on S and II a
quadratic form such that the Gauss-Codazzi equations (1.4) and (1.5) are satisfied. Then there exists
a ρ-equivariant immersion f : S̃ → H3 such that I( f ) and II( f ) are the lifts of I and II to S̃. The pair
( f , ρ) is unique up to the action PSL2(C) by post-composition on f and conjugation on ρ.

Note that when f : S → N is a minimal immersion i.e. H = trg(II) = 0, then the principal
curvatures satisfy λ1 + λ2 = 0. in particular detg II = −λ2

1 = −
1
2 (λ2

1 + λ
2
2) = −

1
2 ‖ II ‖2g. Hence we

define the Gauss-Codazzi equations for a minimal surface:
Kg = −1 − 1

2
‖ II ‖2g

d∇g II = 0
trg(II) = 0

(1.6)

(1.7)
(1.8)

and, following Taubes [47], we define a minimal hyperbolic germ:

Definition 1.18. Let S be a smooth orientable surface. A minimal hyperbolic germ on S is a couple
(g, II) where g is a Riemannian metric on S and II a quadratic form such that the Gauss-Codazzi
equations for a minimal surface are satisfied.

8detg II is called the extrinsic curvature, as opposed to the “intrinsic curvature” Kg.
9This theorem is classically stated for immersed surfaces in Euclidean 3-space and also holds for immersed submanifolds

in a Euclidean space of higher dimension, see [24].
10One may refer to Thurston’s book [49, pages 139-141] for developing maps and holonomy of geometric structures.
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We get a “fundamental theorem of surface theory” for minimal surfaces:

Theorem 1.19.a. Let S be a smooth orientable surface and let (g, II) be a minimal hyperbolic germ
on S. Then there exists a unique minimal immersion f of S into the germ of a hyperbolic 3-manifold
N such that I( f ) = g and II( f ) = II.

Let us also give the second version:

Theorem 1.19.b. Let S be a smooth orientable surface and let (g, II) be a minimal hyperbolic germ
on S. Then there exists a ρ-equivariant minimal immersion f : S̃ → H3 such that I( f ) and II( f ) are
the lifts of I and II to S̃. The pair ( f , ρ) is unique up to the action PSL2(C) by post-composition on f
and conjugation on ρ.

The following key observation highlighted by Donaldson [10] and Taubes [47] goes back to Hopf
[21]:

Proposition 1.20. Let S be a smooth oriented surface. Let g be a Riemannian metric and II a real
quadratic form on S. Denote by X the Riemann surface structure on S given by the conformal class
of g.

(i) II is the real part of a complex quadratic differential α on X if and only if trg(II) = 011.
(ii) If (i) holds, then α is a holomorphic quadratic differential on X and only if the Codazzi equation

d∇g II = 0 (1.5) holds.

Let us point out that in spite of appearances, this observation is not directly related to proposition
1.15.

2 Quasi-Fuchsian and almost-Fuchsian structures

2.1 Quasi-Fuchsian structures

Let us briefly review quasi-Fuchsian structures. We warn that there are subtleties about quasi-
Fuchsian structures that are overlooked in these notes, especially the relation between the quasicon-
formal theory of surfaces and 3-dimensional hyperbolic geometry12.

Kleinian groups and complete hyperbolic 3-manifolds

Recall that the Lie group PSL2(C) is both the group of automorphisms of the complex projective
line CP1 (acting by projective linear transformations, a.k.a. Möbius transformations of the Riemann
sphere) and the group of orientation-preserving isometries of hyperbolic 3-space H3. In fact, CP1

is the natural “boundary at infinity” of H3, and the action of PSL2(C) on H3 is the unique isometric
action extending the action of PSL2(C) on CP1 = ∂∞H3.

11A such α is unique, in fact α is necessarily twice the (2, 0)-part of II.
12A thorough reference for the relation between Kleinian groups and hyperbolic manifolds is [25].
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AKleinian group is a discrete torsion-free subgroup of PSL2(C). AnyKleinian group Γ automati-
cally acts freely and properly on hyperbolic 3-spaceH3, so that the quotient M := H3/Γ is a complete
hyperbolic 3-manifold. Conversely, any complete hyperbolic 3-manifold M can be obtained as
M = H3/Γ where Γ is a Kleinian group, that is the image of the holonomy of the hyperbolic structure
ρ : π1M → Isom+(H3). However Γ does not act freely and properly on the whole complex projective
line CP1; the largest open set Ω(Γ) ⊂ CP1 having this property is called the domain of discontinuity
of Γ and its complement Λ(Γ) := CP1 \Ω(Γ) is called the limit set13 of Γ. The possibly disconnected
surface Ω(Γ)/Γ comes equipped with a Riemann surface structure14 and is the natural “conformal
boundary at infinity” ∂∞M of the hyperbolic 3-manifold M = H3/Γ. The hyperbolic structure of M
is called convex cocompact if ∂∞M compactifies M (when that happens M ∪ ∂∞M is topologically
the end compactification of M). Equivalently (and more classically), convex cocompactness can be
defined as the property that the convex core of M is a compact deformation retract of M . The convex
core of M is C(Λ)/Γ ⊂ M , where C(Λ) is the convex hull in H3 of the limit set Λ.

Quasi-Fuchsian groups and quasi-Fuchsian 3-manifolds

We may now define quasi-Fuchsian groups and quasi-Fuchsian 3-manifolds:

Definition 2.1. A Kleinian group Γ is called a quasi-Fuchsian group if its limit set Λ is a Jordan
curve15 and if Γ preserves each component of its domain of discontinuity Ω = CP1 \ Λ.

Note that by Jordan’s theorem Ω actually consists of two connected components Ω+ and Ω− that
are topological disks.

In these notes we will restrict the definition of quasi-Fuchsian groups from now on to only
consider groups that are isomorphic to closed surface groups.

Definition 2.2. A quasi-Fuchsian 3-manifold is a complete convex cocompact hyperbolic 3-manifold
that is smoothly diffeomorphic to a product S × R where S is a closed connected surface.

The two notions coincide under the correspondence between Kleinian groups and complete
3-dimensional hyperbolic structures discussed above:

Proposition 2.3. A complete hyperbolic 3-manifold M = H3/Γ is quasi-Fuchsian if and only if the
Kleinian group Γ is quasi-Fuchsian.

Recall that a Fuchsian group is a discrete torsion-free subgroup of PSL2(R) ≈ Isom+(H2)16. Let
us just mention an important characterization of quasi-Fuchsian groups (giving them their name):
a Kleinian group Γ is quasi-Fuchsian if and only if it is conjugated to a Fuchsian group by a
quasiconformal17homeomorphism of CP1.

13The limit set Λ(Γ) is more classically defined as the closure in CP1 = ∂∞H3 of the orbit of any point x ∈ H3 under
the action of Γ.

14 In fact better, it comes with a complex projective structure. I refer to [11] for an overview of complex projective
structures.

15i.e. a topological circle.
16This definitionmay be relaxed to include Kleinian groups that are conjugated to subgroups of PSL2(R) inside PSL2(C).
17cf. e.g. [1] for background on quasiconformal mappings.
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Simultaneous uniformization

As mentioned above, when Γ is a quasi-Fuchsian group the domain of discontinuity consists of two
connected components Ω+ and Ω−. The Riemann surfaces X+ := Ω+/Γ and X− := Ω−/Γ are the
two components of the conformal ideal boundary of the quasi-Fuchsian 3-manifold M = H3/Γ. In
particular X+ and X− are smoothly diffeomorphic, but not necessarily conformally. As a matter of
fact, Bers’ beautiful simultaneous uniformization theorem claims that this pair of conformal structures
can be anything:

Theorem 2.4 (Bers [5]). Let S be a closed connected oriented surface of genus g > 2. Let X+ and
X− be complex structures on S and S18 respectively. Then there exists a quasi-Fuchsian group Γ
such that X+ and X− are conformally isomorphic to Ω+/Γ and Ω−/Γ respectively. Γ is unique up to
conjugation in PSL2(C).

This theorem was generalized by the work of authors including Ahlfors, Bers, Kra, Marden,
Maskit, Sullivan and Thurson, relating the convex cocompact hyperbolic structures on a hyperboliz-
able 3-manifold and the conformal structures on its ideal boundary.

Character variety and deformation space of quasi-Fuchsian structures

From now on S will denote a connected smooth closed oriented surface of genus g > 2.
Let G = PSL2(C) in what follows. The representation variety Hom(π1S,G) is the set of all group

homomorphisms (representations) ρ : π1S → G. It has the structure of a complex affine algebraic
set on which G acts algebraically by conjugation. The topological quotient is rather pathological,
but the algebraic quotient (in the sense of invariant theory)19 X(S,G) := Hom(π1S,G)//G is an
affine variety, called the character variety. However G does act freely and properly on the subset
Hom(π1S,G)s of irreducible20 (“stable”) representations so that the quotient Hom(π1S,G)s/G is a
complex manifold, and it embeds (as a Zariski-dense open subset) in the smooth locus of X(S,G).
More generally, the points of X(S,G) are in bijective correspondence with the conjugacy classes
of reductive representations (see definition 3.1 and proposition 3.2). All representations we will be
considering in these notes are irreducible or at least reductive, for this reason we need not be too
concerned with the precise definition of X(S,G).

Next we define quasi-Fuchsian representations:

Definition 2.5. A representation ρ : π1S → PSL2(C) is called quasi-Fuchsian if it is faithful and its
image Γ < PSL2(C) is a quasi-Fuchsian group.

and the deformation space of quasi-Fuchsian structures:

Definition 2.6. The deformation space of quasi-Fuchsian structures QF (S) is the subset of the
character varietyX(S, PSL2(C)) comprising the conjugacy classes of quasi-Fuchsian representations.

18S denotes S with reversed orientation.
19I refer to [17] and [31] for more explanations on the algebraic structure of the character variety.
20 A representation ρ : π → (P)SL2(C) is called irreducible (or stable) if it fixes no point in CP1.
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The deformation space of Fuchsian structures F (S) is the subset of the character variety com-
prising the conjugacy classes of Fuchsian representations21, Goldman showed that it is in fact a
connected component of the PSL2(R)-character variety X(S, PSL2(R)).

Proposition 2.7. QF (S) is an open neighborhood F (S) in X(S, PSL2(C)).

Of course F (S) ⊂ QF (S), it is far less obvious that QF (S) is an open set in X(S, PSL2(C)). The
work of Ahlfors, Bers, Kra, Marden, Maskit, Sullivan and Thurson show that the closure of QF (S)
in X(S, PSL2(C)) is precisely the set consisting of the conjugacy classes of discrete and faithful
representations, and that this set is the closure of its interior.

Let us recall here that the Teichmüller space of S is the deformation space of complex structures
on S: T(S) = {complex structures on S}/Diff+0 (S), it is a complex manifold of dimension 3g − 3.
The celebrated uniformization theorem provides a real-analytic bijection T(S) → F (S) (associating
to a conformal structure on S the unique hyperbolic structure in the conformal class).

Looking back at simultaneous uniformization, Bers’ theorem 2.4 provides a bijective map β :
T(S) × T (S) → QF (S). Bers shows in fact that

Theorem 2.8. The simultaneous uniformization map β : T(S) × T (S) → QF (S) is a biholomor-
phism.

It should be clear that the restriction of β to the diagonal is the bijection T(S) → F (S) given by
the uniformization theorem.

Definition 2.9. For a fixed X+ ∈ T (S) (resp. X− ∈ T (S)), the image by β of {X+} × T (S) (resp.
T(S) × {X−}) in QF (S) ⊂ X(S, PSL2(C)) is called a vertical (resp. horizontal) Bers slice.

An important fact about Bers slices is that the so-called Schwarzian parametrization identifies the
Bers slice associated to X ∈ T (S) to an open ball in the space of holomorphic quadratic differentials
on X . This gives in particular a holomorphic embedding of Teichmüller space in a complex vector
space of the same dimension, called the Bers embedding (see e.g. [11] for details).

Thus vertical and horizontal Bers slices are two transverse foliations of QF (S) by complex
submanifolds which are copies of Teichmüller space. In fact they are complex Lagrangian foliations
with respect to the complex symplectic structure of the character variety22. Andy and I discuss this
bi-Lagrangian structure in an upcoming article [30].

2.2 Minimal surfaces in quasi-Fuchsian 3-manifolds

Let M = H3/Γ be a quasi-Fuchsian 3-manifold. Let us first look at the simple situation when M is
Fuchsian, i.e. Γ is a Fuchsian group. In that case the limit set Λ ⊂ CP1 is a Γ-invariant circle, and
its convex hull in H3 is a Γ-invariant totally geodesic plane H (which is a copy of H2 in H3). In
the quotient M = H3/Γ, the convex core H/Γ is reduced to a totally geodesic embedded surface, in

21It is naturally identified with the deformation space of hyperbolic structures on S, sometimes called the Fricke space
of S.

22By a general construction of Goldman [16] following Atiyah-Bott [4], the character variety of a closed surface always
enjoys a natural symplectic structure.

10



particular it is a minimal surface. Since any minimal surface in M must be contained in its convex
core (see below), M contains no other minimal surface.

Let M = H3/Γ now be any quasi-Fuchsian 3-manifold. It is natural to ask whether the existence
and unicity of a minimal surface in M still holds. By a convexity argument using the maximum
principle (see [2]), any immersed minimal surface in M must be contained in its convex core.
The work of Schoen-Yau [40], Sacks-Uhlenbeck [38], Freedman-Hass-Scott [15] and Meeks-Yau
[34, 35] shows that such a minimal surface always exists, and that it can be chosen incompressible23,
embedded and area-minimizing24. This existence result is also a consequence of Michael Anderson’s
important theorem solving the asymptotic Plateau problem for submanifolds of any dimension in
hyperbolic n-space:

Theorem 2.10 (Anderson [2]). Let Γ ⊂ ∂∞Hn be an embedded closed submanifold in the boundary
at infinity of Hn. Then there exists a complete, absolutely area-minimizing locally integral current Σ
in Hn asymptotic to Γ at infinity.

When Γ is a hypersurface in ∂∞Hn and n < 7, regularity results of geometric measure theory imply
that Σ is a smoothly embedded hypersurface in Hn. I refer to [7] for details.

Thus any quasi-Fuchsian 3-manifold M = H3/Γ always contains at least one minimal surface.
However unicity does not hold in general. Anderson [3] showed that M contains at most a finite
number of incompressible25 stable26 minimal surfaces, but Wang [51] and Huang-Wang [22] showed
that this number can be greater than one and in fact arbitrarily large. Nonetheless, Uhlenbeck [50]
showed that unicity does hold for quasi-Fuchsian structures in a neighborhood of Fuchsian structures,
called almost-Fuchsian structures.

2.3 Almost-Fuchsian structures

Let S still denote a connected closed oriented surface of genus g > 2.
Recall that by the “fundamental theorem of surface theory” 1.19.a, any minimal hyperbolic germ

(g, II) on S gives rise to a unique minimal immersion of S into the germ a hyperbolic thickening
M . In the foundational paper [50], Uhlenbeck wrote down the explicit expression of the hyperbolic
metric on M under the normal exponential map of the minimal surface. She showed that given
the appropriate control of the principal curvatures of the minimal surface, namely that they are
everywhere in (−1, 1)27, the minimal surface Σ is smoothly embedded and the hyperbolic metric
extends to a complete hyperbolic metric on M ≈ S × R. Moreover, the hyperbolic manifold M is
quasi-Fuchsian and contains no other minimal surface. Let us summarize these results:

23A map f : S → M is called incompressible if the induced map on fundamental groups f∗ : π1S → π1M is injective.
24An immersion f : S → M is called area-minimizing if its area is less than any other immersion in the same homotopy

class. An area-minimizing immersion is in particular a minimal immersion.
25He also shows that if the incompressibility condition is dropped, then M may contain infinitely manyminimal surfaces,

which must have infinite genera.
26A minimal surface is called stable if the second variation of the area functional on compactly supported normal

deformations is always non-negative.
27 An immersed surface in a hyperbolic 3-manifold with principal curvatures everywhere in (−1, 1) is sometimes

called strictly horospherically convex. Horospheric convexity that the surface remains on the concave side of the tangent
horosphere at each point.
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Theorem 2.11 (Uhlenbeck [50]). Let (g, II) be a minimal hyperbolic germ. Assume that ‖ II ‖2g < 2
everywhere on S28. Then

(i) There exists a unique immersion f of S into a complete hyperbolic 3-manifold M (up to
isometry) such that I( f ) = I and II( f ) = II.

(ii) f is a smooth incompressible two-sided embedding.
(iii) Let Σ denote the minimal surface f (S) ⊂ M and T⊥Σ ⊂ T M denote the normal bundle to Σ.

Then exp : T⊥Σ ≈ S × R → M is a global diffeomorphism. The pull-back of the hyperbolic
metric on S × R is expressed as

dt2 + g(cosh(t)1(·) + sinh(t)B(·), cosh(t)1(·) + sinh(t)B(·)) (2.1)

where 1 denotes the identity operator and B is the shape operator (see definition 1.10).
(iv) M is a quasi-Fuchsian 3-manifold.
(v) Σ is the only closed minimal surface in M .

This motivates the following definitions:

Definition 2.12. The term almost-Fuchsian may refer to:
• A quasi-Fuchsian 3-manifold is called almost-Fuchsian if it contains a minimal surface with
principal curvatures everywhere in (−1, 1).

• A minimal hyperbolic germ (g, II) is called almost-Fuchsian if ‖ II ‖2g < 2 everywhere.
• A Kleinian group Γ is called almost-Fuchsian if the hyperbolic 3-manifold H3/Γ is almost-
Fuchsian.

• A representation ρ : π1S → PSL2(C) is called almost-Fuchsian if it is faithful and its image
ρ(π1S) < PSL2(C) is almost-Fuchsian.

We proceeed to define the deformation space of almost-Fuchsian structures:

Definition 2.13. The deformation space of almost-Fuchsian structures AF(S) is the subset of the
character varietyX(S, PSL2(C)) comprising the conjugacy classes of almost-Fuchsian representations
ρ : π1S → PSL2(C).

It is not too hard to believe that

Proposition 2.14. AF(S) is a neighborhood of F (S) in QF (S).

Allow me to quote [39] here: The structure of almost-Fuchsian manifolds has been studied
considerably by a number of authors. In particular, the invariants arising from quasi-conformal
Kleinian group theory (e.g. Hausdorff dimension of limit sets, distance between conformal boundary
components) are controlled by the principal curvatures of the unique minimal surface. Relating the
geometry of the minimal surface to the geometry of the boundary at infinty is indeed a key problem
whose study generates interesting results29. Let us mention the following useful fact in that respect:

28Equivalently, the eigenvalues of the g-self-adjoint operator associated to II (i.e. the potential principal curvatures) λ1
and λ2 = −λ1 are in (−1, 1) everywhere on S.

29My paper [29] follows that philosophy, using an ad hoc notion of renormalized volume (following Krasnov-Schlenker
[26, 27]) to relate the symplectic structure of the moduli space of almost-Fuchsian structures “seen from the minimal
surface” to its symplectic structure “seen from infinity”.
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Proposition 2.15. Let M be the almost Fuchsian 3-manifold associated to an almost-Fuchsian
minimal hyperbolic germ (g, II). Denote by X the Riemann surface structure on the minimal surface
given by the conformal class of g. Let z be a local complex coordinate on X , write the metric as
g = e2u |dz |2 and the second fundamental form as II = 1

2 (α(z)dz2 + α(z)dz̄2), where α = α(z)dz2 is
a holomorphic quadratic differential on X (see 1.20). Let µ = µ(z) dz̄dz be the Beltrami differential
given by µ = g−1ᾱ = e−2uα(z) dz̄dz . Then the metrics

|dz ± µ(z)dz̄ |2 (2.2)

are conformal metrics on the conformal ideal boundary components ∂+∞M and ∂−∞M respectively.

Let us outline a sketch of proof.

Proof. It is straightforward to check that the metric (2.1) in the complex coordinates z is expressed
as

dt2 + e2u | cosh(t)dz + sinh(t) e−2uα(z) dz̄ |2 (2.3)

as Fock observed in [13]. The metric | cosh(t)dz + sinh(t) e−2uα(z) dz̄ |2 on S is the expression of
the induced metric gt on the embedded surface S × {t} ⊂ S × R ≈ M that is the image of the
minimal surface Σ ≈ S × {0} under the time t-normal exponential map. One can show that for any
horospherically convex incompressible embedded surface Σ ⊂ M , the conformal structure on the
time t-normal exponential image of Σ must converge to the conformal structure of the boundary at
infinity as t → +∞. Here gt is asymptotic to e2u et

2 |dz ± µ(z)dz̄ |2 as t → ±∞, the result follows. �

2.4 Taubes moduli space

In his paper [47], Taubes introduced minimal hyperbolic germs (see definition 1.18) and their
deformation space. Diffeomorphisms of the surface S naturally act on minimal hyperbolic germs by
pull-back, as always the deformation space is the quotient by the subgroup of homotopically trivial
diffeomorphisms:

Definition 2.16. Let S be a connected closed oriented surface of genus g > 2. The deformation
space of minimal hyperbolic germs or Taubes moduli space is

H := {(g, II) minimal hyperbolic germ on S}/Diff0(S) . (2.4)

Taubes shows that this deformation space has a natural structure of a manifold of the expected
dimension (with no singularities), and that it comes with a natural symplectic structure ωH and
U(1)-action30:

Theorem 2.17. The Taubes moduli spaceH is a smooth manifold of dimension 12g − 12 equipped
with a real symplectic structure ωH and a smooth U(1)-action.

30 U(1) denotes the group of unit complex numbers. A U(1)-action is often called a “S1-action”.
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The symplectic structure ωH that can be obtained by symplectic reduction from the canonical
symplectic structure on the cotangent bundle of the (infinite-dimensional) space of Riemannian
metrics on S. We refer to Taubes’ paper [47] for details, but note that ωH = Re(Ψ∗ωc) can be taken
for a definition of a ωH , see theorem 2.18 (ii) below. The U(1)-action can be described by rotating II
in a g-orthonormal frame, one can also consider the U(1)-equivariance of Ψ as its definition, again
see theorem 2.18 (ii) below.

Taubes defines and studies two important “canonical” maps Φ : H → X(S, PSL2(C)) and
Ψ : H → T∗T(S), let us introduce these maps. First the map Φ: recall that by theorem 1.19.b,
given a minimal hyperbolic germ (g, II) there exists a unique minimal immersion f̃ : S̃ → H3

such that I( f ) and II( f ) are the lifts of g and II to S̃ and f is ρ-equivariant for some representation
ρ : π1(S) → PSL2(C). The representation ρ is unique up to conjugation, so the assignement
(g, II) 7→ ρ gives a well-defined map Φ : H → X(S, PSL2(C)).

Now the map Ψ: Given a minimal hyperbolic germ (g, II), let X denote the complex structure
on S given by the conformal class of g. Recall that II is the real part of a holomorphic quadratic
differential α = 2 II(2,0) on the Riemann surface X (see proposition 1.20). The space of holomorphic
quadratic differentials on X is naturally identified to the complex cotangent space at X to Teichmüller
space T(S)31. The assignement (g, II) → (X, α) thus defines a map Ψ : H → T∗T(S) after taking
the quotient by the action of Diff0(S).

The following theorem summarizes Taubes’ results:

Theorem 2.18. Let Φ : H → X(S, PSL2(C)) and Ψ : H → T∗T(S) be the maps as above.
(i) Φ is a smooth map and a real symplectomorphism with respect to the symplectic structures

ωH onH and Im(ωG) on X(S, PSL2(C)).
(ii) Ψ is a smooth map, it is equivariant for the U(1)-action32 a real symplectomorphism with

respect to the symplectic structures ωH onH and Re(ωc) on T∗T(S).
(iii) Φ and Ψ have the same set of critical points in H . At such points the kernels of their

derivatives are in direct sum. It follows that Φ ⊕ Ψ is an Lagrangian immersion of H into
X(S, PSL2(C)) ⊕ T∗T(S) for the appropriate symplectic structure.

Let us clarify the symplectic structures a bit. The symplectic structure ωG denotes the complex
symplectic structure of the character variety X(S, PSL2(C)). Indeed, a general construction of
Goldman [16] following Atiyah-Bott [4] shows that the character variety X(S,G) of a closed surface
always enjoys a natural symplectic structure (provided G is a reductive Lie group). When G is
a complex Lie group, ωG is a complex symplectic form. In [16], Goldman also shows that when
G = PSL2(R) the symplectic strutureωG restricted to theTeichmüller componentF (S) coincideswith
the Weil-Petersson Kähler form33 on Teichmüller space T(S) under the identification T(S) ≈ F (S)
given by the uniformization theorem. Note that this fact can be recovered from Taubes’ result. The
symplectic structure ωc denotes the complex symplectic structure of the holomorphic cotangent

31This is a standard fact in Teichmüller theory. It is classically explained in terms of quasiconformal deformations of
complex structures, but can also and more intrinsically be derived from Kodaira-Spencer deformation theory.

32The U(1)-action on the holomorphic cotangent bundle T∗T(S) is just the action by complex multiplication in the
fibers.

33The Teichmüller space T(S) enjoys a natural Kähler structure classically described as the Weil-Petersson product of
holomorphic quadratic differentials, see e.g. [52] for an overview.
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bundle T∗T(S), which has a canonical complex symplectic structure like any holomorphic cotangent
bundle.

Taubes also shows that the maps Φ and Ψ have no critical points on the open subspace corre-
sponding to almost-Fuchsian germs HAF ⊂ H . The restriction of Φ to HAF is a diffeomorphism
of HAF onto AF(S) ⊂ X(S, PSL2(C)), which is simply given by assigning to an almost-Fuchsian
germ the corresponding almost-Fuchsian representation. However Φ is not injective on the whole
moduli spaceH , this is reflected by the fact that a hyperbolic 3-manifold that is not almost-Fuchsian
can contain several minimal surfaces34. The restriction of Ψ to HAF is a diffeomorphism of HAF
onto a (somewhat mysterious) open neighborhood of the zero section in T∗T(S). Note that the space
of Fuchsian germs HF ⊂ H corresponding to germs of the form (g, 0) where g is a hyperbolic
metric on S is naturally identified to the Fricke deformation space of hyperbolic structures on S,
identified itself to the deformation space of Fuchsian structures F (S) via holonomy. The restriction
of Φ to HF is precisely that identification. On the other hand the restriction of Ψ to HF sends
HF diffeomorphically to the zero section of T∗T(S), it is precisely the bijection between hyperbolic
metrics and complex structures on S given by the uniformization theorem.

3 Higgs bundles and minimal surfaces

Blabla about the theory of Higgs bundles
Throughout this section S still denote a connected closed oriented surface of genus g > 2.

3.1 SL2(C)-Higgs bundles and the non-abelian Hodge correspondence

Reductive representations and Corlette’s theorem

Let G = (P)SL2(C) and letX(S) = X(S,G) denote the (P)SL2(C)-character variety. In this section we
will not be concerned with the distinction between the theories for G = PSL2(C) and G = SL2(C)35.

Definition 3.1. A representation ρ : π1S → (P)SL2(C) is called reductive (or semisimple, or
polystable) if the action of ρ(π1S) on CP1 does not fix exactly one point36.

It is worth mentioning that

34Actually I do not know for sure thatΦ is not injective, but it seems to me that it is a consequence of Biao Wang’s result
[51] that a quasi-Fuchsian manifold can contain several incompressible non-isotopic closed minimal surfaces of the same
genus. I am also unsure as to whether Ψ is injective on the whole moduli spaceH .

35especially since all the representations ρ : πS → PSL2(C) being considered in these notes are liftable to SL2(C). The
advantage of taking G = SL2(C) over G = PSL2(C) is that the theory of Higgs bundles in the linear case can be described
in terms of vector bundles instead of principal bundles. For the interested reader, let us mention that the PSL2(C)-character
variety splits into two irreducible components reflecting the liftability of corresponding representations, and the moduli
space of PSL2(C)-Higgs bundles has an analogous decomposition.

36This is of course the adaptation for G = (P)SL2(C) of a more general notion of reductivity for any reductive Lie group
G, which is the following: a representation ρ : Γ→ G is called reductive if the Zariski closure of ρ(Γ) in G is a reductive
subgroup. Equivalently, ρ acts completely reducibly on the Lie algebra of G via the adjoint representation.
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Proposition 3.2. Let Homss(π1S,G) ⊂ Hom(π1S,G) denote the space of reductive representations.
There is a natural map Hom(π1S,G)/G → Hom(π1S,G)//G =: X(S) which restricts to a bijection
Homss(π1S,G)/G→ X(S).

The following foundational theorem is due to Donaldson [9]. It was generalized by Corlette [6]
for any reductive Lie group G (and further by Labourie [28]).

Theorem 3.3. Let X be a complex structure on S and let ρ : π1(S) → PSL2(C) be a representation.
There exists a ρ-equivariant harmonic map f : X̃ → H3 if and only if ρ is reductive. A such map f
is unique up to post-composition with an element of PSL2(C) which centralizes ρ(π1S)37.

SL2(C)-Higgs bundles

Let G = SL2(C) here. Let X be a complex structure on S (i.e. X is a Riemann surface).

Definition 3.4. A SL2(C)-Higgs bundle on X is a pair (E, ϕ) where
• E is a rank 2 holomorphic vector bundle on X with trivial determinant38.
• ϕ is a holomorphic (1, 0)-form on X with values in the bundle of traceless endomorphisms of
E. In other words ϕ ∈ H0(KX ⊗ End(E)) with tr ϕ = 0, where KX = T∗X is the canonical
bundle on X .

In order to define the moduli space we restrict our attention to polystable Higgs bundles:

Definition 3.5. A SL2(C)-Higgs bundle (E, ϕ) on X is polystable if either:
(i) every holomorphic ϕ-invariant subbundle L has negative degree, in this case the Higgs bundle

is called stable,
or
(ii) E splits (holomorphically) as a sum of two ϕ-invariant line subbundles of degree zero.

We may now define the moduli space of Higgs bundles up to gauge equivalence:

Definition 3.6. Let X be a complex structure on S. The moduli space of polystable SL(2,C)-Higgs
bundles on X (or Dolbeault moduli space) is

M(X) := {(E, ϕ) polystable SL(2,C))-Higgs bundle on X}/∼ (3.1)

where two Higgs bundle (E, ϕ) and (E ′, ϕ′) are equivalent if there exists an isomorphism t : E → E ′
such that t∗ϕ′ = ϕ.

Hitchin gave an analytic construction ofM(X) in [18] and [19], showing in particular that

Theorem 3.7. M(X) is an irreducible quasiprojective algebraic variety of complex dimension 6g−6.
Also:

37Note that the centralizer of ρ(π1S) is trivial as soon as ρ is irreducible, so the equivariant harmonic map f is unique
for at least irreducible representations.

38 i.e. Λ2E ≈ O where O is the trivial line bundle on X . Note that a vector bundle with trivial determinant has zero
degree.
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(i) The set of stable points defines a dense smooth open subvariety.
(ii) M(X) enjoys a natural hyperkähler structure.

Let us also define the Hitchin fibration. Given a Higgs field (E, ϕ), the trace tr(ϕ2) = −2 det ϕ is
a section of K2

X , i.e. a holomorphic quadratic differential on X .

Definition 3.8. TheHitchin fibration map FX :M(X) → H0(X,K2
X) is the map induced by (E, ϕ) 7→

tr(ϕ2). The nilpotent cone39 is F−1
X (0) ⊂ M(X).

Non-abelian Hodge correspondence

The celebrated non-abelian Hodge correspondence is the natural correspondence between reductive
representations and polystable Higgs bundles discovered by Hitchin and Simpson, inducing an
bijective correspondence between moduli spaces ΘX : X(S) ↔ M(X). The key result to this
correspondence to go from representations to Higgs bundles is the theorem of Donaldson and Corlette
previously mentioned (theorem 3.3). The other direction, from Higgs bundles to representations,
relies on the parallel theorem of Hitchin and Simpson showing the existence of harmonic metrics
solving the self-duality equations for polystable Higgs bundles ([18], [42], [43, 44]).

Let us describe the non-abelian Hodge correspondence in the direction X(S) → M(X) for
G = (P)SL2(C). Então, Let ρ : π → SL(2,C) be a reductive representation. Let Eρ → S be the flat
rank 2 complex vector bundle associated to the flat π1(S)-bundle S̃ → S by the action of π1S on C2

via ρ40. It remains to construct a holomorphic structure ∂̄E on Eρ and a Higgs field ϕ ∈ Ω(1,0)(Eρ).
By Donaldson’s theorem, there exists an equivariant harmonic map fρ : H2 ≈ X̃ → H3. Since

H3 ≈ G/K where G = SL2(C) and K = SU(2), this map gives a reduction of the structure group of
Eρ to SU(2), in other words it defines a Hermitian metric h in Eρ (and by definition, this metric is
harmonic). We define the holomorphic structure ∂̄E as the (0, 1)-part of the unitary part A of the flat
connection on Eρ.

Consider then the derivative d fρ ∈ Ω1(S̃, fρ∗(TH3)). The bundle fρ∗(TH3) → S can be identified
with the Ad ◦ ρ-bundle with typical fiber m ≈ T[e]G/K . Here we have written g = sl(2,C) = k ⊕ m,
where k = su(2) andm = ik (traceless Hermitian matrices). Also, dfρ is π1(S)-invariant so it descends
to a one-form on S. Under these identifications, let ψ = d fρ ∈ Ω1(m) and ϕ = ψ1,0 ∈ Ω1,0(g). Note
that the Ad ◦ ρ-bundle g → S is precisely the bundle Ad(Eρ), in other words ϕ is a one-form with
values in traceless endomorphisms of Eρ as required.

It remains to show that ϕ is holomorphic as a one-form with values in the endomorphisms of
the holomorphic vector bundle E = (E, ∂̄E ), in other words that ∂̄Eϕ = 0. But it is a standard
computation that the harmonicity of fρ is equivalent to Hitchin’s self-duality equations:

F(A) + [ϕ, ϕ∗h ] = 0 (3.2)
∂̄Eϕ = 0 (3.3)

where A denotes the unitary part with respect to the harmonic metric h of the flat connection on Eρ
and F(A) denotes the curvature of A. Thus (E, ϕ) is a Higgs bundle as we wanted.

39The reason for this terminology is that if (E, ϕ) is in the nilpotent cone, then tr(ϕ) = tr(ϕ2) = 0, so ϕ takes values in
nilpotent endomorphisms.

40Concretely, Eρ may be described as the suspension S̃ × C2/π1(S), where γ · (x, v) = (γ · x, ρ(γ) · v).
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Let us now sketch the inverse direction, going from Higgs bundles to representations. So, start
with a Higgs bundle (E, ϕ). Let us now regard the self-duality equation (3.2) as an equation for
a Hermitian metric h on E, where A now denotes the Chern connection associated to h and the
holomorphic structure on E (the equation (3.3) on the other hand is now automatically satisfied).
The theorem of Hitchin and Simpson goes:

Theorem 3.9. There exists a Hermitian metric h such that the self-duality equations for the Higgs
bundle (E, ϕ) are satisfied if and only if (E, ϕ) is polystable. Moreover, a such metric is unique.

It remains to say how one gets a representation ρ : π1S → G out of this. A small computation
shows that h satisfying the self-duality equations for (E, ϕ) is equivalent to the flatness of the
connection D = A + ψ, where ψ is the h-self-adjoint one-form with values in End E given by
ψ = ϕ + ϕ∗h . The representation ρ : π1S → G is then collected as the holonomy of the flat
connection D.

3.2 Minimal surfaces and Higgs bundles

Hopf differential and nilpotent cone

Let X still denote a fixed complex structure on S. Let ρ : π1S → SL2(C) be a reductive representation,
fρ : X̃ → H3 be the ρ-equivariant harmonic map given by Donaldson’s theorem and (E, ϕ) the
associated Higgs bundle.

Recall that the Hopf differential of fρ is given by Hopf( fρ) = ( f ∗ρ hH3)(2,0) (see definition 1.14),
where hH3 is the hyperbolic metric on H3 ≈ G/K . It is a holomorphic quadratic differential on X ,
since fρ is harmonic (proposition 1.15). A small computation shows that under the identifications
explained in the previous paragraph in order to process the non-abelian Hodge correspondence, the
Hopf differential of fρ is precisely (the lift of) tr(ϕ2)41. In other words:

Proposition 3.10. Let (E, ϕ) be the Higgs bundle on the Riemann surface X associated to a reductive
representation ρ under the non-abelian Hodge correspondence. Recall that fρ : X̃ → H3 denotes
the ρ-equivariant harmonic map given by Donaldson’s theorem and FX :M(X) → H0(K2

X) denotes
the Hitchin fibration map (see definition 3.8). Then

FX(E, ϕ) = Hopf( fρ) . (3.4)

In particular, using proposition 1.15 (ii), we find that

Proposition 3.11. With the notations of the previous proposition, a polystable Higgs bundle (E, ϕ)
lies in the nilpotent cone F−1

X (0) ⊂ M(X) if and only if fρ : S̃ → H3 is a ρ-equivariant minimal
immersion.

Conversely, it is clear that any ρ-equivariant minimal immersion f : S̃ → H3 for some reductive
ρ produces a Higgs bundle on S equipped with the complex structure making f conformal via the

41In a nutshell, the computation is Hopf( f ) = (hH3 (df , df ))(2,0) = hG/K (ϕ, ϕ) = tr ϕ2.
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procedure producing the non-abelian Hodge correspondence. Recall that such maps f are precisely
parametrized by Taubes’ minimal hyperbolic germs... Let us encapsulate these observations in a
formal setting.

Definition 3.12. The global Dolbeault moduli space is the fiber bundle M π→ T(S) whose fiber
above a point X ∈ T (S) is the Dolbeault moduli spaceM(X).

We will not worry about the topology or smooth structure of M here. As a set, M is just∏
X∈T(S)M(X). I was tempted to callM the “universal Dolbeault moduli space” but it is most likely

a silly choice of words. Terminology aside, a case for this definition could be made by arguing that
studying the variation of the structure ofM(X) as the complex structure X varies is an important
(and hard) question, in that event this definition is somewhat natural.

Let us introduce a couple more notations:

Definition 3.13. LetM be the global Dolbeault moduli space defined above.
(i) The global Hitchin fibration is the map F :M → Q(S) whose restriction to the fiberM(X) is

the Hitchin fibration map FX :M(X) → H0(K2
X). Here Q(S) is the bundle over Teichmüller

space whose fiber above X ∈ T (S) is H0(X,K2
X) =: Q(X).

(ii) The global non-abelian correspondence map is the map Θ : X(S) × T (S) → M such that
Θ(·, X) := ΘX is the bijectionX(S) → M(X) given by the non-abelian Hodge correspondence
for the complex structure X .

Note that F and Θ are both bundle maps (between fiber bundles over T(S)), which is not saying
much. Naturally, we shall call F−1(0) the nilpotent cone ofM, comprising the Higgs bundles on any
X ∈ T (S) with nilpotent Higgs field.

Our previous observations can be summarized as follows. First let us just note that Taubes’
moduli space H also fibers over T(S), via the assignement (g, II) 7→ [g], where [g] denotes the
complex structure on S given by the conformal class of g42, let us denote πH : H → T(S) this
bundle projection. Recall that Φ : H → X(S) is the “canonical” map introduced in section 2.4.
Consider the map

Ξ : H →M (3.5)

given by

Ξ : H
Φ×πH→ X(S) × T (S) Θ→M , (3.6)

in other words Ξ is the Higgs bundle associated to a minimal hyperbolic germ under the non-abelian
Hodge correspondence for the appropriate complex structure (the conformal structure on the minimal
surface). Then

Proposition 3.14. Ξ : H →M is a bundle map which sendsH surjectively onto the nilpotent cone
F−1(0) ⊂ M.

More surprising is that this map can be computed completely explicitely, as Donaldson demon-
strated in [10]. We review this construction in the following subsection.

42By the way, the reason why I keep identifying conformal and complex structures on S is that S is oriented.
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3.3 Explicit Higgs bundles associated to minimal germs

Let (g, II) be a minimal hyperbolic germ on S. Denote by X the complex structure on S given by the
conformal class of g and α = 2 II(2,0) ∈ H0(X,K2

X) the holomorphic quadratic differential such that
II = Re(α). Let us construct a Higgs bundle on X using the data (g, II), then argue that it must be
Ξ(g, II).

Fix a choice K
1
2
X of a square root of the canonical bundle KX 43 and let L = K

− 1
2

X . Let E be
the smooth complex vector bundle E = L ⊕ L−1 (let us stress that we have not equipped E with a
holomorphic structure yet, so this splitting is not holomorphic a priori). The metric g induces a
Hermitian metric on L and L−1, let a+ and a− denote the corresponding Chern connections44. With
respect to the decomposition E = L ⊕ L−1, the matrix

A =
(

a+ α∗

−α a−

)
(3.7)

represents a connection on E . Hereα is regarded as an element ofΩ(1,0)(End(L, L−1)) (= Ω0(K2
X)) and

α∗ is the dual ofαwith respect to themetric, it is an element ofΩ0,1(End(L−1, L)) (= Ω0(KX⊗K−1
X )45).

Note that the connection A is unitary with respect to the Hermitian metric h on E induced from L
and L−1. Let ∂̄E = A(0,1) be the holomorphic structure associated to that connection. Alternatively,
this holomorphic structure on E could be defined by virtue of the following proposition:

Proposition 3.15. The holomorphic vector bundle E = (E, ∂̄E ) is the extension of L−1 by L

0→ L → E → L−1 → 0 (3.8)

associated to the extension class [α∗] ∈ H1(End(L−1, L)).

Here I would like to point out that when (g, II) is an almost-Fuchsian germ, ±[α∗] is also
the Dolbeault cohomology class of Beltrami differentials parametrizing the difference between the
complex structure on the minimal surface and the complex structure on the conformal boundary at
infinity, by proposition 2.15. I certainly want to explore this observation further.

Now we define the Higgs field ϕ simply by

ϕ =

(
0 1
0 0

)
. (3.9)

Here “1” represents an element of Ω(1,0)(End(L−1, L)) = Ω0(KX ⊗ L2) ≈ C.
It is straightforward to check that ∂̄Eϕ = 0, so the pair (E = (E, ∂̄E ), ϕ) is a Higgs bundle on X .

It remains to show:
43For the diligent reader: a choice of square root of the canonical bundle is equivalent to a choice of a spin structure

on X . Different choices of spin structures will produce different representations π1S → SL2(C) (thereupon different
SL2(C)-Higgs bundles), but which all project to the same representation ρ : π1S → PSL2(C) (and so define the same
PSL2(C)-Higgs bundle, although we have not defined such an object in these notes).

44Note: a− = −a+ in the sense that their connection 1-forms are opposite in any complex local coordinate.
45in other words α∗ is a smooth Beltrami differential on X .
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Theorem 3.16. (E, ϕ) is the Higgs bundle on X corresponding to the representation ρ : π1S →
SL2(C) associated to the minimal hyperbolic germ (g, II). More precisely: (E, ϕ) = Ξ(g, II).

Proof. Proving this theorem is a good exercise. First we need to figure out what we need to show.
We need to show that Θ−1

X (E, ϕ) = Φ(g, II). The inverse of the non-abelian Hodge correspondence
is sketched in subsection 3.1: we need to find a Hermitian metric on E satisfying the self-duality
equation (3.2): F(A) + [ϕ, ϕ∗h ] = 0. Luckily we have a candidate metric h and already know the
associated Chern connection, it is A. The curvature of A is computed as

F(A) =
(

F(a+) − α∗ ∧ α 0
0 F(a−) − α ∧ α∗

)
. (3.10)

With F(a+) = i
2 Kg volg = −F(a−) (where Kg is the curvature of g and volg its area form) and

α ∧ α∗ = i
2 ‖α‖2g volg, this is written

F(A) =
(

Kg + ‖α‖2g 0
0 −Kg − ‖α‖2g

)
i volg

2
(3.11)

On the other hand, the bracket [ϕ, ϕ∗h ] is computed as

[ϕ, ϕ∗h ] =
(

1 0
0 −1

)
i volg

2
(3.12)

Putting things together, the self-duality equation F(A)+ [ϕ, ϕ∗h ] = 0 simply reads Kg+ ‖α‖2g+1 = 0.
Remarkably, this is exactly the Gauss equation (1.6) for the minimal hyperbolic germ (g, II = Re(α)).
This shows that the self-duality equations are satified and ρ = Θ−1(E, ϕ) is the holonomy of the flat
connection A + ϕ + ϕ∗. But in fact we may soon conclude now. Indeed, the ρ-equivariant harmonic
map fρ : X̃ → H3 given by Corlette’s theorem must be conformal because Hopf( fρ) = tr(ϕ2) = 0,
so it defines a minimal immersion X̃ → H3. According to Donaldson [10], the special form of the
Higgs field (E, ϕ) associated to that harmonic map implies that its first fundamental form is g and its
second fundamental form is II = Re(α). It follows from the unicity in theorem 1.19.b that ρ is in the
conjugacy class of Φ(g, II). �

One can hope that this explicit description of the map Ξ : H → M opens the way to studying
its properties. Here is a first simple example of application taken from [39]. First recall thatH has a
natural U(1)-action, which by the way preserves the fibers of the projection H → T(S). Note that
there is also a bundle U(1)-action onM, where U(1) acts inM(X) by complex multiplication on the
Higgs field.

Proposition 3.17. The map Ξ : H →M is U(1)-equivariant.

Proof. Let (g, II) be a minimal hyperbolic germ on S. By definition, under the action of eiθ ∈ U(1),
we get a minimal hyperbolic germ (gθ, IIθ) where gθ = g and IIθ is the real part of the holomorphic
quadratic differential eiθα. Following the procedure described in the previous theorem, the Higgs
bundle Ξ(gθ, IIθ) is associated to the unitary connection

Aθ =
(

a+ e−iθα∗

eiθα a−

)
(3.13)
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and Higgs field still

ϕθ = ϕ =

(
0 1
0 0

)
. (3.14)

Consider the unitary gauge transformation of E given by

Uθ =

(
ei

θ
2 1

0 e−i
θ
2

)
. (3.15)

Then UθAθU−1
θ = A and UθϕU−1

θ = eiθϕ. This shows that the Higgs bundle Ξ(gθ, IIθ) associated
to Aθ and IIθ is gauge-equivalent to the Higgs bundle associated to A and eiθϕ, that is eiθ · Ξ(g, II).
Hence Ξ is U(1)-equivariant. �

4 Symplectic reduction and moduli spaces

In preparation.

A Hyperkähler structures

This appendix does not have the pretension to be an introduction to hyperkähler manifolds, we merely
define some basic concepts and introduce useful notations.

A.1 Kähler structures

As a reminder and to introduce a few concepts and notations for later, we first quickly recall what a
Kähler structure is.

Linear Hermitian structures

Definition A.1. Let V be a real vector space. A linear complex structure on V is equivalently:
(i) A C-action on V extending the scalar multiplication by reals, giving V the structure of a

complex vector space.
(ii) An endomorphism I ∈ EndR(V) such that I2 = −1.

Of course, the relation between the two definitions is that I represents scalar multiplication by i.

Definition A.2. Let V be a real vector space with a linear complex structure. A linear Hermitian
structure on V is, equivalently:
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(i) A Hermitian inner product h : V × V → C.
(ii) A real inner product g : V ×V → R that is compatible with I in the sense that I is g-orthogonal.

The equivalence between the two definitions is that a Hermitian inner product is written in
real and imaginary parts h = g − iω, where g is a real inner product compatible with I and ω is
determined byω(·, ·) = g(I ·, ·). Note thatω is a linear symplectic structure onV , i.e. a nondegenerate
skew-symmetric bilinear pairing, called the Kähler form of the Hermitian structure.

Remark A.3. Since the three structures g, I and ω are related by ω = g(I ·, ·), two out of three struc-
tures determine the third. Consequently, several equivalent definitions of linear Hermitian structures
can be given by picking two out of these three structures, provided the appropriate compatibility
condition is required. This relates to the 2 out of 3 property of the unitary group, namely that U(n)
is the intersection of any two out of the three groups O(2n), Sp(2n,R) and GL(n,C).

Kähler structures

DefinitionA.4.a. Let M be a smoothmanifold. AnKähler structure on M is the data of a Riemannian
metric g and an almost complex structure I such that:

(i) I is g-orthogonal: g(I ·, I ·) = g(·, ·) (compatibility condition).
(ii) I is parallel with respect to the Levi-Civita connection of g: ∇I = 0 (integrability condition).

When the integrability condition (ii) is not required, (g, I) is called an almost-Hermitian structure
on M for the following reason. Let ω(·, ·) = g(I ·, ·) and h = g − iω. Then h is a Hermitian metric in
the tangent bundle (T M, I). The integrability condition may be restated as follows. First note that ω
is a nondegenerate 2-form on M (i.e. an almost symplectic form). Then ∇I = 0 if and only if I is
integrable46 and ω is closed (so that it is a symplectic structure). Hence the alternate definition:

Definition A.4.b. Let M be a smooth manifold. A Kähler structure on M is the data of a an integrable
almost complex structure I on M and a Hermitian metric h on the complex manifold (M, I) such that
the Kähler form ω = − Im(h) is closed.

One can also check that the integrability condition is equivalent to the parallel transport being
complex linear in the tangent bundle, so that a Kähler manifold has Riemannian holonomy in U(n)
(which is one of the seven groups in Berger’s classification, see Theorem A.18).

Following RemarkA.3, several equivalent definitions of Kähler structures can be given by picking
two out of the three structures g, I and ω, provided the appropriate compatibility and integrability
condition is required.

Volume form and Ricci form on a Kähler manifold

In an almost complex manifold (M, I), it is natural to extend tensors complex linearly in the com-
plexification of the tangent bundle TCM = T M ⊗R C, which splits as the direct sum of the +i- and −i

46This means that M can be given the (necessarily unique) structure of a complex manifold such that I is the induced
almost-complex structure in the tangent space.
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eigenspaces of the almost complex structure: TCM = T1,0M ⊕ T0,1M . On Kähler manifolds, there
are important relations between the metric and the operators ∂ and ∂̄ (the (1, 0) and (0, 1) parts of the
exterior derivative). In particular, there is a specific Hodge theory of the cohomology of compact
Kähler manifolds. This is all very classical and we will not expand any further here. However we
recall a couple facts about Kähler manifolds that will be used later (especially in subsection A.4.).

Let (M, g, I) be a Hermitian manifold of real dimension 2n and denote by ω the Kähler form. Let
K = Λn

( (
T1,0)∗X)

denote the canonical line bundle of (M, I). The Kähler form ω is of type (1, 1),
so its nth exterior power ω∧n is a section of K ⊗ K̄ . It is easy to show that 1

n!ω
∧n(·, I ·) is the metric

ĝ induced from g in the anticanonical bundle K∗, and that that the volume form of g can be written:

volg =
ω∧n

n!
. (A.1)

Recall that the curvature Fh of a holomorphic line bundle L → M equipped with a Hermitian metric
h is the curvature of the Chern connection ∇h. It is a 2-form on M with values in EndC L ≈ C,
which happens to be i times a (1, 1)-form on M . In a local holomorphic trivialization of L, the Chern
connection is written ∇h = d + A where A = ∂ log h, and the curvature is Fh = dA = ∂̄∂ log h. One
can derive from this formula that the cohomology class 1

2π [−iFh] ∈ H2(M,R) does not depend on h,
and it is called the real first Chern class47 of L, denoted c1(L). The real first Chern class of (M, I) is
by definition c1(M, I) := −c1(K) = c1(K).

When I is parallel, i.e. (M, g, I) is Kähler, the Ricci curvature tensor48 Ric of the metric g must
preserve the almost complex structure: Ric(I ·, I ·) = Ric. One can thus turn Ric into a (1, 1)-form
ωRic defined by ωRic = Ric(I ·, ·), called the Ricci form of the Kähler manifold (M, I, g).
Theorem A.5. The curvature of K∗ is equal to iωRic.

This theorem is important in the theory of Kähler manifolds. Together with (A.1), it has in
particular the following consequences:

• The Ricci form of a Kähler manifold only depends on the volume form of the metric.
• The Ricci form of a Kähler manifold is closed and its cohomology class not depend on the
metric. It is related to the real first Chern class by [ωRic] = 2πc1(M, I).

In light of this it is natural to ask whether, for a complex manifold (M, I) of Kähler type
(admitting a Kähler structure), a closed 2-form representing 2πc1(M, I) is the Ricci form of some
Kähler metric.The answer is provided by the “Calabi conjecture” proved by Yau:

Theorem A.6. Let (M, I) be a manifold of Kähler type and let ρ be a closed 2-form with [ρ] =
2πc1(M, I). In each Kähler class in H2(M,R) there is a unique Kähler form whose associated Ricci
form is ρ.

Corollary A.7. Let (M, I) be a complex manifold of Kähler type with vanishing real first Chern
class. Then any Kähler class contains a unique Ricci-flat metric.

47c1(L) turns out to be the image of an integral cohomology class in H2(M,Z), called the first (integral) Chern class of
L. Note that this integral class may have torsion, so it contains strictly more information than the real class. It also turns
out that c1(L) does not depend on the holomorphic structure either (one can take any unitary connection to compute it), it
is a topological invariant of L → M .

48On a Riemannian manifold (M, g), the Ricci curvature tensor is the bilinear form Ric : T M × T M → R such that
Ric(x, y) is the trace of the endomorphism w 7→ R(x,w)y, where R(x, y) = [∇x,∇y] − ∇[x,y] is the Riemannian curvature
tensor. Symmetries of the Riemannian curvature tensor (Bianchi identities) imply that Ric is symmetric.
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A.2 A bit of quaternionic linear algebra

Quaternions

Definition A.8. The algebra of quaternions H is the unital associative algebra over R generated by
three elements i, j and k satisfying the quaternionic relations

i2 = j2 = k2 = −1
i j = − ji = k

(A.2)

H is a 4-dimensional algebra over R: a generic quaternion is written q = a + ib + jc + kd with
(a, b, c, d) ∈ R4. Let us give a few classical definitions:

Definition A.9. Let q = a + ib + jc + kd be a quaternion.
• The real part of q is the real number Re q := a, its imaginary part is the pure imaginary
quaternion Im(q) := ib + jc + kd so that q = Re q + Im q and accordingly H = R ⊕ ImH.

• The quaternionic conjugate of q is q = Re q − Im q. Quaternionic conjugation is an involutive
antiautomorphism of H: it squares to the identity, is real linear and satisfies q1q2 = q2 q1.

• The norm of q is given by ‖q‖2 = qq = qq = a2 + b2 + c2 + d2. It is a multiplicative norm
on H and is Euclidean with polarized inner product 〈q1, q2〉 = Re(q1q2), which is the standard
inner product on H ≈ R4. Any nonzero quaternion q has an inverse given by q−1 =

q

‖q ‖2 , so H
is a division ring.

• Any quaternion q can be written in polar form q = ρeθs = ρ (cos(θ) + sin(θ)s), where ρ = ‖q‖
is a nonnegative real number, s is a unit pure imaginary quaternion and θ is a real number.

Unit quaternions (quaternions with norm 1) form a multiplicative subgroup of H× denoted
Sp(1). Topologically, Sp(1) is the 3-sphere, since it is the unit sphere in (H, ‖ · ‖) ≈ R4. We let
S = Sp(1) ∩ ImH denote the 2-sphere of unit pure imaginary quaternions, which is readily seen to
be the set of square roots of −1 in H49.

Let us consider the action of the multiplicative group H× = H − {0} on H by conjugation:
g · q = cg(q) := gqg−1. This action commutes with quaternionic conjugation, so it preserves the
splitting H = R ⊕ ImH. Also, it is an isometric action by multiplicativity of the norm. The kernel of
the action is the center of H minus 0, namely R×, so one can restrict the action to Sp(1) without loss
and kill most of the kernel, leaving only R× ∩ U = {±1}. The R-part of H is pointwise fixed. On
ImH, it is straightforward to show to that the action of the unit quaternion u = eθs is precisely the
Euclidean rotation ru of oriented axis Rs and angle 2θ. In particular, we get a surjective morphism
c : Sp(1) → SO(3) with kernel {±1}50.

Proposition A.10. Let (s1, s2, s3) be a triple of quaternions. The following are equivalent:
(i) (s1, s2, s3) is a direct orthonormal basis of ImH.
(ii) There exists a unit quaternion u (unique up to sign) such that

(s1, s2, s3) = u(i, j, k)u−1 = (ru(i), ru( j), ru(k)) .
49Note by the way that polynomials may have infinitely many roots in H.
50This is maybe the easiest way to see that SO(3) has fundamental group Z/2Z and double cover Sp(1) = Spin(3) ≈ S3.
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(iii) (s1, s2, s3) satisfy the quaternionic relations (A.2).

We will call a such triple (s1, s2, s3) a quaternionic triple.

Remark A.11. Representing quaternions by matrices:
• The multiplication (on the right, say) by a given quaternion defines an element of EndRH ≈
M4×4(R), so any quaternion can be represented by a 4 × 4 matrix with real entries (which we
will not bother writing), and H can be embedded as a subalgebra ofM4×4(R).

• If s is any quaternion that squares to −1 (i.e. s ∈ S is a unit pure imaginary quaternion),
then multiplication by s on the right (say) is a linear complex structure on H. Moreover,
multiplication on the left by a given quaternion commutes with that almost complex structure,
so it is a complex linear endomorphism of (H, s) ≈ C2. Consequently, H can be embedded as
subalgebra ofM2×2(C). A such representation gives an isomorphism U(1,H) ≈ SU(2,C).

Quaternionic vector spaces, linear maps and matrices

Non-commutativity ofHmakes quaternionic linear algebra tricky51. Many concepts of linear algebra
over commutative fields are still valid, for example bases, dimension, many matrix decompositions;
however another lot do not work well, including determinants and eigenspaces. It is not our intent
to discuss any of that (the curious reader may refer to [37]), we merely want to introduce a few
definitions and concepts that are relevant to studying hyperkähler structures.

When discussing quaternionic linear algebra, it has to be decided whether we deal with left or
right vector spaces. Here we are faced with a dilemma. On the one hand, right vector spaces work
better with matrices, because the relation between vectors and linear maps to matrices is the same
as in classical linear algebra52. On the other hand, in complex differential geometry, the common
usage is to represent (almost) complex structures by linear endomorphisms, which represent scalar
multiplication on the left. Of course, the theory of left and right vector spaces are equivalent, but in
practice this can be a headache. Since we are on the differential geometry side, we will stick to left
quaternionic vector spaces and deal with the slightly unpleasant consequences when working with
matrices 53.

Definition A.12. A left quaternionic vector space is equivalently:
(i) A left H-module V .
(ii) A real vector space V with a linear quaternionic structure, that is the data of three endomor-

phisms I, J, K ∈ EndR(V) that satisfy the quaternionic relations (A.2) under composition.

Of course, the relation between the two definitions is that I is the scalar multiplication by i, etc.

Remark A.13. A couple remarks about linear quaternionic structures:

51Quaternionic analysis is arguably worse, see e.g. [46].
52Namely: with respect to a basis, a vector may be represented as a column vector with quaternion entries. The action

of linear map is represented by matrix multiplication on the left, and composition of linear maps corresponds to matrix
multiplication in the same order as we write the composition. In particular, choosing a basis of an n-dimensional right
quaternionic vector space V gives an isomorphism of algebras EndH V

∼→Mn×n(H).
53A maybe more ambitious solution would be to embrace a different convention for hyperkähler structures as Bryant

does in [14], although that goes against quasi-unanimous usage.
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• I, J and K are all linear complex structures on V , since they square to −1. More generally,
if s = bi + c j + dk ∈ S is a unit pure imaginary quaternion (i.e. a square root of −1), then
Is := bI + cJ + dK is a linear complex structure on V . Hence V is equipped with a 2-sphere
of linear complex structures parametrized by S.

• If (s1, s2, s3) is a quaternionic triple, then (Is1, Is2, Is3) is a new linear quaternionic structure on
V . However it defines the same 2-sphere of linear complex structures, equivalently it spans the
same subspace of EndRV (isomorphic to ImH). Two such linear quaternionic structures on
V will be called equivalent. From the discussion of the previous paragraph, equivalent linear
quaternionic structures are parametrized by SO(3).

Now let us discuss linear maps between quaternionic vector spaces. Just for comfort, we restrict
our attention to the case where the domain and target space are the same.

Definition A.14. Let f : V → V be a map from a left quaternionic vector space V to itself. f is
called quaternionic linear if, equivalently:

(i) f is a morphism of left H-modules.
(ii) f is real linear and commutes with I, J and K .

Let (ej)16 j6n be a basis of V (we assume that V is finite-dimensional). Then any vector x ∈ V
can be written x = x1e1 + · · · + xnen, where xj ∈ H. By linearity, f (x) = ∑

k xk f (ek), so
f (x) = ∑

j,k xkak jej where ai j are the quaternions such that f (ei) =
∑

j ai jej . Let X denote the row
vector X = (x1, . . . , xn) and A the n × n matrix with (i, j)-entry ai j . Be wary that A is the transpose
of the matrix that we would define in classical linear algebra. The computation above shows:

PropositionA.15. Let X ,Y ∈ H1×n be the row vectors associated to x, y ∈ V and A = Af ∈ Mn×n(H)
be the matrix associated to a linear map f : V → V as above. Then

y = f (x) ⇔ Y = X Af . (A.3)

It follows that the map EndHV →Mn×n(H) defined by f 7→ Af is an anti-isomorphism of algebras:

Af ◦g = Ag Af . (A.4)

An alternative approach is the following. Represent vectors x, y by column vectors X , Y as
usual, also define the matrix Af associated to a linear map f the usual way. Define a new matrix
multiplication54 inMn×n(H) by

A • B = (
∑
k

bikak j)16i, j6n = t(tB tA
)

(A.5)

where M 7→ tM denotes matrix transposition. Then Y = A • X and EndHV → (Mn×n(H), •) is an
isomorphism of algebras.

Of course, once a basis has been chosen, an n-dimensional left quaternionic vector space V is
isomorphic to H1×n, with scalar multiplication given by entry-wise quaternion multiplication on the
left. An additive map f : H1×n → H1×n is linear if and only if it commutes with scalar multiplication,
and we saw that such maps are given by matrix multiplication on the right.

Naturally, the group of invertible quaternionic linear endomorphisms of V is denoted GLH(V),
and the group of invertible matrices inM(H) is denoted GL(n,H) ≈ GLH(Hn).

54This is the “right multiplication” discussed in [41].
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Linear hyper-Hermitian structures

Let V be a left quaternionic vector space. Denote by (I, J,K) the linear quaternionic structure on V .

Definition A.16. A linear hyper-Hermitian (or hyperkähler) structure on V is, equivalently, the data
of:

(i) A hyper-Hermitian inner product, that is a pairingH : V×V → H such that (1)H is quaternionic
linear in the first slot (2) H has hyper-Hermitian symmetry: switching the arguments produces
the quaternionic conjugate and (3) H(x, x) is positive definite.

(ii) A real inner product g : V × V → R such that I, J and K are g-orthogonal.

The relation between the two definitions is that a hyper-Hermitian pairing H is written in real
and imaginary parts H = g − ωh, where ωh is determined by g and I, J, K:

ωh = iωI + jωJ + kωK = ig(I ·, ·) + jg(J ·, ·) + kg(K ·, ·) . (A.6)

Note that (g, I), (g, J) and (g,K) are linear Hermitian structures with associated Kähler forms
ωI , ωJ , ωK . More generally, for any unit pure imaginary quaternion s ∈ S, we get a linear Hermitian
structure (g, Is) with Kähler form ωs = g(Is ·, ·).

ωh is called (by us) the hyperkähler form of the hyper-Hermitian hermitian structure. It is a
skew-symmetric real bilinear operator with values in ImH:

ωh ∈ Λ2V∗ ⊗R ImH . (A.7)

Be cautious here that V∗ denotes the real dual of V 55.
A small computation shows that ωc := ωJ + iωK is a linear complex symplectic structure on

the linear complex vector space (V, I) (it is a nondegenerate, I-complex bilinear, skew-symmetric
form). In this sense, a linear hyper-Hermitian structure may be considered as a refinement of a
linear complex symplectic structure. More generally, if (s1, s2, s3) is any quaternionic triple, then
ωc
(s1,s2,s3) := ωs2 + iωs3 is a linear complex symplectic structure on (V, Is1). If s2 and s3 are not

specified, then ωc
(s1,s2,s3) is defined up to a multiplicative unit complex number.

Aquaternionic linear endomorphismofV is called (hyper)unitary if it preservesH, or equivalently
g. The group of quaternionic unitary endomorphisms of V is denoted U(V,H) or Sp(V,H). It can be
described as the intersection Sp(n) = EndH(V) ∩ O(V, g).

The canonical example of a hyper-Hermitian linear structure is the left quaternionic vector space
Hn with the hyper-Hermitian inner product H(x, y) = x1y1 + · · · + xnyn = XY ∗, where M 7→ M∗

denotes the transpose quaternionic conjugation of amatrix (here a row vector). Transpose conjugation
reverses products: (AB)∗ = B∗A∗. The matrix subgroup of GLn(H) corresponding to quaternionic
unitary endomorphisms of (Hn,H) is denoted Sp(n)56 or U(n,H), it is characterized as

Sp(n) = {A ∈ Mn×n(H), A A∗ = 1} = GLn(H) ∩ O(4n) . (A.8)
55We will not work with the quaternionic dual of V , which by the way is a right quaternionic vector space, making

transposition a bit tricky.
56This standard notation is potentially misleading: Sp(n) is not a symplectic group. It is, however, the maximal compact

in the complex symplectic group Sp(2n,C). Under the identification Hn ≈ C2n, Sp(n) = Sp(2n,C) ∩ U(2n,C). For this
reason, the quaternionic unitary group Sp(n) is commonly called the compact symplectic group.
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A.3 Hyperkähler structures

Definitions

Similarly to a Kähler structure, a hyperkähler structure on a manifold is a smooth family of linear
hyper-Hermitian structures in its tangent spaces, with an additional integrability condition:

Definition A.17.a. Let M be a smooth manifold. An hyperkähler structure on M is the data of a
Riemannian metric g and three almost complex structure I, J and K such that:

(i) I, J and K satisfy the quaternionic relations: I J = −JI = K .
(ii) I, J and K are g-orthogonal (compatibility condition).
(iii) I, J and K are parallel with respect to the Levi-Civita connection of g: ∇I = ∇J = ∇K = 0

(integrability condition).

Note that conditions (ii) and (iii) are precisely saying that (g, I), (g, J) and (g,K) are Kähler
structures on M . Naturally, we let ωI , ωJ and ωK denote the respective Kähler forms.

We give an equivalent definition in accordance with our discussion in the linear setting:

Definition A.17.b. Let M be a smooth manifold. A hyperkähler structure on M is the data of:
(i) A quaternionic structure in the tangent bundle of M , i.e. a smooth bundle action of H in T M ,

making each tangent space TxM a left quaternionic vector space,
(ii) A hyper-Hermitian metric on M , i.e. a smooth pairing H : T M × T M → H such that H is a

hyper-Hermitian inner product in each tangent space TxM ,
such that the the hyperkähler form ωh := − Im H ∈ Λ2(M, ImH) is closed (integrability condition).

A manifold with just a quaternionic structure in tangent bundle (condition (i)) is usually called
almost hypercomplex. Of course, this is the same as three almost complex structures I, J and K
satisfying the quaternionic relations. A hyper-Hermitian metric H on M is then equivalent to a
Riemannian metric g on M that is compatible with I, J and K , as we saw in the previous subsection.
The hyperkähler form ωh is given in terms of the Kähler forms of (g, I), (g, J) and (g,K) by
ωh = iωI + jωJ + kωK . Nevertheless, there is something nontrivial about the equivalence of the
two definitions: it is surprising that the integrability condition dωh = 0 is enough. It is just saying
that ωI , ωJ and ωK are closed, and one would expect the additional requirement that I, J and K
are integrable. Hitchin showed in [18] that this is automatically satisfied. This fact is useful in the
setting of hyperkähler reduction.

The 2-sphere of Kähler structures

Let (M, g, I, J,K) be a hyperkähler manifold. Recall that S denotes the Euclidean 2-sphere of unit
pure imaginary quaternions (i.e. square roots of −1 in H).

For any s = bi + c j + dk ∈ S, Is = bI + cJ + dK is an almost complex structure on M , which is
clearly parallel with respect to g and easily checked to be g-orthogonal, so (g, Is) is a Kähler structure
on M . A hyperkähler manifold is thus equipped with a 2-sphere of Kähler structures {(g, Is), s ∈ S}.

Consider a fixed identification S ≈ CP1 given by stereographic projection. Let Z be the complex
manifold Z := M × CP1, where the complex structure on Z is induced by the complex structures
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Is on the horizontal slices M × {s} and by the complex structure of CP1 on the vertical slices. The
projection on the second factor p : Z → CP1 is clearly a holomorphic fiber bundle, called the twistor
space of the hyperkähler manifold M . The twistor space encapsulates all of the hyperkähler structure
on M in terms of holomorphic data: given a holomorphic fiber bundle p : Z → CP1 satisfying the
appropriate conditions, it is possible to recover the hyperkähler structure in the typical fiber. We refer
to [20] for details.

Note that when (s1, s2, s3) is any quaternionic triple and c > 0 is a positive real number, then
(cg, Is1, Is2, Is3) is a new hyperkähler structure on M . Two such hyperkähler structures are called
equivalent. Two hyperkähler structures are equivalent if and only if their Riemannian metrics are
constant proportional and their triple of complex structures generate the same subspace of EndR(T M).
Presumably, this amounts to saying that their twistor spaces are isomorphic (I have not carefully
checked).

As expected from the linear algebra, given a hyperkähler manifold (M, g, I, J,K), the complex-
valued 2-form ωc := ωJ + iωK is a complex symplectic form on the complex manifold (M, I). In
this sense a hyperkähler structure is a refinement of a complex symplectic structure. More generally,
if (s1, s2, s3) is any quaternionic triple, then ωc

(s1,s2,s3) := ωs2 + iωs3 is a complex symplectic structure
on (M, Is1). If s2 and s3 are not specified, thenωc

(s1,s2,s3) is defined up to a multiplicative unit complex
number.

Riemannian holonomy

Let (M, g) be a connected Riemannian manifold of dimension n. Given a basepoint p ∈ M , parallel
transport along loops based at p defines a subgroup of O(TpM) ≈ O(n) called the Riemannian (full)
holonomy group of (M, g) at p. Ignoring the choice of the basepoint p and the linear isometric
isomorphism TpM ≈ Rn, the holonomy group is a subgroup of O(n) defined up to conjugation. The
restricted holonomy group is obtained by parallel transporting only along null-homotopic loops57. A
generic Riemannian manifold has (restricted) holonomy group O(n) if it is nonorientable and SO(n)
if it is orientable. When the (restricted) holonomy group turns out to be a proper subgroup, the
Riemannian manifold (M, g) is said to have special holonomy.

Let now (M, g, I, J,K) be a hyperkähler manifold. Since I, J and K are parallel with respect
to the Levi-Civita connection of g, parallel transport commutes with quaternionic multiplication.
In particular, the Riemannian holonomy group of (M, g) is contained in GLn(H) ∩ O(4n) = Sp(n).
Conversely, given a Riemannian manifold (M, g) with holonomy in Sp(n), one can construct a
hyperkähler structure by parallel transporting three adequate linear complex structures Ip, Jp, Kp

in some tangent space TpM . However, this construction may give rise to several inequivalent
hyperkähler structures. Some authors still define a hyperkähler manifold as a Riemannian manifold
with holonomy in Sp(n), which can be a source of (mild) confusion.

Let us recall Berger’s classification of Riemannian holonomy groups:

Theorem A.18. Let (M, g) be an orientable complete Riemannian manifold of dimension n which is
irreducible (not locally a product) and nonsymmetric (not locally a Riemannian symmetric space).

57Equivalently (though this is not trivial), the restricted holonomy group is the identity component of the full holonomy
group.

30



Then the restricted holonomy group of (M, g) is one of the seven groups in the following diagram:

SO(n)
Orientable

U(n/2)
Kähler

SU(n/2)
Calabi-Yau

Sp(n/4)
Hyperkähler

Ricci-flat G2
(n = 7)

Spin(7)
(n = 8)

Sp(n/4) ×{±1} Sp(1)
Quaternionic-Kähler

Thus hyperkähler manifolds are “the most special” Riemannian manifolds: their holonomy group
lies in the intersection of all special holonomy groups (setting aside the exceptional caseG2), as shown
in the diagram above58. Note that Riemannian manifolds with special holonomy can basically be
classified in three families: Kähler, Ricci-flat and quaternionic. Hyperkähler manifolds are the ones
that belong to all three families.

A.4 Hyperkähler structures and Calabi-Yau structures

There are several inequivalent definitions of Calabi-Yau manifolds in the literature. We give one that
is most adapted to our discussion. For the interested reader, a nice overview of Calabi-Yau manifolds
is layed down by Yau in the scholarpedia article [53].

Definition A.19. Let M be a smooth connected manifold59 of dimension 2n. A Calabi-Yau package
on M is the data of:

(i) A Kähler structure (g, I).
(ii) A holomorphic volume form Ω on (M, I), i.e. a closed (n, 0) form, i.e. a holomorphic section

of the canonical bundle of (M, I), which satisfies the “normalizing” condition:

cnΩ ∧ Ω̄ = volg (A.9)

58This relates to the fact that H is the largest normed division algebra over the reals (Frobenius theorem), setting aside
the nonassociative algebra of octonions (which actually gives rise to the two exceptional cases Spin(7) and G2).

59Usually Calabi-Yau manifolds are required to be compact, but we do not make that assumtion.
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where cn is a constant given by cn =
(
i
2
)n (−1)

n(n−1)
2 60.

Proposition A.20. Let (M, g, I,Ω) be a Calabi-Yau manifold. Then:
(i) g is Ricci-flat.
(ii) (M, I) has vanishing real first Chern class: c1(M, I) = 0.
(iii) g has holonomy in SU(n).
(iv) Ω is parallel: ∇gΩ = 0.

These properties and their relations can be derived our previous discussion about the Ricci
curvature on a Kähler manifold (last part of subsection A.1). For (iv), the additional ingredient
required is Bochner’s formula61. These properties are interrelated and each one of them defines
a Calabi-Yau structure on M in some sense, although one may have to change the metric or the
holomorphic volume form. We leave the details of this discussion to the reader as a (nice) exercise.

A.5 Examples

Examples of hyperkähler structures are not easy to come by. Quaternionic structures are already hard
to construct: there is no quaternionic equivalent of complex differential geometry, because the notion
of quaternionic differentiability is too restrictive. Kähler structures are “abundantly” provided by
complex submanifolds of the complex projective space, by contrast the quaternionic projective space
HPn itself is not hyper-Kähler, it is only “quaternionic-Kähler” (with holonomy in Sp(n)×{±1}Sp(1)).

Eguchi-Hanson metric

In preparation.

Compact hyperkähler manifolds of real dimension 4

In preparation.

Hyperkähler reduction

In preparation.

Feix hyperkähler structure on the cotangent bundle of Kähler manifold

In preparation.

60This constant cn is chosen to make ReΩ a calibration. It also gives Ω have a nice expression in suitable coordinates:
the prototype of a Calabi-Yau manifold is Cn with its standard flat Kähler structure and holomorphic volume form
Ω = dz1 ∧ · · · ∧ dzn.

61Bochner’s formula implies that holomorphic tensors on a Ricci-flat compact Kähler manifold are always parallel.
However in this situation, compactness of M is not needed.

32



B Symplectic reduction

A reference : l’autre conne dans téléchargements. Nice reference for symp reduction : Marsden-
Weinstein [33] Historically, symplectic reduction has been used to reduce the number of dimensions
to study Hamiltonian systems, but this is not our approach here. We will use symplectic reduction to
study the structure of moduli spaces, which has also been a spectacular use of symplectic reduction
in mathematics and mathematical physics.

B.1 Hamiltonian actions on symplectic manifolds

Let (M, ω) be a connected symplectic manifold. Recall that the symplectic form ω is a closed non-
degenerate 2-form on M . The non-degeneracy of ω is expressed as the fact that the “symplectic
duality” map

ω[ : T M → T∗M

v 7→ ivω = ω(v, ·)

is invertible. We letω] denote its inverse. Avector fieldV is called symplectic if the dual one-form iVω
is closed, and it is calledHamiltonianwhen iVω is exact. It is an immediate consequence of “Cartan’s
magic formula” LV = iV ◦ d + d ◦ iV that V is a symplectic vector field if and only if it preserves
the symplectic structure in the sense that LVω = 0 (here LV is the Lie derivative). A standard
computation shows that this amounts to saying that the flow of V acts by symplectomorphisms.
When V is a Hamiltonian vector field, there exists a function f : M → R (unique up to addition
of a constant) such that df = iVω, in that case V = ω](df ) is called the Hamiltonian vector field
(or symplectic gradient) of f , often denoted Xf , and f is called a Hamiltonian function for V . The
Poisson bracket of two functions f and g is defined by { f , g} = ω(Xf , Xg), giving C∞(M) the
structure of a Lie algebra62.

Now assume that a connected Lie group G acts smoothly on M . The infinitesimal action of G is
the map

V : g→ Γ(T M)
ξ 7→ Vξ

defined by (Vξ )x =
d
dt |t=0(e

tξ · x) for all x ∈ M . Here we have denoted g the Lie algebra of G
and Γ(T M) the Lie algebra of vector fields on M . Note that V is always a homomorphism of Lie
algebras. The action of G on (M, ω) is called symplectic if G acts by symplectomorphisms. By the
discussion above this equates to Vξ being a symplectic vector field for all ξ ∈ g. When Vξ is in fact
always a Hamiltonian vector field, the action of G is called almost Hamiltonian63 (this is sometimes
automatically the case -for instance when M has vanishing first cohomology). In other words, the

62Moreover the Poisson bracket acts as a derivation on the product of functions, giving C∞(M) the structure of a Poisson
algebra (see [23] for a precise definition).

63Some authors call it weakly Hamiltonian, some just Hamiltonian -creating potential confusion.

33



action of G is almost Hamiltonian when there is a map H : g→ C∞(M), ξ 7→ Hξ such thatVξ = XHξ

for all ξ ∈ g. It is easy to check that H can always be chosen linear, and this choice is unique up to
addition of a linear map σ : g → R. The action of G is called (strongly) Hamiltonian (or Poisson)
whenσ can be chosen tomake H a homomorphism of Lie algebras for the Poisson bracket on C∞(M).
Sometimes any almost Hamiltonian G-action on M is automatically Hamiltonian, for instance when
H2(g,R) = 0; in any case when the action is Hamiltonian the choice of σ is unique up to an element
of H1(g,R) = {σ ∈ g∗, [g, g] ⊂ kerσ}64. Note that when G is semisimple H1(g,R) = H2(g,R) = 0
(Whitehead lemma), whence any almost Hamiltonian G-action is Hamiltonian and the choice of H
is unique.

B.2 Moment maps

Given an almost Hamiltonian action of a connected Lie group G on a connected manifold M and a
choice of a linear H : g→ C∞(M) such that Vξ = XHξ for all ξ ∈ g, the moment map65 for the action
is the map

µ : M → g
∗

x 7→ [ξ 7→ Hξ (x)]

in other words 〈µ(·), ξ〉 = Hξ . A moment map is characterized by the relation

d〈µ(·), ξ〉 = iVξω (B.1)

for all ξ ∈ g. This could be rewritten dµ = ω[(V), in this sense µ is a Hamiltonian function for the
infinitesimal action. A small computation shows that µ is G-equivariant (where G acts on g∗ by the
coadjoint action) if and only if H is a homomorphism of Lie algebras. By the preceding discussion,

Proposition B.1. Let G be a connected Lie group acting on a connected symplectic manifold (M, ω)
by symplectomorphisms.

(i) There exists a moment map µ : M → g∗ if and only if the action is almost Hamiltonian. A
moment map is unique up to addition of a constant σ ∈ g∗.

(ii) There exists an equivariant moment map if and only if the action is Hamiltonian66. An
equivariant moment map is unique up to addition of a constant σ ∈ H1(g,R) ⊂ g∗.

Example B.2. For the reader’s convenience, we give a few typical Hamiltonian actions and moment
maps:

64Let us develop a bit further for the thorough reader. One can associate to an almost Hamiltonian action the map
τ : g × g → R given by τ(ξ, η) = {Hξ,Hη} − H[ξ,η]. This map is a 2-cocycle in the cochain complex C•(g,R) in the
sense of Lie algebra cohomology. The class [τ] ∈ H2(g,R) does not depend on the choice of the additive constant σ
in H. The action is Poisson exactly when [τ] = 0, which means that τ = dσ for some 1-cochain σ (concretely σ is a
linear map g → R and τ(ξ1, ξ2) = σ([ξ1, ξ2])); choosing a such σ for the additive constant in H makes it a Lie algebra
homomorphism. In particular every almost Hamiltonian action is Hamiltonian when H2(g,R) = 0. A finer obstruction is
given by the equivariant cohomology H2

G
(M), but this is beyond our scope.

65The terminology momentum map is also used and arguably more correct as the English translation of the French
application moment coined by Souriau [45].

66G-equivariance is often enforced in the definition of a moment map (in fact Donaldson does in [10]).
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(1) R-actions. Let G = R. A symplectic action of G on (M, ω) is the flow of a complete
symplectic vector fieldV . The action is (almost) Hamiltonian if and only ifV is a Hamiltonian vector
field, and an equivariant moment map is a function f : M → Lie(R)∗ ≈ R that is a Hamiltonian
function for V .

(2) Cotangent bundle action. Let a connected Lie group G act smoothly on a connected
manifold X , denote by V : g → Γ(T X) the infinitesimal action. There is natural induced bundle
action of G on the cotangent bundle M = T∗X , and this action is Hamiltonian with respect to
the canonical symplectic structure ωc. An equivariant moment map µ : T∗X → g∗ is given by
〈µ(α), ξ〉 = α(Vξ ).

(3) Coadjoint orbits. Let G be a compact connected Lie group and let M = G · α ⊂ g∗ be a
coadjoint orbit67. M is equipped with a symplectic structure as follows. The tangent space to M at
a point β = g · α ∈ g∗ is given by TβM = {ad∗ξ β, ξ ∈ g}. The symplectic form at β is defined by
ω(ad∗ξ β, ad∗ξ′ β) = 〈β, [ξ, ξ ′]〉68. The coadjoint action of G (or any subgroup) on M is Hamiltonian,
and an equivariant moment map is given by the inclusion M → g∗.

(4) Angular momentum. Let G = SO(3) act on R3 by linear isometries. As a special case of
example (2), G naturally acts symplectically on M = T∗R3. Under the identification (R3)∗ ≈ R3 given
by the standard inner product on R3, the action of G on M ≈ R3×R3 is given by A · (q, p) = (Aq, Ap).
Recall that the Lie algebra so(3) is isomorphic to (R3,×) (where× denotes the cross-product onR3)69.
Using these identifications, the equivariantmomentmap µ : M → so(3)∗ is themap µ̃ : R3×R3 → R3

given by µ(q, p) = q × p. In classical physics, M can be described as the phase space of a particle,
and µ is called its angular momentum.

B.3 Symplectic reduction

Let (M, ω) be a connected symplectic manifold with a Hamiltonian action of a connected Lie group
G, and let µ : M → g∗ be an equivariant moment map for the action. For α ∈ g∗, denote by
Mα = µ−1(α) ⊂ M the α-level set of µ and denote by G0

α the identity component of the stabilizer
Gα ⊂ G for the coadjoint action of G on g∗. By equivariance of µ, the action of G0

α on M preserves
Mα. Now assume that

(i) α is a regular value70 of µ, so that Mα is a submanifold of M by the submersion theorem.
(ii) The action of G0

α on Mα is free and proper, so that the quotient Mα/G0
α has a natural smooth

structure making the projection p : Mα → Mα/G0
α a smooth map.

The following theorem defining symplectic reduction is due to Marden-Weinstein [32]:

Theorem B.3. Under the assumptions above71, the quotient manifold Mα/G0
α enjoys a unique sym-

67where G acts on g∗ via the coadjoint action g · α = Ad∗g α = α ◦ Adg.
68This is called the Kirillov-Kostant-Souriau symplectic structure. Its closedness derives from the Jacobi identity.

69The isomorphism so(3) → R3 is given by ©­«
0 −a3 a2
a3 0 −a1
−a2 a1 0

ª®¬ 7→ (a1, a2, a3).

70Recall that a regular value of a smooth map f : M → N is a point y ∈ N such that df |x : TxM → TyN is surjective
for all preimages x of y. We assume that f −1(y) , ∅.

71The assumptions (i) and (ii) may be slightlyweakened as follows. (i’): α is a clean value. Thismeans that Mα = µ
−1(α)
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plectic structure ωα such that the projection map p : Mα → Mα/G0
α is a “symplectomorphism”72.

The symplectic manifold (Mα/G0
α, ωα) is called a symplectic reduction (or symplectic quotient,

or Marsden-Weinstein quotient) of (M, ω).
When α happens to be a fixed point of the coadjoint action, note that the full group G preserves

Mα and the quotient is taken with respect to the full group action (since G = G0
α). Moreover, α is a

fixed point of the coadjoint action if and only if α ∈ H1(g,R) if and only if the shifted moment map
µ̃ = µ − α is again equivariant. This shift trick allows one to define symplectic reduction at α = 0
without loss of generality73. When it is understood which value of α allowing symplectic reduction
is chosen, the symplectic quotient Mα/G is often called “the” symplectic reduction of M and denoted
M//G.

Remark B.4. It is not hard to show that regular points of µ are the points of M with discrete stabilizer.
For this reason the quotient µ−1(α)/G is never very bad when α is a regular value (G0

α acts locally
freely on µ−1(α) so the quotient has an orbifold structure). When α is not a regular value, one can try
to work with the quotient µ−1(α)reg/G0

α (where µ−1(α)reg denotes the set of regular points in µ−1(α)).
It is of course always possible to take the full quotient µ−1(α)/G0

α, but it may have more serious
singularities.

Example B.5. Let us give a first couple of examples of symplectic reduction.
(1) Let us look back at example (2) in the previous set of examples B.2 for moment maps:

consider the Hamiltonian action of G on a cotangent bundle T∗X induced by an action of G on X .
Assume that the action of G on X is free and proper. Check that the 0-level set of the moment map
µ : T∗X → g∗ is the subbundle T⊥v X ⊂ T∗X of covectors that vanish on the vertical tangent bundle
TvX ⊂ T X to the bundle projection X → X/G. The action of G on T⊥v X is free and proper and the
projection T⊥v X → T∗(X/G) induces a symplectic isomorphism

T∗X//G ∼→ T∗(X/G) . (B.2)

Details are left to the reader.
(2) Let (M, ω) = Cn where ω is the standard symplectic structure on Cn given by ω = − Im(h),

where h is the usual Hermitian inner product on Cn. In the usual coordinates (zk = xk + iyk)16k6n,
these are written h =

∑n
k=1 dzk ⊗ dz′k and ω =

∑n
k=1 dxk ∧ dyk . Let G = U(1) act on M by complex

scalar multiplication. The action is Hamiltonian with equivariant moment map µ : Cn → u(1)∗ ≈ iR
given by µ(z) = i

2 ‖z‖2. Any value α = i r2 ∈ u(1)∗ with r > 0 is a regular value of the moment map,
and a fixed point of the coadjoint action since G is abelian. Moreover G acts freely and properly (by

is a smooth submanifold of M , and moreover TxMα = ker dµ |x for any x ∈ Mα. (ii’): Mα/G0
α can be given a smooth

structure making the projection p : Mα → Mα/G0
α a smooth map. Note that when such a smooth structure exits, it is

unique.
72The reason for the quotation marks around “symplectomorphim” is that the induced 2-form ι∗ω on Mα (where

ι : Mα → M denotes the inclusion) is not a symplectic structure on Mα a priori, it can be degenerate. Anyway,
“symplectomorphim” means that p∗ωα = ι∗ω.

73The more general shift trick is as follows. Let G ·α denote the coadjoint orbit of α. It has a natural symplectic structure
and a G-equivariant moment map is given by the inclusion G · α ⊂ g∗, see example B.2 (3). Consider M̃ = M × (G · α)
with the product symplectic structure and diagonal action of G. Then µ̃ : (x, β) 7→ µ(x) − β is an equivariant moment map
on M̃ . Moreover, there is a canonical symplectomorphism between the symplectic reductions µ̃−1(0)/G and µ−1(α)/Gα.
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compactness) on the level set µ−1(α), which is the Euclidean sphere Sr of radius r in Cn. For r = 1,
the symplectic quotient µ−1(α)/G is the complex projective space CPn−1 and one can check that the
reduced symplectic structure coincides the Kähler form of the Fubini-Study metric on CPn. This is
no coincidence, as we will see.

B.4 Kähler reduction

Assume now that the connected manifold M has a Kähler structure and that the Hamiltonian action
of the connected Lie group G preserves the Kähler structure. Under the restriction that only values
α ∈ g∗ that are fixed points of the coadjoint action are now allowed, the symplectic quotients
µ−1(α)/G inherit the Kähler structure. Let us now write this down more precisely.

The theorem for Kähler reduction goes:

Theorem B.6. Let (M, g, I, ω) be a Kähler manifold and let G be a connected Lie group acting on M
preserving the Kähler structure74. Assume that the action is Hamiltonian (with respect to the Kähler
form ω) and let µ : M → g∗ be an equivariant moment map. Let α ∈ g∗ be a fixed point for the
coadjoint action of G such that

(i) α is a regular value of µ, so that Mα = µ
−1(α) is a G-invariant submanifold of M , and

(ii) the action of G on Mα is free and proper, so that p : M → Mα/G is a smooth submersion.
Then there is a unique Kähler structure (gα, Iα, ωα) on Mα/G such that p∗gα = ι∗g and p∗ωα = ι∗ω75.

Example B.7. Here are a couple examples of Kähler reduction:
(1) Fubini-Study metric on CPn. Example B.5 (2) is an example of Kähler reduction, since

the action of U(1) on Cn preserves the Kähler structure. The reduced Kähler structure on CPn can
be taken as a definition of the Fubini-Study metric. It is characterized by the fact that the complex
structure agrees with the standard complex structure on CPn and the projection map S1 → CPn is a
Riemannian submersion.

(2) Complex Grassmannians. Let M = Ck×n and let G = U(k) act on M by matrix multi-
plication on the left. This action preserves the standard Kähler structure of M and is Hamiltonian.
An equivariant moment map µ : M → g∗ is given by µ(A) = i

2 AA∗ ∈ u(k) under the identification
u(k) ≈ u(k)∗ given by the complex Killing form (a, b) 7→ − tr(ab). The matrix α = i

21 is a regular
value of µ and a fixed point of the coadjoint action. G acts freely and properly on the level set µ−1(α),
which can be described as the space of unitary k-frames in Cn (taking the rows of A). It follows
that the quotient µ−1(α)/G is the space of k-planes in Cn, in other words the complex Grassmannian
G(k, n), which inherits a Kähler structure by reduction.

74Meaning that the action of G leaves g, I and ω invariant (in other words it is an isometric, holomorphic and symplectic
action). By the previous remark, it suffices to say that G preserves two out of these three structures.

75Again one is tempted to just say that p is a morphism of Kähler manifolds, but not only ι∗ω is very possibly degenerate
(so it cannot be called a symplectic structure), Mα is not necessarily a complex submanifold of (M, I), in which case ι∗I
does not make sense. Only ι∗g is an honest Riemannian metric, so p can at least be called a Riemannian submersion.
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B.5 Complex quotients and GIT quotients

Complex quotients

Keep the setting of Kähler reduction: consider a Kähler Hamiltonian action of a connected Lie group
K (soon compact) on a Kähler manifold (M, g, I, ω). Also assume that 0 ∈ g∗ is a regular value of an
equivariant moment map µ : M → g∗.

Since the action ofK on (M, I) is holomorphic, it is natural to speculate that it uniquely extends to a
holomorphic action of the complexified group KC, with infinitesimal actionV : kC = k⊕ ik 7→ Γ(T M)
given by Vξ+iη = Vξ + IVη . This is not always true though (the flow of these vector fields needs to be
complete), but it is when K is compact. From now on we will assume that is the case. One expects
that the quotient µ−1(0)/K may be identified with the quotient Mps/KC, where Mps ⊂ M is the set of
points in M whose KC-orbit intersects µ−1(0). Such points are called polystable. This observation
gives an alternate viewpoint on Kähler reduction, now described as the quotient of a (generally large)
subset of M by the complexified group KC. A finer analysis of the action of KC on M motivates the
following definitions:

Definition B.8. Let M be a connected Kähler manifold with a Kähler Hamiltonian action of a
compact connected Lie group K and let µ : M → g∗ be an equivariant moment map for the action.
In the sense of symplectic reduction, a point x ∈ M is called:

• semistable if the closure of the KC-orbit of x meets µ−1(0).
• polystable if the KC-orbit of x meets µ−1(0).
• stable if it is polystable and has finite stabilizer under the action of K (equivalently KC).
• (strictly) unstable if it is not semistable.

Note that the closure of the orbit of any semistable point contains a unique polystable orbit. Also,
note that a point x in µ−1(0) is stable if and only if it is a regular point for µ, by remark B.4.

Theorem B.9. Let Ms ⊂ Mps ⊂ Mss ⊂ M denote the sets of stable, polystable, and semistable
points in M .

(i) Both Ms and Mss are open in M .
(ii) KC acts properly on Ms and

µ−1(0)reg /K = Ms /KC . (B.3)

(iii) Denoting ∼ the equivalence relation on Mss identifying two points when the closures of their
KC-orbits intersect,

µ−1(0) /K = Mss /∼ = Mps /KC . (B.4)

In particular, when 0 is a regular value of µ and K acts freely on µ−1(0), then Mps = Ms and

Mss /∼ = Ms /KC = M//K (B.5)

where M//K denotes the symplectic quotient.

We will see examples of complex quotients in what follows, e.g. example B.19.
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GIT quotients

In the algebraic setting, this relates to Geometric Invariant Theory (in short GIT). A decent intro-
duction to GIT is well beyond the scope of these notes, but let us try to give a sense of what it is
and how it relates to symplectic reduction and complex quotients. The standard reference for GIT is
[36], a nice reference for our purpose is [48].

So, assume now that M has the structure of an algebraic variety over the complex numbers and
G is a complex algebraic group acting on M . The purpose of GIT is to define a quotient of M by the
action of G with an algebro-geometric structure. GIT shows that when G is reductive (i.e. G = KC

with K compact connected), one can construct an open subvariety Mss ⊂ M and a categorical
quotient76 for the G-action on Mss.

Let us first look at the easy case where M is an affine variety. Let C[M] denote the coordinate
ring of regular functions on M and C[M]G ⊂ C[M] the subalgebra of G-invariant functions. C[M]G
is finitely generated provided G is reductive by Nagata’s theorem solving Hilbert’s 14th problem.
Therefore C[M]G is the coordinate ring of an affine variety (namely SpecC[M]G). This variety is
called the (affine) GIT quotient of M and denoted M//G.

Now, note that the inclusion C[M]G → C[M] defines a morphism of affine varieties π : M →
M//G. One can show that it is a good quotient77, which implies that (1) π is surjective, (2) two points
in M are in the same fiber if and only if the closures of their G-orbits intersect, and (3) any fiber of π
contains a unique closed orbit. In view of that, we give the following definitions and theorem:

Definition B.10. In the sense of GIT, a point x ∈ M is called:
• polystable if its orbit G · x is closed.
• stable if x is polystable and has finite stabilizer.

Theorem B.11. Let Ms ⊂ Mps ⊂ M denote the sets of stable and polystable in M . Ms is open in M .
Let ∼ denote the equivalence relation on M identifying two points when the closures of their G-orbits
intersect. Then (at least as topological spaces)

M//G = M /∼ = Mps /G (B.6)

and Ms/G is an open set in M//G78.

Example B.12. Here are a couple examples of affine GIT quotients:
(1) Let G = C∗ act on M = Cn by scalar multiplication. The only invariant functions are the

constants, so M//G = {0} is a point (and not CPn−1 as one could hope). This corresponds to 0 being
the only polystable point in M . This example shows that the affine case is sometimes best embedded
in the projective case in a nontrivial way.

(2) Let G = GLn(C) act on M =Mn×n(C) by conjugation. The coefficients of the characteristic
polynomial P(λ) = det(λ1 − (Xi j)) are invariant functions on M , in fact they generate C[M]G (hint:
diagonalizable matrices are Zariski dense). Therefore the affine GIT quotient M//G is Cn, with
projection π : M → Cn given by the coefficients of the characteristic polynomial of a matrix. The
polystable points of M are the diagonalizable matrices, and there are no stable points.

76I will not give a general definition of categorical quotients, the interested reader may refer to [36].
77It is also a categorical quotient. See [36] for details.
78Moreover the projection π : Ms → π(Ms) ⊂ M is a geometric quotient, even better than a good quotient.
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(3) Character varieties. Let G be a linear complex reductive group. That includes these notes’
favorite group G = PSL2(C) since PSL2(C) ≈ SO3(C). Let Γ be a finitely generated group and
M = Hom(Γ,G). M is an affine variety (called the representation variety) and G acts on M by
conjugation. The affine GIT quotient X(Γ,G) := Hom(Γ,G)//G is called the G-character variety of
Γ. The polystable points of M are precisely the reductive representations, so as a topological space

X(Γ,G) = Hom(Γ,G) /∼ = Homreductive(Γ,G) /G . (B.7)

The stable points of M are the irreducible representations, thus the conjugacy classes of irreducible
representations embed as an open set in X(Γ,G).

Now let us summarily cover the case where M is a projective variety acted on by a reductive
algebraic group G. This is the standard setting in GIT. For simplicity assume that an embedding of
M in complex projective space CPn = P(Cn+1) has been fixed and that the action of G is projective
linear with a fixed linearization, meaning that G acts via a given morphism G → GL(n + 1,C). Let
M̂ ⊂ Cn+1 denote the affine cone over M . The (points of the) projective variety M is identified to
the (maximal) projective spectrum ProjC[M̂]79. The action of G acts on the graded algebra C[M̂]
preserves the grading, so the ring of invariant functions C[M̂]G is a reduced graded subalgebra. By
Nagata’s theorem this is also finitely generated, so there is a projective variety with coordinate ring
C[M̂]G (namely ProjC[M̂]G). This variety is called the (projective) GIT quotient of M , denoted
M//G.

The inclusion C[M̂]G → C[M̂] induces a rational map π : M d M//G, which is undefined
on the nilcone Mu ⊂ M comprising the points x ∈ M such that f (x̂) = 0 for all non-constant
homogeneous forms f ∈ C[M̂]G (where x̂ ∈ Cn+1 − {0} is a point lying over x). In other words the
points of Mu are the points of M which are not “seen” in the GIT quotient M//G. Throwing away
these points, the restriction π : M −Mu → M//G is a well-defined morphism of projective varieties,
and one can show that it is a good quotient. Let us record the following definitions and theorem:

Definition B.13. In the sense of GIT, a point x ∈ M is called:
• semistable if x ∈ M − Mu. Equivalently, for a (hence all) x̂ ∈ Cn+1 − {0} lying over x, the
orbit closure G · x̂ does not contain the origin 0 ∈ Cn+1.

• polystable if x is semistable and its orbit G · x is closed in the semistable locus. Equivalently,
the orbit G · x̂ is closed in for a (hence all) x̂ ∈ Cn+1 − {0} lying over x.

• stable if x is polystable and has finite stabilizer.
• (strictly) unstable if x ∈ Mu.

Theorem B.14. Let Ms ⊂ Mps ⊂ Mss ⊂ M denote the sets of stable, polystable, and semistable
points in M . Both Ms and Mss are open in M . Let ∼ denote the equivalence relation on Mss

identifying two points when the closures of their G-orbits intersect. Then

M//G = Mss /∼ = Mps /G (B.8)

and Ms/G is an open set in M//G.
79I will not recall what this means, the uninformed reader may ignore this part or look up [23].
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Example B.15. Let us look again at the case where G = C∗ acts on M = Cn by scalar multiplication.
Let us embed M in CPn classically by (z1, . . . , zn) 7→ [z1 : · · · : zn : 1]. If we consider the
trivial linearization of the action given by G → GL(n + 1,C), λ 7→ diag(λ, . . . , λ, 1), then we
recover the affine case B.12 (1) where the GIT quotient is a single point. Instead, let us consider
different linearizations associated to characters χp : C∗ → C∗, λ 7→ λ−p by G → GL(n + 1,C),
λ 7→ diag(λ, . . . , λ, χp(λ)).

• For p = 0, this is just the trivial linearization discussed above.
• For p < 0, there are no non-constant invariant functions in C[M̂] so M//G is empty. Accord-
ingly, all points are unstable.

• For p > 0, the invariant homogeneous functions on M̂ are of the form f (z1, . . . , zn+1) =
g(z1, . . . , zn)zmp

n+1, where m > 0 and g is a homogeneous polynomial of degree mp in n
variables. Check that M//G = ProjC[M̂] = CPn−1. Accordingly, 0 ∈ M is the only unstable
point and all other points are polystable (in fact stable), so that M//G = (Cn−{0})/C∗ = CPn−1.

Kähler reduction and GIT quotients

Finally let us relate Kähler reduction to GIT quotients. So, let M be a connected Kähler manifold
with a Kähler Hamiltonian action of a connected compact Lie group K . Assume that M can be
embedded as a complex projective subvariety of CPn for some n > 0 in a such a way that:
(1) The Kähler structure on M is the restriction of the Fubini-Study metric to M .
(2) K acts on M via a morphism ρ : K → U(n + 1).

We recall the Fubini-Study metric is the standard Kähler structure of CPn (we saw in example B.7
(1) that it may be described as a Kähler reduction of the standard Hermitian metric on Cn+1) and
that it is preserved by the action of U(n + 1). Any complex subvariety of CPn inherits a Kähler
structure by restriction. An equivariant moment map µ for the action is determined up to an element
of α ∈ H1(k,R) in general, but here there is a natural choice that is taking the moment map induced
by the “standard” moment map for the action of U(n + 1) on CPn

80.

Remark B.16. Out of interest, we can write down some explicit formulas. Let [z1 : · · · : zn+1]
denote homogeneous coordinates on CPn and z = (z1, . . . , zn+1). The Fubini-Study Hermitian metric
is given by

hFS =
1
‖z‖4

©­«‖z‖2
n+1∑
i=1

dzi ⊗ dzi −
∑

16 j,k6n+1
zj zk dzj ⊗ dzk

ª®¬ (B.9)

and the Fubini-Study Kähler form is

ωFS = − Im(hFS) =
i
2
∂∂ log ‖z‖2 . (B.10)

80It is worthmentioning that choosing a different embedding and linearization of the action amounts to choosing different
values for the moment map.
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The standard moment map for the action of U(n + 1) on CPn is the map µ̃ : CPn → u(n + 1)∗ given
by

〈µ̃(z), ξ〉 = i
2

tr(z∗ξz)
‖z‖2

(B.11)

where z∗ denotes the conjugate transpose of the column vector z ∈ Cn+1. Note that under the
identification u(n + 1) ≈ u(n + 1)∗ given by the pairing (ξ, ξ ′) 7→ − tr(ξξ ′), this is

µ̃(z) = 1
2i

zz∗

‖z‖2
. (B.12)

The induced moment map for the action of K on M is the map µ as in the following diagram:

CPn u(n + 1)∗

M k∗

µ̃

r∗

µ

(B.13)

where r : k → u(n + 1) denotes the derivative of ρ : K → U(n + 1).

Now, recall that the action of K extends to a holomorphic action of KC, in this case via the unique
ρC : KC → U(n+1)C = GL(n+1,C). We saw how the symplectic notion of stability (definition B.8)
is the bridge between Kähler reduction and complex quotients (theorem B.9). We also saw how the
GIT notion of stability (definition B.13) relates GIT quotients to complex quotients in the algebraic
setting (theorem B.14). The picture is completed by the Kempf-Ness theorem:

Theorem B.17. In the setting above, the definitions of semistable, polystable, stable and unstable
points in M in the sense of symplectic reduction (definition B.8) coincide with the homonymous
notions in the sense of GIT (definition B.13).

Identifications of quotients follows from theorem B.9 and theorem B.14. In particular:

Corollary B.18. If 0 is a regular value for the moment map and K acts freely on µ−1(0), then

M//K = Ms /KC = M//KC (B.14)

where M//K denotes the symplectic quotient and M//KC the GIT quotient.

Let us look at this circle of ideas at work on a simple example:

Example B.19. We look at example B.15: M ≈ Cn is the projective variety {[z1 : · · · : zn :
1]} ⊂ CPn and G = C∗ acts on CPn preserving M via the representation ρ : G → GL(n + 1,C),
λ 7→ diag(λ, . . . , λ, λ−p). We saw from the GIT point of view that

• when p < 0 all points are unstable and the GIT quotient M//G is empty;
• when p = 0 the only (poly)stable point is x0 = [0 : · · · : 0 : 1] and M//G is reduced to a point;
• when p > 0 all points are (poly)stable except x0 and M//G = CPn−1 ≈ (Cn − {0})/C∗.
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From the perspective of symplectic (Kähler) reduction, M ≈ Cn with Kähler form given by the
restriction of ωFS81 and the action of the maximal compact K = U(1) is the action by scalar multipli-
cation, which is Kähler Hamiltonian. We compute the equivariant moment map µ using (B.11) and
(B.13). The derivative of ρ at the identity is r : k ≈ iR → u(n + 1), ix 7→ diag(ix, . . . , ix,−ipx). It
follows that µ is given by

µ : M ≈ Cn −→ u(1)∗ ≈ iR

z = (z1, . . . , zn) 7−→
1
2i
‖z‖2 − p
1 + ‖z‖2

.

• For p < 0, µ−1(0) is empty so the symplectic quotient wannabe µ−1(0)/U(1) is empty.
• For p = 0, µ−1(0) = {0} so µ−1(0)/U(1) is a point.
• For p > 0, 0 is a regular value of µ, µ−1(0) is the sphere S√p of radius √p in Cn and U(1) acts
freely on it so the well-defined symplectic quotient is M//K = S√p/U(1). In accordance with
theorem B.9, we find that all points in M except the origin are stable in the sense that their
C∗-orbit intersects S√p, and the action of C∗ on Ms = (Cn − {0}) is free and proper so that

M//K = S√p
/

U(1) ≈ C
n − {0} /C∗ ≈ CPn−1 . (B.15)

Since this notion of stability coincides with that of GIT, the complex quotient Cn − {0}/C∗ is
also identified to the GIT quotient M//G = CPn−1 as expected.

B.6 Complex symplectic reduction

In preparation.

B.7 Hyperkähler reduction

In preparation.
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